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Macrophages isolated fromvarious tissuesmanifest differences in cell shape, the expression of surfacemarkers, aswell asmetabolic
and functional activities. However, the heterogeneity of macrophages expressing the samemarker in different tissues has not been
fully addressed. In the present study, mouse F4/80þ peritoneal exudate macrophages (PEMs) and splenic macrophages (SPMs)
appeared similar in most respects. But the percentages of cells expressing CD80, CD40, MHC-II, TLR2, or TLR4, but not CD11c,
CD54, or CD23, in freshly isolated F4/80þ SPMs were significantly higher than those in PEMs, whereas the levels of CD86þ cells in
F4/80þ SPMs were markedly lower than those in PEMs. After lipopolysaccharide (LPS) stimulation, F4/80þ SPMs expressed
significantly higher levels of CD86, CD40, orMHC-II than F4/80þ PEMs, but not CD11c, CD80, CD54, or CD23. F4/80þ SPMs had
remarkably lower non-opsonic phagocytotic capacity against chicken RBCs or allo-T cells than PEMs as determined by two-photon
microscopes and flow cytometry. SPMs produced markedly more NO than PEMs when cultured with LPS or allo-T cells.
Furthermore, SPMs exhibited stronger immunogenicity than PEMs, as determined by the ability to stimulate T cell proliferation,
delayed type hypersensitivity, and IFN-g production. The data showed the differences between SPMs and PEMs with regard to the
phenotypes, phagocytosis, and immunogenicity, which may offer important information for us to better understand the
distinguished immune responses of macrophages in spleens and the peritoneal cavity. J. Cell. Physiol. 209: 341–352, 2006.
� 2006 Wiley-Liss, Inc.

Macrophages, as part of the first defense line (innate
immunity) against invading microorganisms, viruses
and transformed cells, are one of the critical initiators
and regulators on immune responses in organisms
(Gordon, 2003). Importantly, by releasing cytokines,
presenting antigens or phagocytosis effects, macro-
phages also function in the secondary defense line, both
humoral and cell-mediated immunity (Esashi et al.,
2003). A common progenitor gives rise to tissue macro-
phages, dendritic cells (DCs) and osteoclasts, which are
distinct, irreversibly differentiated sublineages. Once
distributed through the blood stream, monocytes con-
stitutively enter all tissue compartments of the body,
including the peritoneal cavity, to differentiate into
macrophages (Gordon, 2004). Resident macrophage
populations in different organs, such as Kupffer cells
in the liver, alveolar macrophages in the lungs, micro-
glia in the central nervous system, and macrophages in
spleens and the peritoneal cavity, adapt to their local
microenvironment (Barrington et al., 2001; Gordon,
2003). In addition, recruited macrophages exhibit many
phenotypic differences from resident tissue macro-
phages.

Different macrophage subtypes in various or same
locations were referred to as macrophage heterogeneity
(Shortman and Wu, 2004; Liu et al., 2005a). Macro-
phages in a different microenvironment display a wide
diversity in terms of their function and morphology
(Minto et al., 2003; Liu et al., 2005a). The heterogeneity
of macrophages may be important for the diversity,
flexibility and validity of innate and adaptive immune
responses to all kinds of stimuli (Kaufmann and
Schaible, 2005). Macrophage heterogeneity could con-
ceivably originate through a variety of pathways.

Because macrophages only express germline-encoded
and non-clonal receptors that can be modulated
markedly in cell populations, their heterogeneity is
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fundamentally and conceptually different from that
of T and B cells, which express somatic-recombinant
antigen-specific receptors (Gordon, 2003).

The peritoneal exudate macrophages (PEMs) are the
most studied primary macrophages in mice because they
are easily isolated by peritoneal lavage (Cailhier et al.,
2005; Kaufmann and Schaible, 2005). Because the
peritoneal environment, with a very low organ tension,
is quite unusual, PEMs may have some unique proper-
ties. Given some inducing factor/factors, PEMs can
differentiate into DCs. Some researchers even recognize
PEMs as precursors of DCs, thus the idea that DCs and
PEMs is in the end stage of cell differentiation was
recently challenged (Monney et al., 2002; Esashi et al.,
2003; Gordon, 2003; Lee et al., 2005b). On the other
hand, because the spleen, with a rich blood supply, is
responsible for filtering and clearing blood borne
particles as well as one of the important peripheral
immune organs, splenic macrophages (SPMs) are a
widely heterogeneous population of cells and have
important classical immunomodulatory effects. SPMs
are an important component of the innate immune
system, as evidenced by the incidence of septicemia
following splenectomy (Sodhi et al., 2005). Interestingly,
SPMs and PEMs may exhibit distinct alterations when
they are exposed to certain chemicals or stimulations
(Shortman and Wu, 2004; Stout and Suttles, 2005;
Olsson and Sundler, 2006). It has been reported that in
tumor-bearing mice, the cytotoxicity was significantly
decreased in PEMs but markedly increased in SPMs
(Gordon, 2004; Morrison et al., 2004). Although we have
been aware of the macrophage diversity for quite a
while, the differences between peritoneal and SPMs
have not been fully addressed. To determine the basic
physiological properties of PEMs and SPMs is essential
for us to understand the different responses against the
same stimulation of these two local macrophages. In the
present study, in order to achieve a more detailed
understanding of the unique properties of PEMs and the
differences between PEMs and macrophages in other
tissues, we have undertaken a comparing study on
mouse F4/80þ PEMs and SPMs with regard to their
morphology and physiological functions, including cell
size, microscope morphology, cellular phenotype, pha-
gocytosis, immunogenicity, as well as cytokine and
nitric oxide (NO) productions (Chomarat et al., 2003;
Sodhi et al., 2005). This study may offer the basic
information for us to better understand the different
immune responses in various locations in organisms
in mice.

MATERIALS AND METHODS
Animals

Five- to seven- week-old C57BL/6 (B6) (H-2b), Balb/c (H-2d),
and C3H (H-2k) mice were purchased from Beijing University
Experimental Animal Center (Beijing, China). All mice were
maintained in specific pathogen-free facility and were housed
in microisolator cages containing sterilized feed, autoclaved
bedding, and water. All experimental manipulations were
undertaken in accordance with the Institutional Guidelines for
the Care and Use of Laboratory Animals.

Monoclonal antibodies (mAbs)

The following mAbs were purchased from BD Biosciences
PharMingen (San Diego, CA). Fluorescein isothiocyanate
(FITC)-conjugated rat anti-mouse CD40 mAb (3/32; IgG2a),
FITC-labeled hamster anti-mouse CD54 (ICAM-1) mAb (3E2;
IgG2a), FITC-labeled hamster anti-mouse CD80 (B7-1) mAb
(16-10A1; IgG2b), FITC-conjugated rat anti-mouse CD86 (B7-
2) mAb (GL1, IgG2a), FITC-labeled mouse anti-mouse H-

2Kb mAb (AF6-88.5; IgG2a), FITC-labeled mouse anti-mouse I-
Ab mAb (AF6-120.1; IgG2a), FITC-labeled hamster anti-mouse
TCR b-chain mAb (H57-597, IgG2a), phycoerythrin (PE)-
labeled rat anti-mouse CD4 mAb (RM4-5; IgG2a), PE-labeled
rat anti-mouse CD8a mAb (53-6.7; IgG2a). FITC-conjugated
anti-mouse F4/80 mAb (BM8), FITC-conjugated anti-mouse I-
Ad mAb (39-10-8), FITC-conjugated anti-mouse CD11c mAb
(HL3), FITC-conjugated anti-mouse CD23 mAb (B3B4), FITC-
conjugated anti-mouse toll-like receptor 2 mAb (TLR2, clone
mT2.7), FITC-conjugated anti-mouse TLR4 mAb (UT41),
FITC-conjugated anti-mouse IFN-g mAb (GIR-208). Rat anti-
mouse FcR mAb (2.4G2, IgG2b) was produced by 2.4G2
hybridoma (ATCC, Rockville, Maryland) in our laboratory.

Preparation of PEMs and SPMs

Mouse peritoneal exudate cells were obtained from the
peritoneal exudates of mice. Mouse splenocytes were prepared,
and red blood cells were lysed with ACK Lysis buffer
(Invitrogen, San Diego, CA) as described before (Yan et al.,
2002). After the cells were washed twice with cold Hanks’
solution, these cells were adjusted to 5� 106 cells/ml in
RPMI1640 medium (Gibco BRL, Grand Island, NY) and
cultured in 2% gelatin (Sigma)-pretreated 6-well plates
(Costar, Cambridge, MA) for 3–4 h at 378C and 5% CO2. The
non-adherent cells were removed by washing them with warm
RPMI1640 medium. The adherent cells were harvested with
5 mM EDTA (Sigma) in ice-cold PBS (pH 7.2) and readjusted to
1� 106 cells/ml. The cell viability was usually more than 95%
as determined by trypan blue exclusion. The macrophage
purity was analyzed by a two-proton microscope LSM510
(Zeiss, Wetzlar, Germany) and flow cytometry (Becton Dick-
inson, Mountain View, CA), using macrophage marker F4/80.
The adherent cells constituted more than 90% of F4/80þ

macrophages, as reported before (Delneste et al., 2003).

Morphology observation

Either Balb/c or C57BL/6 F4/80þ PEMs and SPMs were
cultured in RPMI1640 medium containing 2.0 mM L-glutamine
(Sigma), 100 U/ml penicillin, and 100 mg/ml streptomycin for
2 h so that they were adherent to the sterilized glass slides. For
microscopic studies, the adherent cells were stained by Giemsa
and Wright staining solution (Sigma) after using methanol to
fix, as reported before (Ammon et al., 2000; Esashi et al., 2003).

Immunofluorescence staining and flow cytometry (FCM)

5� 105 Balb/c or C57BL/6 mouse PEMs and SPMs were
washed once with FACS buffer (PBS, pH 7.2, containing 0.1%
NaN3 and 0.5% bovine serum albumin (BSA)). For two-color
staining, cells were stained with PE-labeled anti-mouse F4/80
mAb versus FITC-labeled anti-I-Ad (39-10-8), CD11c (HL3),
CD80 (16-10A1), CD86 (GL1), CD40 (3/23), CD54 (3E2), CD23
(B3B4), toll-like receptor 2 (TLR2, clone mT2.7), or TLR4
(UT41) mAb or the non-specific staining control mAb, respec-
tively. Non-specific FcR binding was blocked by anti-mouse
FcR mAb 2.4G2. At least 10,000 cells were assayed by two-color
FCM using a FASCalibur flow cytometry (Becton Dickinson),
and data were analyzed with CellQuest software (Becton
Dickinson). Non-viable cells were excluded using the vital
nucleic acid stain propidium iodide (PI). The percentage of cells
stained with a particular reagent or reagents was determined
by subtracting the percentage of cells stained non-specifically
with the negative control mAb from staining in the same dot-
plot region with the anti-mouse mAbs. Certain molecule
expression levels were determined as the median fluorescence
intensity (MFI) of the cells positively stained with the specific
mAb. The cell size of F4/80 positive cells was determined by the
analysis of the forward scatter side with gating on F4/80þ cells.

The IFN-g production in CD4þ T cells stimulated by
allogeneic PEMs and SPMs was detected using BD cytofix/
cytoperm plus (with Golgi PlugTM) intracellular staining kits
(BD Biosciences PharMingen). The non-adherent splenocytes
(2� 106 cells/well) were co-cultured with allogeneic or syn-
geneic PEMs or SPMs (1� 106 cells/well) in 6-well plates for
48 h. Cells were then pulsed with 1.0 ml/ml Brefeldin A (BD
Golgi Plug; BD Biosciences PharMingen) for the last 8 h of
culture. Suspended cells were collected and washed once with
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FACS buffer. After incubation with FcR Blockade (2.4G2) and
FITC-conjugated anti-mouse CD4 mAb (SK3; BD Biosciences
PharMingen) in the dark at room temperature (RT) for 15 min,
cells were washed once with staining buffer, then fixed and
permeabilized with 500 ml of BD Cytofix/Cytoperm solution at
RT in the dark for 20 min, according to the instruction offered
by the manufacturer. After they were stained with 0.25 mg of
anti-mouse IFN-g mAb (GIR-208; BD Biosciences PharMin-
gen) for 30 min at RT in the dark and washed three times,
10,000 CD4þ cells were then analyzed by FCM (Morrison et al.,
2004).

Allogeneic mixed leukocyte reactions (MLR)

Murine splenocytes were prepared using the sterile techni-
que as described before (Zhao et al., 2003a). CD4þ T cells were
purified by negative selection of mouse splenocytes using
mouse CD4þ T lymphocyte enrichment set-DM (BD Bios-
ciences PharMingen). Cells were suspended in RPMI1640
medium supplemented with 10% (vol/vol) mouse serum, 2 mM
L-glutamine, 0.1 mM non-essential amino acids (GibcolBrl),
1 mM sodium pyruvate, 10 U/ml penicillin and 10 mg/ml
streptomycin, 10 mM HEPES buffer (GibcolBrl), and 10 mM
2-mercaptoethanol (Sun et al., 2006). Triplicate wells contain-
ing 2� 105 responders with 1� 105 or with the indicated doses
of allogeneic macrophage stimulators (pretreated with 50 mg/
ml mitomycin C) in a total volume of 0.2 ml of medium were
incubated in U-bottomed 96-well microplates (Costar) at 378C
in 5% CO2. Duplicate plates were pulsed with 1 mCi of
3H-labeled thymidine (radioactivity, 185 GBq/mmol; Atomic
Energy Research Establishment, China) per well on days 3 and
4 and, after 18 h further incubation, were harvested onto glass
fiber filters with an automatic cell harvester (Tomtec, Toku,
Finland). Samples were assayed in a Liquid Scintillation
Analyzer (Beckmon, Fullerton, CA). Values are expressed as
counts per minute (cpm) from triplicate wells and are the
results after subtracting cpms from wells in the absence of
stimulator cells (Zhao et al., 2003b).

The phagocytosis of chicken red blood cells (cRBC) or
allogeneic T cells by macrophage

A single-cell suspension of cRBCs were obtained freshly.
CD3þ T cells were purified by negative selection of mouse
spleens of Balb/c and C57BL/6 mice using mouse CD3þT
lymphocyte enrichment set-DM (BD Biosciences PharMin-
gen). Following two washes with PBS, 1� 107 cells/ml cRBC or
CD3þT, cells in PBS were labeled with 5.0 mM 5-(and-6)-
carboxyfluorescein diacetate succinimidyl ester (CFSE; Mole-
cular Probes, Inc., Eugene, OR) for 15 min at 378C. These cells
were then washed thoroughly and re-suspended at a concen-
tration of 1� 107 cells/ml. Cell viability was determined by
trypan blue exclusion. Cell viability was usually more than
95%. 1� 106 macrophages (F4/80þ PEMs or SPMs) were co-
incubated with 2� 106 CFSE-labeled cRBC or CD3þ T cell in
6-well plates (Costar) that had been preset with cover glass at
378C and 5% CO2 for 3–4 h. The cover glasses were washed
once and adherent cells were blocked with anti-mouse FcgR
mAb (clone 2.4G2) and stained with PE-conjugated anti-F4/80
mAb (BM8, eBioscience, San Diego, CA). Three-channel
images were taken with a two-photon laser scanning micro-
scope (LSM510, Zeiss). Individual macrophages were isolated
from Z stacks with the extract region feature and further
analyzed using the ortho and gallery displays of the LSM510
imaging software (Lee et al., 2005b).

The response of mouse F4/80þ SPMs and PEMs to LPS

Mouse F4/80þ PEMs and SPMs at 1� 106 cells/ml were
stimulated with 0.5 mg/ml lipopolysaccharide (LPS, E. coli III:
B4; Sigma, St. Louis, MO) in 24-well plates (Costar) for 24 h at
378C and 5% CO2, as described before (Swirski et al., 2004).

Detection of nitric oxide (NO) production

NO production by macrophages was determined by the
measurement of the nitrite concentration with Griess assay.
Supernatants (100 ml) were added to 100 ml of a 1:1 mixture of
1% sulfanilamide dihydrochloride (Sigma) and 0.1% naphthyl

ethylenediamine dihydrochloride (Sigma) in 2.5% H3PO4.
Plates were incubated at 378C for 10 min, and the absorbance
at 550 nm was measured with a microplate reader (Molecular
Devices, Sunnyvale, CA). Nitrite concentration was calculated
with a sodium nitrite standard curve as reported before
(Monney et al., 2002).

Delayed type hypersensitivity (DTH)

Sensitized effector T cells were generated by immunizing
Balb/c mice with allogeneic C57BL/6 splenocytes. Ten days
after immunization, Balb/c CD4þ T cells were enriched using
the negative selecting MACS kit for CD4þ T lymphocytes (BD
Biosciences PharMingen). C57BL/6 F4/80þ PEMs or SPMs
were used as stimulator cells. Sensitized Balb/c effector CD4þ

T cells and allogeneic or syngeneic macrophage stimulators
(5� 105 cells/each) in 10 ml RPMI1640 medium were injected
intradermally into the pinnate of naı̈ve Balb/c mice. The
changes in ear thickness were measured using an engineer’s
micrometer at 24 or 48 h after challenge (Lee et al., 2005a). The
ear thickness change was calculated by subtracting the
thickness of the same ear before injection from the thickness
of the ear after injection.

Statistical analysis

All data are presented as the mean�SD. Student’s unpaired
t test for comparison of means was used to compare groups.
A P value less than 0.05 was considered to be statistically
significant.

RESULTS
Cellular morphology of mouse

F4/80þ PEMs and SPMs

First of all, we determined the purity of the separated
mouse PEMs and SPMs by a two-photon laser scanning
microscope and FCM. Splenic and peritoneal exudate
adherent cells constituted more than 90% of F4/80þ

macrophages (data not shown), as reported before (Lee
et al., 2005a; Lin et al., 2005). In general, 4-6�106 F4/
80þ PEMs or SPMs from each Balb/c or C57BL/6 mouse
were harvested (data not shown). The purity of F4/80þ

PEMs or SPMs in each experiment was routinely
determined by FCM.

As is shown in Figure 1, both freshly isolated Balb/c
F4/80þ PEMs and SPMs showed that these cells had
typical globular characteristics in shape, their nuclei
were usually eccentric, irregular and deeply stained
with Giemsa, the cytoplasm showed scarce elements and
the karyoplasmic ratio was high, as reported before (Lin
et al., 2005; Stout et al., 2005). However, the cell sizes of
Balb/c F4/80þ PEMs were significantly smaller than
that of F4/80þ SPMs (P<0.01, Fig. 1B,C). After
stimulation with LPS, both Balb/c F4/80þ PEMs and
SPMs became significantly larger in size with much
more irregular nuclei, small pseudopods and fewer of
granularity and cavitation than the unstimulated
control cells did (Fig. 1A–C). However, no significant
differences for LPS-stimulated Balb/c F4/80þ PEMs and
SPMs were observed in these respects (P>0.01,
Fig. 1C), although F4/80þ PEMs were markedly smaller
than those of F4/80þ SPMs before activation. Identical
observation was gained with C57BL/6 F4/80þ PEMs and
SPMs before and after LPS stimulation, respectively
(data not shown).

The phenotypes of mouse F4/80þ PEMs and SPMs

One of the most important functions for macrophages
is to present antigens to surrounding T cells through
their cell-surface interactions. The expression of co-
stimulatory molecules on antigen presenting cells
(APCs) is crucial in determining the nature and extent
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of the immune response. To investigate the potential
differences for mouse F4/80þ PEMs and SPMs in respect
of antigen presenting ability, we have studied the
expressions of MHC-II molecules and co-stimulatory
molecules on Balb/c F4/80þ PEMs and SPMs. Without
LPS stimulation, both Balb/c F4/80þ PEMs and SPMs
express relatively low levels of MHC-II and co-stimula-
tory molecules including CD80, CD86, CD40, and CD54
molecules (Fig. 2). However, more Balb/c F4/80þ SPMs
express markedly higher levels of CD86, CD40, and
MHC-II molecules, as well as lower levels of CD80
molecules, than those of Balb/c F4/80þ PEMs (P<0.05
or P<0.01, respectively). After the treatment with LPS

in vitro for 24 h, both Balb/c F4/80þ PEMs and SPMs
expressed very high levels of MHC-II and co-stimulatory
molecules CD80, CD86, CD40, CD54, and CD23 mole-
cules, as reported previously (Lee et al., 2005b).
However, significantly higher levels of I-A, CD86, and
CD40 molecules, but not CD11c, CD80, CD54, and CD23
molecules, expressed on Balb/c F4/80þ SPMs than those
on PEMs were detected after stimulation with LPS
in vitro (P<0.01 or P<0.001, respectively; Fig. 2B,C).
Similar changes of the cell phenotypes were observed
using C57BL/6 F4/80þ PEMs and SPMs, instead of Balb/
c F4/80þ PEMs and SPMs, treated with or without LPS
(data not shown).

Fig. 1. Morphology of Balb/c F4/80þ PEMs and SPMs assayed by
Giemsa staining and FCM. A: Morphology of Balb/c PEMs and SPMs
with or without LPS stimulation. a, b, e, and f: Freshly isolated Balb/c
PEMs (a and b) and SPMs (e and f) (magnification: a and e, 200�; b
and f, 400�); c, d, g, and h, LPS-treated Balb/c SPMs (g and h) and
PEMs (c and d) (magnification: c and g, 200�; d and h, 400�);

macrophages were treated with 0.5 mg/ml LPS for 24 h. B: Cell size of
Balb/c PEMs and SPMs determined by FCM. C: Cell size comparison
of Balb/c PEMs and SPM with or without LPS stimulation as detected
by FCM. **P<0.01 between the indicated groups. One representative
of four independent experiments with identical results was shown.
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TLRs mediate recognition of several microbial pro-
ducts. Accumulating evidences have demonstrated that
TLRs are capable of inducing distinct responses in
macrophages and other types of APCs, and subse-
quently direct T-helper cell differentiation in different
directions (Liu et al., 2005b, 2006; Stout et al., 2005).
Thus, the levels of TLR expressions on the unstimulated
Balb/c or C57BL/6 F4/80þPEMs and SPMs were directly
determined by FCM in this study, as described in
Materials and Methods. As is shown in Figure 3A,B,
significantly more Balb/c or C57BL/6 F4/80þ PEMs

expressed TLR2 or TLR4 than F4/80þ SPMs, respec-
tively (P<0.01, compared with the identical groups).
In addition, both Balb/c and C57BL/6 F4/80þ PEMs
expressed significantly higher levels of TLR2 and TLR4
than F4/80þ SPMs, respectively (P<0.01, compared
with the identical groups, Fig. 3C,D).

The phagocytosis of allogeneic and xenogeneic cells
by mouse F4/80þ PEMs and SPMs

Phagocytosis represents an early and crucial event in
triggering host defenses against invading pathogens.

Fig. 2. Phenotype characteristics of Balb/c F4/80þ PEMs and SPMs.
Balb/c macrophages were cultured with or without the stimulation
with 0.5 mg/ml LPS for 24 h, and then stained with PE-labeled anti-F4/
80 mAb versus FITC-labeled anti-CD11c, I-Ad, CD80, CD86, CD40,
CD54, or CD23 mAb. Ten thousand F4/80þ cells were analyzed by
FCM. A: A representative of the phenotypes of Balb/c F4/80þ PEMs
and SPMs assessed by FCM. The black lines represent the non-specific
mAb staining and red lines were the indicated mAb staining. B: The

percentages of CD11c, I-Ad, CD80, CD86, CD40, CD54, and CD23-
positive cells in Balb/c F4/80þ SPMs and PEMs stimulated with or
without LPS. C: The levels of CD11c, I-Ad, CD80, CD86, CD40, CD54,
and CD23 molecules in Balb/c F4/80þ SPMs and PEMs stimulated
with or without LPS, as determined by two-color FCM. *P< 0.05;
**P<0.01; ***P< 0.001 compared with the corresponding groups.
More than eight mice in each group were examined.
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Balb/c F4/80þ PEMs or SPMs co-cultured with CFSE-
labeled cRBCs for 4 h and the phagocytic ability of
macrophages was investigated using a two-photon
microscope and FCM. As is shown in Figure 4, both
Balb/c F4/80þ PEMs and SPMs have the ability to
phagocytize cRBCs efficiently. However, Balb/c F4/80þ

PEMs exhibited significantly higher phagocytosis capa-
city against xenogeneic target cells cRBCs than those of
F4/80þ SPMs (P< 0.05, Fig. 4A,B).

In addition, the macrophage phagocytic capacity
against allogeneic T cells of mouse F4/80þ PEMs and
SPMs was assessed using a two-photon microscope and
FCM. As is shown in Figure 5, both Balb/c F4/80þ PEMs
and SPMs have the ability to engulf allogeneic C57BL/6
T lymphocytes but not syngeneic T cells as detected with
a two-photon microscope. When the phagocytosis of
macrophages was quantitatively assayed using FCM,
Balb/c F4/80þ PEMs had a significantly higher phago-
cytic rate to allogeneic C57BL/6 T lymphocytes than
those of F4/80þ SPMs (P< 0.001, Fig. 5C). Furthermore,
C57BL/6 F4/80þ SPMs and PEMs showed similar
patterns for their phagocytosis when studied using
Balb/c T cells as target cells in vitro (data not shown).

NO secretion of F4/80þ PEMs and SPMs stimulated
with or without LPS and cultured with

allogeneic T cells

NO is one of the important mediators for macrophage
functions (Ammon et al., 2000). Without LPS stimula-
tion, both mouse F4/80þ SPMs and PEMs spontaneously
produced detectable levels of NO (Fig. 6A). However, F4/
80þ SPMs secreted significantly higher levels of NO
than that of F4/80þ PEMs in either C57BL/c or Balb/c

mice (P< 0.01). After the treatment with LPS for 24 h or
cultured with allogeneic T cells for 48 h, both F4/80þ

SPMs and PEMs produced a large amount of NO
(P<0.01, compared with the untreated identical control
group; P< 0.05, compared with cultured with syngeneic
T cell group), but F4/80þ SPMs produced markedly more
NO than that of F4/80þ PEMs (P<0.001, Fig. 6). These
differences between F4/80þ SPMs and PEMs in both
Balb/c and C57BL mice were observed similarly,
indicating that these differences may be unrelated with
the mouse stains.

Immunogenicity of F4/80þ PEMs and SPMs to naı̈ve
allogeneic CD4þ T cells in vitro and in vivo

Macrophages, as an important APC, play a critical
role in the initiation of adoptive immune responses. The
immunogenicity of mouse F4/80þPEMs and SPMs to the
allogeneic T cells was compared in the present study.
The in vitro results have shown that both F4/80þ SPMs
and PEMs could efficiently induce the proliferative
reaction of allogeneic C57BL/6 or C3H T cells in MLR
assays (Fig. 7A). However, Balb/c F4/80þ SPMs stimu-
lated the proliferation of allogeneic C57BL/6 or C3H
CD4þ T lymphocytes more efficiently than did Balb/c F4/
80þ PEMs (P< 0.01). Consistently, the proliferation of
allogeneic Balb/c or C3H CD4þ T lymphocytes induced
by C57BL/6 F4/80þ SPMs was significantly stronger
than those induced by C57BL/6 PEMs in MLR
(P<0.001, Fig. 7B).

To further determine the difference for the immuno-
genicity of mouse F4/80þ PEMs and SPMs, the in vivo
assay, DTH, induced by allogeneic F4/80þ PEMs or
SPMs was performed. Sensitized CD4þ T lymphocytes
were co-injected intradermally with allogeneic F4/80þ

PEMs or SPMs, respectively, into the pinnate of naı̈ve
Balb/c mice. The changes in ear thickness were
measured at 24 h after challenge. As is shown in
Figure 7C, significant DTH responses were observed if
sensitized C57BL/6 T cells were stimulated by allo-
geneic Balb/c F4/80þ PEMs or SPMs, whereas there
were no significant DTH responses if unsensitized
C57BL/6 T cells were stimulated by allogeneic Balb/c
F4/80þ PEMs or SPMs, as reported. However, Balb/c F4/
80þ SPMs induced significantly higher DTH responses
of sensitized C57BL/6 T cells than Balb/c F4/80þ PEMs
did (P<0.05). Similarly, C57BL/6 F4/80þ SPMs induced
significantly higher DTH responses of sensitized Balb/c
T cells than C57BL/6 F4/80þ PEMs did (P< 0.05,
Fig. 7D).

IFN-g production of CD4þ T cells stimulated by
allogeneic F4/80þ PEMs and SPMs in vitro

After Balb/c CD4þ T cells co-cultured with allogeneic
C57BL/6 F4/80þ SPMs or PEMs, respectively, for 4 days,
the levels of IFN-gþ cells in CD4þ T lymphocytes were
determined by the intracellular staining method. As is
shown in Figure 8, the percentages of IFN-gþ cells in
Balb/c CD4þ T lymphocytes cultured with allogeneic
C57BL/6 F4/80þ SPMs or PEMs were significantly
higher than those cultured with syngeneic Balb/c
F4/80þ SPMs or PEMs, respectively, as expected
(P<0.001). In consistency with the high immunogeni-
city of F4/80þ SPMs to allogeneic T cells as indicated by
the in vitro and in vivo assays mentioned above, Balb/c
F4/80þ SPMs-stimulated allogeneic C57BL/6 CD4þ T
cells to produce significantly higher levels of IFN-g than
Balb/c F4/80þ PEMs did (P< 0.01). Identical results
were obtained when C57BL/6 F4/80þ PEMs and SPMs
were studied in vitro (data not shown).

Fig. 3. The expression TLR2 and TLR4 on Balb/c or C57BL/6 F4/80þ

SPMs and PEMs. The percentages of TLR2þ (A) and TLR4þ (B) cells
in Balb/c and C57BL/6 F4/80þ SPMs and PEMs were determined by
two-color FCM. The levels of TLR2 (C) or TLR4 (D) expression on F4/
80þ SPMs and PEMs were shown. *P< 0.05; **P< 0.01 compared with
the corresponding PEMs. More than five mice in each group were
assessed. Data was one representative of three independent experi-
ments.
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DISCUSSION

Macrophages are a highly heterogeneous population
of cells and specialized subpopulations of macrophages
occupy distinct anatomical compartments in the body
(Delneste et al., 2003). Resident macrophages are
generally considered to be derived from circulating
monocytes (Belardelli and Ferrantini, 2002; Kaufmann
and Schaible, 2005). In the present study, the significant
morphology and functional differences between mouse
F4/80þ PEMs and SPMs were observed, although mouse
F4/80þ SPMs and PEMs, indeed, exhibited some simi-
larities in most respects. In consistent with the previous
studies (Kaufmann and Schaible, 2005), mouse F4/80þ

PEMs, with typical sphere characteristics including

large karyoplasmic ratio and deeply stained nuclei with
Giemsa staining, are significantly smaller than F4/80þ

SPMs. However, after the treatment with LPS, mouse
F4/80þ PEMs acquired markedly larger size and their
nuclei appeared much more irregular, which showed no
detectable difference with mouse F4/80þ SPMs stimu-
lated with LPS. These data indicate that F4/80þ PEMs
might have great potential ability for the enlarging cell
size after stimulation.

It is well known that macrophages can present
information concerning antigens to surrounding T cells
through cell-surface interactions (Chomarat et al.,
2003). We have investigated the potential antigen
presenting ability of mouse macrophages by detecting
the expressions of MHC-II and co-stimulatory molecules

Fig. 4. Phagocytosis against cRBCs by Balb/c PEMs and SPMs as detected by two-photon microscopy.
A: A representative of PEMs and SPMs phagocytosis to cRBCs. a–e: PEMs (630�; f–j: SPMs 630�). One
representative of five independent experiments with similar results was shown. B: The phagocytosis
percentages of cRBCs by Balb/c PEMs and SPMs were summarized. **P< 0.01 versus corresponding
PEMs. Six mice in each group were assayed and three independent experiments were performed.
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on mouse F4/80þ PEMs and SPMs with or without LPS
stimulation with gating on F4/80þ cells by two-color
staining FCM. The F4/80 mAb, recognizing a membrane
of the epidermal growth factor-transmembrane 7 families,
has been used widely as a marker for mouse macro-
phages. However, it has been demonstrated that
marginal zone macrophages appear F4/80�. Thus, the
marginal zone macrophages may be neglected in this
study. Both mouse F4/80þ PEMs and SPMs expressed
low levels of MHC-II and co-stimulatory molecules such
as CD80, CD86, CD40, and CD54 molecules. However,
the percentages of cells expressing CD80 or CD40
molecules in F4/80þ SPMs were markedly higher than
those in mouse F4/80þ PEMs, respectively, as deter-
mined by FCM, whereas the percentage of cells expres-
sing CD86 molecules in F4/80þ SPMs was significantly
lower than those in mouse F4/80þ PEMs. The relative

lack of co-stimulatory molecules such as CD80 or CD40
on mouse F4/80þ PEMs may be related to their poor
immunogenicity that was confirmed by our studies
in vitro and in vivo (Barrington et al., 2001; Wysocka
et al., 2001; Morrison et al., 2004).

After the treatment with LPS, more F4/80þ PEMs and
SPMs expressed markedly high levels of MHC-II and co-
stimulatory molecules, compared with the unstimulated
cells. Unexpectedly, LPS-stimulated F4/80þ SPMs
expressed significantly higher levels of CD86, CD40,
and I-A molecules than LPS-stimulated F4/80þ PEMs,
while no significant differences were observed on the
levels of CD23, CD54, CD80, and CD11c molecules
expressed on both LPS-stimulated SPMs and PEMs.
This data shows that, even after full activation, F4/80þ

SPMs and PEMs exhibited distinguished phenotypes,
excluding the possibility that the heterogeneity of

Fig. 5. Phagocytosis of allogeneic CD3þ T cells by mouse PEMs and
SPMs. A: Mouse PEMs and SPMs phagocyted allogeneic CD3þ T cells
as determined by two-photon microscope (magnification, 400�).
Macrophages were stained by PE-labeled anti-H-2d mAb, and target
T cells were labeled with CFSE. Balb/c PEMs were co-cultured with
C57BL/6 (A–E) or Balb/c T cells (F–J), Balb/c SPMs were co-cultured
with C57BL/6 (a–e) or Balb/c T cells (f–j). Data were one re-
presentative of six independent experiments showing similar results.

B and C: Mouse PEMs and SPMs phagocyted allogeneic CD3þ T
lymphocytes as determined by FCM. Balb/c PEMs or SPMs were
stained with PE-labeled anti-F4/80 mAb, whereas C57BL/6 and Balb/c
T cells were labeled with CFSE. Balb/c PEMs were co-cultured with
C57BL/6 (a) or Balb/c T cells (b), Balb/c SPMs were co-cultured with
C57BL/6 (c) or Balb/c T cells (d). ***P< 0.001 versus the corresponding
PEMs. Six mice in each group were used.
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freshly isolated F4/80þ SPMs and PEMs may be due
to these cells in different development or activation
states. The different responses, including cell phenotype
and NO production by mouse F4/80þ SPMs and PEMs
after LPS or allogeneic stimulation, suggested that
these cells might be functionally distinctive subpopula-
tions.

It is very striking that freshly isolated F4/80þ PEMs
expressed higher levels of CD86 than fresh F4/80þ

SPMs, whereas after LPS stimulation F4/80þ PEMs
expressed significantly lower levels of CD86 than F4/80þ

SPMs. F4/80þ SPMs always expressed higher levels of
CD80 than F4/80þ PEMs regardless of LPS stimulation.
The co-stimulatory signals to T cells provided by CD80
and CD86 expressed on APCs have been demonstrated.
Interaction between these ligands and CD28 or CTLA-4
on T cells either enhances or downregulates T cell
responses, respectively. In addition, the individual roles
of CD80 and CD86 may be distinct or overlapping during
an adaptive immune response depending on the disease
model studied and the immune mechanisms involved. It
has been reported that CD80 is pathogenic in crescentic
glomerulonephritis by enhancing survival and prolif-
eration of CD4þ T cells, whereas CD86 is protective
by enhancing Th2 and attenuating Th1 responses
(Troelstra et al., 1999; Raychaudhuri et al., 2000). The
remarkable heterogeneity of F4/80þ SPMs and PEMs in
terms of CD80 and CD86 expressions observed in the
present study may contribute to their distinct functions.
Furthermore, F4/80þ PEMs exhibited significantly
higher levels of TLR2 and TLR4 than F4/80þ SPMs,
indicating that mouse F4/80þ PEMs might have greater
capacity on recognition and clearness of pathogens or
other foreign stimuli, which are recognized by certain
TLRs, than F4/80þ SPMs. This expectation was some-
how supported by our studies showing that mouse PEMs
had stronger non-opsonic phagocytosis against allo-

geneic and xenogeneic target cells as detected by two-
photon microscopes and FCM.

After the treatment with LPS and culture with
allogeneic T cells in vitro, mouse SPMs and PEMs
secreted strikingly larger amounts of NO, but SPMs
produced significantly more NO than PEMs. Signifi-
cantly larger amount of NO production by SPMs than by
PEMs was observed even after subtracting the sponta-
neous NO from the stimulated groups. NO, as an
important factor of macrophages, influences a great
variety of biological processes in the organisms
(Kaufmann and Schaible, 2005). It has been reported
that SPMs produced more IL-1 and IL-12, less IL-6, and
PGE2 as well as similar levels of tumor necroses factor-a
than PEMs or macrophages in other tissues such as the
liver and lungs (Wu et al., 1993; Ogle et al., 1994). TLR4
was identified as the signaling receptor for LPS, a Gram-
negative bacterial wall component (Yan et al., 2002; Liu
et al., 2005b). The F4/80þ SPMs expressed significantly
lower levels of TLR4 than F4/80þ PEMs in Balb/c and
C57BL/6 mice, as determined by FCM. The inconsis-
tency between NO products and TLR4 expression on
PEMs and SPMs was unexplained. The higher levels of
NO produced by SPMs might due to other factors or
pathways in cells related to NO production (Kaufmann
and Schaible, 2005). In addition, macrophages stimu-
lated with allogeneic T cells produced more NO
compared with macrophages stimulated with LPS.
Our present data could not offer explanation for it.
Allogeneic T cells may offer strong signals such as
cytokines and ligands for macrophages to produce NO.
Nevertheless, these results have clearly shown that the
heterogeneity of SPMs and PEMs also present with
regard to the NO production.

In order to gain more insight into the functional
heterogeneity of macrophages, we have studied their
ability to stimulate the immune responses of allogeneic

Fig. 6. NO secretion of mouse PEMs and SPMs stimulated with or without LPS and cultured with
allogeneic T cells. Cells were cultured with 0.5 mg/ml LPS for 24 h (A) or with allogeneic T cells for 48 h (B).
The levels of NO in the supernatant were measured by Griess assay. Data was shown as mean�SD.
**P< 0.01 and ***P< 0.001 versus corresponding PEMs. Data was one representative of four
independent experiments with similar data.
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T cells and their phagocytosis on xenogeneic and
allogeneic target cells. The ability to stimulate the
proliferation and IFN-g production of allogeneic CD4þ T
cells by F4/80þ SPMs was significantly higher than
those of F4/80þ PEMs, whereas both F4/80þ SPMs and
F4/80þ PEMs had no effects on stimulating syngeneic
CD4þ T lymphocytes. Furthermore, mouse F4/80þ

SPMs induced significantly stronger allogeneic DTH
responses than F4/80þ PEMs. All these coincident
results in vitro and in vivo suggested that mouse F4/
80þ SPMs have stronger immunogenicity than mouse
F4/80þ PEMs. Their high levels of MHC-II and co-
stimulatory molecule expressions as well as the efficient
production of NO may explain the significantly higher
immunogenicity of SPMs. In addition, mouse PEMs
have significantly higher phagocytosis capacity against
cRBC or allogeneic T cells, respectively, than SPMs.

This was reversely related to the levels of MHC-II and
co-stimulatory molecules expressed on macrophages
and the immunogenicity to allogeneic T cells. It is known
that once peritoneal organs suffered bacterial infection
and injury, a great quantity of peritoneal exudates
including macrophages were secreted (Millard et al.,
2002). Macrophages are attracted to the peritoneal
environment more abundantly than any other cell types
(Anderson and Mosser, 2002). So, the results showing
that F4/80þ PEMs were significantly different from
SPMs may have important clinical significance to
explain different macrophage responses in different
body locations.

The difference between mouse PEMs and SPMs with
respect to cellular phenotype and function might
contribute to understand the unique properties of
PEMs and the immune functional heterogeneity of

Fig. 7. The immune responses of CD4þ T cells stimulated by allogeneic PEMs or SPMs. The proliferation
of CD4þ T cells induced by allogeneic Balb/c (A) or C57BL/6 (B) PEMs and SPMs in vitro. Data were
presented as mean�SD of triplicate wells. One representative of four independent experiments with
similar data was shown (C), DTH responses induced by allogeneic PEMs or SPMs, respectively, in vivo.
More than nine mice in each group were assayed. Data was a summary of seven independent
experiments. *P<0.05; **P<0.01; ***P< 0.001 compared with the corresponding PEMs group.
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macrophages in clinical and basic immunology. It is still
quite confusing in our understanding of macrophage
heterogeneity (Ravasi et al., 2002). The macrophage
heterogeneity presents in different organs or tissues, as
well as even in a single organ (Monney et al., 2002).
Macrophage heterogeneity could originate through a
variety of pathways (Shortman and Wu, 2004; Stout and
Suttles, 2005). Recent studies have shown that macro-
phage phenotypic and functional heterogeneity might
be related to a wide diversity of factors, including
different precursor cells, different differentiation
stages, different microenvironments, or even different
stimulatory factors (Chakraborty et al., 2005). PEMs
might have different precursor cells from spleen or other
tissue macrophages (Gordon, 2004). Some researchers
believe that PEMs may be at the early stages during
macrophage development and differentiation (Short-
man and Wu, 2004; Stout and Suttles, 2005).

In summary, with significant phenotype difference
between SPMs and PEMs before and after activation,
F4/80þ SPMs had remarkably lower non-opsonic pha-

gocytotic capacity against chicken RBCs or allo-T cells.
SPMs produced markedly more NO than PEMs when
cultured with LPS or allo-T cells. Furthermore, SPMs
exhibited stronger immunogenicity than PEMs, as
determined by allogeneic cell proliferation, DTH, and
IFN-g production.
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