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Abstract

Until recently, the molecular pathogenesis of preeclampsia (PE) remained largely unknown. Reports have shown that circulating

microRNAs (miRNAs) are promising novel biomarkers for cancer, pregnancy, tissue injury, and other conditions. The objective of this

study was to identify differentially expressed miRNAs in plasma from severe preeclamptic pregnancies compared with plasma from

normal pregnancies. By mature miRNA microarray analysis, 15 miRNAs, including 13 up- and two downregulated miRNAs, were

screened to be differentially expressed in plasma from women with severe PE (sPE). Seven miRNAs, namely miR-24, miR-26a, miR-103,

miR-130b, miR-181a, miR-342-3p, and miR-574-5p, were validated to be elevated in plasma from severe preeclamptic pregnancies by

real-time quantitative stem-loop RT-PCR analysis. Gene ontology and pathway enrichment analyses revealed that these miRNAs were

involved in specific biological process categories (including regulation of metabolic processes, regulation of transcription, and cell cycle)

and signaling pathways (including the MAP kinase signaling pathway, the transforming growth factor-b signaling pathway, and pathways

in cancer metastasis). This study presents, for the first time, the differential expression profile of circulating miRNAs in sPE patients. The

seven elevated circulating miRNAs may play critical roles in the pathogenesis of sPE, and one or more of them may become potential

markers for diagnosing sPE.
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Introduction

Preeclampsia (PE), a pregnancy-related disease charac-
terized by hypertension and proteinuria, is a major cause
of maternal mortality, morbidities, perinatal deaths,
preterm birth, and intrauterine growth restriction
(Sibai et al. 2005). Although circulating soluble fms-
like tyrosine kinase 1, soluble endoglin, and placental
growth factor were recently suggested to contribute to
the pathogenesis of PE (Levine et al. 2006), the
mechanisms involved in this pathological condition
remain poorly understood.

MicroRNAs (miRNAs) are a conserved group of w22-
nucleotide regulatory RNAs that play important roles in
regulating gene expression by binding to 3 0-UTR of
mRNAs for either degradation or translation repression
(Bartel 2004). miRNAs have been shown by oligonu-
cleotide microarrays to be highly enriched in the
placenta (Barad et al. 2004). However, miRNAs are
differentially expressed in the human placentas of
patients with PE, which indicates that miRNAs may
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have important roles in the pathogenesis of PE. In one
report, among the 157 miRNAs manipulated by real-
time quantitative RT-PCR (qRT-PCR) analysis, the
expression of two miRNAs (miR-182 and miR-210) was
significantly increased (2.1- and 3.0-fold respectively) in
placentas of PE patients compared with that in women
with normal pregnancy (Pineles et al. 2007). In addition,
gene ontology (GO) analysis of the potential target genes
of miR-182 and miR-210 indicated that specific
biological process categories (anti-apoptosis for miR-
182 and regulation of transcription for miR-210) were
enriched (Pineles et al. 2007). A microarray analysis of
836 known human mature miRNAs in placental tissues
of PE patients identified 91 dysregulated miRNAs,
including 38 down- and 53 upregulated miRNAs
(Roman et al. 2008). Two other reports (Hu et al. 2009,
Zhu et al. 2009) further proved the importance of
miRNAs in the pathophysiology of PE. Zhu et al. (2009)
demonstrated that 11 miRNAs (including miR-210 and
miR-181a) were overexpressed in the placentas of PE
patients, whereas the levels of 23 miRNAs were
DOI: 10.1530/REP-11-0304
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decreased compared with women with normal pregnan-
cies. The elevation of miR-181a in preeclamptic
placentas was also identified by another group (Hu
et al. 2009). In other studies, miRNAs specifically
expressed in human placentas were detected in sera
from pregnant women and found to be significantly
elevated compared with those from nonpregnant
women; their levels increased with gestational age and
decreased after delivery, providing a new group of
molecular markers for pregnancy monitoring (Chim et al.
2008, Gilad et al. 2008). In this study, a microarray
analysis of the miRNA expression profile in plasma from
severe PE (sPE) and normal pregnancies, as well as a real-
time qRT-PCR validation, was performed to explore the
association between maternal circulating miRNAs and
the molecular pathogenesis of sPE.
Results

miRNA microarray analysis

To investigate whether maternal circulating miRNAs are
associated with the pathogenesis of sPE, plasma samples
were collected from women with normal pregnancies
and pregnancies complicated by sPE. A comprehensive
miRNA microarray analysis was performed on nine
plasma samples, including five sPE plasma samples and
four plasma samples from normal pregnancies. Among
the 821 human miRNAs detected by microarray, 15
differentially expressed miRNAs were identified, of
which 13 miRNAs, namely miR-574-5p, miR-26a,
miR-151-3p, miR-130a, miR-181a, miR-130b, miR-
30d, miR-145, miR-103, miR-425, miR-221, miR-342-
3p, and miR-24, were upregulated in sPE plasma
samples and two miRNAs, namely miR-144 and miR-
16, were downregulated in sPE plasma samples,
compared with those from normal pregnancies
(P!0.05, twofold changes or more). As shown in
Fig. 1, among all 15 dysregulated miRNAs, the fold
changes of miR-574-5p and miR-26a appeared to be
more pronounced.
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miRNA expression validation by real-time quantitative
stem-loop RT-PCR analysis

Real-time stem-loop qRT-PCR was performed to validate
the 15 differentially expressed miRNAs identified in the
miRNA microarray analysis. Nineteen plasma samples,
consisting of ten sPE plasma samples and nine normal
plasma samples, were used for RNA isolation with the
mirVana PARIS kit. As shown in Fig. 2, seven miRNAs,
namely miR-24, miR-26a, miR-103, miR-130b, miR-
181a, miR-342-3p, and miR-574-5p, were validated to
be elevated in sPE plasma samples. Consistent with
miRNA microarray analysis, the changes of all seven
elevated miRNAs were either two- or threefold.
GO and pathway enrichment analyses

GO analysis of the predicted targets of the seven
elevated miRNAs indicated that a large group of genes
was connected to chromatin/nucleic acid/protein/ion
binding, regulation of metabolic processes, regulation of
transcription, embryonic development, and cell cycle
(Table 1). Pathway enrichment analysis suggested that
several pathways, including long-term potentiation,
endocytosis, the transforming growth factor-beta
(TGF-b) signaling pathway, cytokine–cytokine receptor
interaction, the MAP kinase (MAPK) signaling pathway,
and pathways in cancer metastasis, were mostly related
to the seven significantly elevated miRNAs (Table 2).
Discussion

Circulating miRNAs have emerged as potential novel
diagnostic biomarkers for cancer (Mitchell et al. 2008),
pregnancy (Chim et al. 2008, Gilad et al. 2008), tissue
injury (Wang et al. 2009), and other conditions. PE is a
critical pregnancy-specific disease complicated by
hypertension and proteinuria, and is a major cause of
maternal mortality, morbidities, perinatal deaths, pre-
term birth, and intrauterine growth restriction (Sibai et al.
2005), affecting 3–5% of pregnancies worldwide
sa-
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Figure 1 Differential expression profile of miRNAs in
human plasma by miRNA microarray. Nine
samples, including five sPE plasma samples and four
normal pregnancy plasma samples, were analyzed
by Agilent miRNA microarray chips. The
expressions of 15 miRNAs were screened to be
significantly (P!0.05) differential (twofold changes
or more), of which 13 were upregulated and two
were downregulated. The baseline denotes the
mean expression level of miRNAs in four plasma
samples from normal pregnancy.
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Figure 2 Expressions of miRNAs were validated by real-time
quantitative stem-loop RT-PCR analysis. Synthetic C. elegans miRNAs,
including cel-miR-39, cel-miR-54, and cel-miR-238, were added to
normalize variation in RNA isolation from different samples. The
experimental real-time qRT-PCR values were normalized by these three
spiked-in C. elegans control miRNAs. Bar graphs show real-time qRT-
PCR analysis of miR-24, miR-26a, miR-103, miR-130b, miR-181a,
miR-342-3p, and miR-574-5p in human plasma samples from sPE
(nZ10) and normal pregnancies (nZ9). The data are presented as
relative expression following normalization. The columns denote the
mean; the bars denote the S.D. *P!0.05 and **P!0.01.
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(Hogberg 2005). The mechanisms involved in PE
remained poorly understood, despite advances in our
understanding of this pathological condition (Levine
et al. 2006). Exploration of the roles of differentially
expressed circulating miRNAs in PE patients will enrich
our understanding of the pathogenesis of this disease and
contribute to its diagnosis and management. This study,
for the first time, has profiled the differential expression
of miRNAs in plasma samples from pregnant women
with sPE compared with those from women with normal
pregnancies. Seven miRNAs, namely miR-24, miR-26a,
miR-103, miR-130b, miR-181a, miR-342-3p, and
Table 1 Gene ontology analysis of circulating miRNAs elevated in sPE.

Biological process category (n) miR-24 miR-26a

Anatomical structure morphogenesis 23
Binding 168
Biosynthetic process
Cell communication 54
Cell cycle 19
Cellular component organization 42
Cellular developmental process 26
Chromatin binding
Embryonic development 13
Ion binding
Nucleic acid binding
Nucleoside-triphosphatase regulator activity 11
Positive regulation of biological process 29
Positive regulation of cellular process 27
Protein binding 113
Regulation of cellular process 91 99
Regulation of metabolic process 46
Transcription factor activity
Transcription regulator activity
Transport 48

Values represent the number of genes targeted by miRNAs.
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miR-574-5p, were found to be elevated significantly in
sPE plasma samples.

Abnormal placentation is one of the major patho-
logical causes of PE (Myatt 2002), and delivery of the
placenta remains the only definitive treatment for PE
(Maynard et al. 2008). Several reports (Pineles et al.
2007, Roman et al. 2008, Hu et al. 2009, Zhu et al.
2009, Enquobahrie et al. 2011, Mayor-Lynn et al. 2011,
Noack et al. 2011) have illustrated the differential
expression of placental miRNAs in PE patients. However,
except for miR-210 (elevated in preeclamptic placenta)
(Pineles et al. 2007, Zhu et al. 2009, Enquobahrie et al.
2011), miR-181a (elevated in preeclamptic placenta)
(Hu et al. 2009, Zhu et al. 2009), and miR-1 (decreased
in preeclamptic placenta) (Roman et al. 2008, Zhu et al.
2009, Enquobahrie et al. 2011), there was little overlap
among these data; this could have resulted from
differences in the sample collections (including the
gestational ages of the placentas and the processing of
the placentas), profiling methods and patients’ ethni-
cities (Hu et al. 2009). Interestingly, in this study, miR-
181a was also validated to be elevated in plasma
samples from sPE patients. miR-181a is one member of
the hsa-miR-181 family (Ji et al. 2009) that also includes
miR-181b, miR-181c, and miR-181d. miR-181a has
been shown to be an intrinsic modulator of T cell
sensitivity and selection; the inhibition of miR-181a
expression in immature T cells decreased their sensitivity
to antigen and weakened both positive and negative
selection (Li et al. 2007), indicating its critical role in
establishing proper development of immunity and
tolerance, which are largely involved in placentation
(Sibai et al. 2005, Bonney 2007). Since posttranscrip-
tional silencing of 30% of protein-coding genes in
Genes targeted by miRNAs

miR-103 miR-130b miR-181a miR-342-3p miR-574-5p

20 25 7
121 164

53 67 17
9

14 15
35
22
4 5 2

13 13 6
51 64
39 45 56
10 13

32 11
29 10

92 93 119 26
69 101
40 52 63
15 16 21
24 25 27
39
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Table 2 Pathway enrichment analysis of circulating miRNAs elevated in sPE.

Genes targeted by miRNAs

Pathway (n) miR-24 miR-26a miR-103 miR-130b miR-181a miR-342-3p miR-574-5p

Long-term potentiation 2 2 2 2 3
Endocytosis 3 4 5 4
TGF-b signaling pathway 2 3 3 3
Adipocytokine signaling pathway 2 2 3
Cytokine–cytokine receptor interaction 4 4 4
Glycerophospholipid metabolism 4 2 4
MAPK signaling pathway 8 7 5
Pathways in cancer metastasis 6 4 6
Regulation of actin cytoskeleton 4 3 3
Vascular smooth muscle contraction 3 4 3
SODD/TNFR1 signaling pathway 1 1 2
Adherens junction 2 3
Calcium signaling pathway 4 4
Gap junction 2 3
MTOR signaling pathway 2 3
PPAR signaling pathway 2 2
Wnt signaling pathway 3 3
ErbB signaling pathway 2 2
CDK regulation of DNA replication 1 1
Mechanism of protein import into the nucleus 1 1
Role of PI3K subunit p85 in regulation of actin

organization and cell migration
1 2

p53 signaling pathway 2 2
Dicer pathway 1 1

Values represent the number of genes targeted by miRNAs.
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mammals were shown to be mediated by miRNAs (Lewis
et al. 2005), the increased expression of miRNAs in sPE
patients could have a profound impact on diverse
biological functions (Table 1).

In addition to miR-181a, six other miRNAs, namely
miR-24, miR-26a, miR-103, miR-130b, miR-342-3p,
and miR-574-5p, were also found to be elevated in sPE
plasma samples. These miRNAs, with the exception of
miR-574-5p, which has been poorly investigated, had all
been identified to be ubiquitously expressed in 40
normal human tissues, including brain, heart, kidney,
liver, lymph node, and placenta (Liang et al. 2007). Since
PE is a multisystem disorder, and several factors
including renal disease, obesity and insulin resistance,
and maternal susceptibility genes, have been identified
with increased risk of PE (Sibai et al. 2005), further
exploration of the sources of these significantly elevated
circulating miRNAs in human tissues, especially in
placenta due to its possible importance in the patho-
genesis of PE, is needed.

The enrichment for specific biological process
categories, including regulation of metabolic processes,
regulation of transcription, and cell cycle, were revealed
by the GO analysis of the predicted target genes of the
seven elevated miRNAs (Table 1). Consistently, signi-
ficant metabolism abnormalities in severe preeclamptic
placenta have been found since the late 1980s, including
metabolisms of glycogen, amino acids, and lipids
(Bloxam et al. 1987, Walsh & Wang 1993). The placenta
is also relatively hypoxic in PE, since the differentiation
Reproduction (2012) 143 389–397
of cytotrophoblast is abnormal and the invasion
(including interstitial invasion and endovascular inva-
sion) is shallow (Genbacev et al. 1996). Hypoxia
inducible factor 1 (HIF1), a transcriptional activator
consisting of a constitutively expressed HIF1b subunit
and an O2-regulated HIF1a subunit, is an important
global regulator of oxygen homeostasis (Semenza &
Wang 1992, Wang et al. 1995). Under hypoxic
conditions, HIF1a binds to the constitutively expressed
HIF1b, and the complex subsequently translocates to the
nucleus and binds to the HIF-responsive elements,
initiating and enhancing the transcription of a series of
genes counteracting hypoxia, which include increase in
glucose uptake, activation of glycolysis, the kidney
synthesis of erythropoietin, and angiogenesis stimulation
(Tranquilli & Landi 2010). The expression of HIF1a has
been reported to be upregulated in preeclamptic
placentas obtained by cesarean section (Rajakumar
et al. 2004). And a specific group of miRNAs, including
miR-24, miR-26a, miR-103, and miR-181a, which were
all found to be elevated in sPE plasma samples in this
study, were revealed to be also elevated via a key
involvement of HIF in human cancer cell lines, in
response to low oxygen (Kulshreshtha et al. 2007).
Besides, a very recent study reported that the miR-130
family members, including miR-130a and miR-130b, the
latter of which was also found to be upregulated in sPE
plasma samples in this study, regulated HIF1a signaling
via targeting P-body protein DDX6, which promoted the
translation of HIF1a under hypoxia (Saito et al. 2011). In
www.reproduction-online.org



Table 3 Demographic and clinical characteristics of normal and severe
preeclamptic pregnancies.

Characteristics Control (nZ9) sPE (nZ10) P value

Maternal age (years) 30.4G1.3 29.9G3.1 NS
Current smoker (n) 0 (0%) 0 (0%)
Preeclampsia onset

(weeks)
None 34.4G1.8

Complicated by SGA (n) None 3 (30%)
Gestational age at

delivery (weeks)
38.8G0.4 37.7G1.0 NS

Primiparae (n) 9 (100%) 9 (90%)
Birth weight (g) 3510.0G

482.7
2964.3G

567.7
NS

Female fetus (n) 5 (55.6%) 5 (50%)
Prepregnancy weight (kg) 55.2G6.1 62.2G8.0 NS
Prepregnancy body mass

index (kg/m2)
20.5G2.6 23.3G3.4 NS

Han ethnicity (n) 9 (100%) 10 (100%)
Proteinuria (g/24 h) Normal 3.3G3.2 !0.01
Systolic blood pressure

(mmHg)
112.0G4.5 161.1G15.4 !0.01

Diastolic blood pressure
(mmHg)

70.0G0 105.0G13.2 !0.01

Some values are presented as meanGS.D., and statistical analyses were
performed by one-way ANOVA. P!0.05 was considered to be
statistically significant. sPE, severe preeclampsia; SGA, small for
gestational age; NS, not significant.
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addition, it has long been believed that cytotrophoblast
proliferation is upregulated in low oxygen concen-
trations (Fox 1964), which is further supported by the
phenomenon that there are increased numbers of
cytotrophoblast cells in the placenta at high altitude
(Ali 1997), indicating the cell cycle is altered in
preeclamptic placenta. However, more investigation is
required to determine the mechanisms whereby the
seven circulating miRNAs were elevated in sPE.

The results of pathway enrichment analysis suggested
that these seven elevated miRNAs were involved in
several pathways, including the MAPK signaling
pathway, the TGF-b signaling pathway, and pathways
in cancer metastasis. Consistent with the prediction
shown in Table 2, miR-24 was reported to be able to
stimulate MAPK signaling by directly targeting MAPK
phosphatase 7 (Zaidi et al. 2009). miR-24 was also
involved in TGF-b signaling, since miR-24 could repress
erythropoiesis by directly targeting activin type I receptor
ALK4 and subsequently interfering with activin-induced
SMAD2 phosphorylation (Wang et al. 2008).

All the seven elevated miRNAs presented in this study
have been identified to be involved in the pathways in
cancer metastasis. The miR-103/107 miRNA family was
recently identified as a negative regulator of miRNA
biosynthesis by targeting Dicer, which is a critical
member of the miRNA-processing machinery; this
resulted in decreased miR-200 expression, which
induced epithelial-to-mesenchymal transition (Martello
et al. 2010). miR-130b was shown to be involved in cell
growth and self-renewal by directly targeting tumor
protein 53-induced nuclear protein 1 (Yeung et al. 2008,
Ma et al. 2010), and cancer metastasis (Su et al. 2010).
Despite the fact that miR-342-3p, miR-574-5p, miR-26a,
and miR-181a were not included in the pathways in
cancer metastasis by pathway enrichment analysis
(Table 2), these four miRNAs also had critical roles in
cancer metastasis. miR-342-3p has been suggested as a
potential marker for prion disease (Saba et al. 2008),
multiple myeloma (Ronchetti et al. 2008), and breast
cancer (Van der Auwera et al. 2010). miR-574-5p was
recently reported to be significantly associated with
chemoresistance in patients with small cell lung cancer
(Ranade et al. 2010). miR-26a was recently found to
greatly decrease the expression of EZH2, which resulted
in the inhibition of cell growth and tumorigenesis of
nasopharyngeal carcinoma (Lu et al. 2011). Conversely,
EZH2 expression could be elevated through negative
modulation of its repressor miR-26a by MYC (Sander
et al. 2008), which had been demonstrated to be directly
targeted by miR-24 via binding to seedless miRNA
recognition elements within its 3 0-UTR (Lal et al. 2009).
miR-181a has recently been identified as an oncogenic
miRNA in MCF-7 cells (Oliveras-Ferraros et al. 2011).

In summary, through miRNA microarray assay and
real-time stem-loop qRT-PCR analysis, this study demon-
strated a maternally differential circulating miRNA
www.reproduction-online.org
expression profile in plasma samples from severe
preeclamptic pregnancies compared with those from
normal pregnancies. The relationship between sPE and
dysregulated miRNA expression suggests critically
functional roles of miRNAs in the pathology of this
pregnancy-related disease. These differentially expressed
miRNAs might be novel targets for the further investi-
gation of the molecular pathogenesis and management
of sPE. However, due to the high biological variability of
human plasma samples, a study with a larger number of
samples, which also profiles gestation from an early
stage, is needed to prove miRNA analysis as an ideal and
easily accessible diagnostic method for PE.
Materials and Methods

Sample collection

Plasma samples were obtained with informed consent from
patients with late-onset sPE (sPE group; nZ10) and term-
matched normal pregnancies (control group; nZ9); all
pregnancies were between 37 and 40 weeks of gestation. All
women were patients at the Department of Obstetrics and
Gynecology, General Hospital of the People’s Liberation Army
in Beijing, China. A woman was determined to have sPE when
either severe hypertension (either a systolic blood pressure of
160 mmHg or higher or a diastolic blood pressure of
110 mmHg or higher on two occasions at least 6 h apart
while the patient was on bed rest) or severe proteinuria (either
urinary excretion of 5 g protein or higher in a 24 h urine
specimen or 3C protein or greater in two random urine
samples collected at least 4 h apart), or both, were present after
20 weeks of gestation (Practice ACoO 2002). All women with
Reproduction (2012) 143 389–397
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sPE had no other maternal complications. The demographic
and clinical characteristics of the study groups are summarized
in Table 3. The study protocol was approved by the ethics
committee of the Institute of Zoology, Chinese Academy of

Sciences.
Peripheral blood was collected into EDTAK2 tubes (San Li,

Liuyang, China), and then immediately subjected to centri-
fugation at 820 g for 10 min. Supernatant plasma was
transferred to RNase-free tubes and centrifuged at 16 000 g

for 10 min to pellet any remaining cellular debris. Aliquots of
the supernatant were transferred to fresh tubes and immedi-
ately stored at K80 8C.
Total RNA isolation from human plasma samples

Total RNA was isolated from 400 ml human plasma sample with
the mirVana PARIS kit (Ambion, Carlsbad, CA, USA) according

to the manufacturer’s instructions, with the modification that
samples were extracted twice with an equal volume of acid-
phenol:chloroform (Mitchell et al. 2008). Synthetic Caenor-
habditis elegans miRNAs, including cel-miR-39, cel-miR-54,
and cel-miR-238 (GenePharma, Shanghai, China), were added

to each denatured sample (after the addition of an equal
volume of 2! denaturing solution to plasma to inhibit RNases)
to normalize variation in RNA isolation from different samples
(Mitchell et al. 2008). RNA was eluted with 110 ml elution

solution.
Mature miRNA microarray analysis

Nine samples, including five sPE plasma samples and four

normal pregnancy plasma samples, were analyzed by Agilent
miRNA microarray chips (ShanghaiBio Corporation, Shanghai,
China). Raw data were normalized with GeneSpring 11.2
software (Agilent Technologies, Santa Clara, CA, USA).
Table 4 Primers used in real-time quantitative stem-loop RT-PCR analysis.

miRNAs Primers Sequen

hsa-miR-24 RT GTCGT
PCR GCGTG

hsa-miR-26a RT GTCGT
PCR GGCA

hsa-miR-103 RT GTCGT
PCR GGCA

hsa-miR-130b RT GTCGT
PCR GCCG

hsa-miR-181a RT GTCGT
PCR GCCG

hsa-miR-342-3p RT GTCGT
PCR GGCTC

hsa-miR-574-5p RT GTCGT
PCR CCGCT

cel-miR-39 RT GTCGT
PCR GCGC

cel-miR-54 RT GTCGT
PCR GGCC

cel-miR-238 RT GTCGT
PCR GGCG

Universal reverse PCR GTGCA

hsa, Homo sapiens; cel, Caenorhabditis elegans.

Reproduction (2012) 143 389–397
miRNAs with significantly (P!0.05) differential expression of
twofold changes or more were screened by Student’s t-test for
unpaired heteroscedastic samples without adjustment of P
values.
Real-time quantitative stem-loop RT-PCR validation of
mature miRNA microarray

miRNAs with significantly (P!0.05) differential expression of
twofold changes or more were further validated in 19 plasma
samples by real-time stem-loop qRT-PCR as described
previously (Chen et al. 2005, Varkonyi-Gasic et al. 2007)
with some modifications. In brief, a ‘no RNA’ RT master mix
was first prepared by scaling the volume of each reaction that
contained 0.5 ml 10 mM dNTP mix, 10.15 ml nuclease-free
water, and 1 ml stem-loop RT primer (1 mM). The mixture was
heated at 65 8C for 5 min and incubated on ice for 2 min. After
a brief centrifugation, 4 ml 5! first-strand buffer, 2 ml 0.1 M
DTT, 0.1 ml RNase inhibitor (40 units/ml, TaKaRa Bio-
technology, Dalian, China), and 0.25 ml SuperScript II RT
(200 units/ml, Invitrogen) were added into the mixture for each
reaction. The RT master mix was then aliquoted to each
reaction (18 ml), into which 2 ml RNA isolated from human
plasma sample with spiked-in C. elegans control miRNAs was
added. Stem-loop RT reactions were performed at 16 8C for
30 min, 42 8C for 30 min, and 85 8C for 5 min and then held
at 4 8C.

Real-time PCR was performed by a standard SYBR Premix Ex
Taq II (Perfect Real Time) (TaKaRa Biotechnology) kit protocol.
The 20 ml PCR consists of 10 ml SYBR Premix Ex Taq II (2!),
1 ml PCR forward primer (10 mM), 1 ml PCR reverse primer
(10 mM), 2 ml stem-loop RT product, and 6 ml dH2O.
The reactions were incubated at 95 8C for 30 s, followed by
45 cycles of 95 8C for 5 s, 60 8C for 10 s, and 72 8C for 25 s, and
then ended by a melting step with slow heating from 65 to
95 8C. All reactions were done in duplicate. The threshold
ce (5 0–3 0)

ATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCTGTTC
GCTCAGTTCAGCAG

ATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAGCCTA
GGTTCAAGTAATCCAGGA
ATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCATAG

GCAGCATTGTACAGGG
ATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACATGCCC

CCAGTGCAATGATGAAA
ATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACTCAC

AACATTCAACGCTGTCG
ATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACGGGT
TCACACAGAAATCGC
ATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACACACAC
GAGTGTGTGTGTGTGA
ATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCAAGCT

TCACCGGGTGTAAATC
ATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCTCGGA

GTACCCGTAATCTTCATAA
ATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCTGAA
TTTGTACTCCGATGCCA
GGGTCCGAGGT

www.reproduction-online.org
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cycle (Ct) refers to the fractional cycle number at which the
fluorescence passes the fixed threshold. In this study, the Ct was
determined with the automatic threshold settings. The ‘Delta–
delta’ method (Livak & Schmittgen 2001) was used to analyze
real-time qRT-PCR data. Normalization of experimental real-
time qRT-PCR data using spiked-in C. elegans control miRNAs
was carried out as described previously (Mitchell et al. 2008).
All primers synthesized by Invitrogen, Beijing, China are listed
in Table 4.
Statistical analysis

Validation results from real-time qRT-PCR are displayed
as the meanGS.D. Statistical analysis was performed by one-
way ANOVA. P!0.05 was considered to be statistically
significant.
GO and pathway enrichment analyses

Differentially expressed miRNAs were further analyzed for
predicted targets from TargetScan (www.targetscan.org) via
GeneSpring 11.2 software, while the parameters were set as
‘context score percentile: 90.0’ and ‘database: conserved’. GO
and pathway enrichment analyses of predicted targets of the
differentially expressed miRNAs were undertaken by the
ShanghaiBio Corporation (SBC) analysis system (http://sas.
ebioservice.com), which functions on the enrichment calcu-
lation and function annotation of differentially expressed genes
by combining R-software (the R Project for Statistical
Computing, http://www.r-project.org) with seven public data-
bases that include NCBI Entrez Gene (http://www.ncbi.nlm.
nih.gov/gene), GO (http://www.geneontology.org), KEGG
(http://www.genome.jp/kegg), and Biocarta (http://www.
biocarta.com). The enrichment P values of both GO and
pathway enrichment analyses were calculated by Fisher’s exact
test (Fisher 1922), which were corrected by enrichment
q-values (the false discovery rate) that were calculated by
John Storey’s method (Storey et al. 2004).
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