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B and T lymphocyte attenuator interacts with CD3f
and inhibits tyrosine phosphorylation of TCRf complex
during T-cell activation

Ting-He Wu1, Yu Zhen1, Chun Zeng1, Huan-Fa Yi1 and Yong Zhao1,2

B and T lymphocyte attenuator (BTLA) is an important negative regulator of T-cell activation. T-cell activation involves

partitioning of receptors into discrete membrane compartments known as lipid rafts and the formation of an immunological

synapse (IS) between the T cell and antigen-presenting cell (APC). Here we show that after T-cell stimulation, BTLA co-clusters

with the CD3f and is then involved in IS, as determined by a two-photon microscope. BTLA can interact with the phosphorylated

form of T-cell receptor (TCR) within the lipid raft, which is associated with the T-cell signaling complex. Coligation of BTLA with

the TCR significantly decreased the amount of phosphorylated TCR-related signal accumulation in the lipid raft during T-cell

activation. These results suggest that BTLA functions to regulate T-cell signaling by controlling the phosphorylated form of TCRf

accumulation in the lipid raft.
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T-cell activation can be profoundly altered by the cell surface-expressing
co-inhibitory and co-stimulatory molecules. These co-signaling path-
ways play overlapping and distinct regulatory roles at various stages of
T-cell response or in different subsets of lymphocytes, so that the
immune responses process in a proper manner and intensity.1–8 B and
T lymphocyte attenuator (BTLA) is a lymphoid-specific cell surface
receptor that is expressed by B cells, T cells, dendritic cells (DCs),
macrophages and NK cells in C57BL/6 mice.9 Functional analysis has
suggested that BTLA exerts inhibitory actions, indicating a role more
similar to cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and
programmed death-1 (PD-1) than activating receptors of the CD28/B7
family.9,10 BTLA engagement resulted in a remarkable downregulation
of T-cell activation, and with mice deficient in BTLA, there is a
significantly increase in the incidence and severity of autoimmune
disorders.11 Co-ligation of BTLA partially inhibits anti-CD3 monoclo-
nal antibody (mAb)-induced secretion of interleukin (IL)-2, suggesting
that BTLA exerts an inhibitory, rather than activating influence on T
cells.12,13 BTLA is expressed highly on activated T cells, as well as both
developing Th1 and Th2 cells. BTLA is subsequently lost from highly
polarized Th2 cells, but is retained by Th1 cells.14 Thus, it may
exclusively regulate ongoing immune responses and later the balance-
governing immune tolerance in the periphery.

BTLA inhibits CD3 induction, but not chemically (such as using by
phorbol 12-myristate 13-acetate (PMA) plus ionomycin or Con A)

induced T-cell activation and IL-2 production, suggesting that BTLA
might impair the early events of T-cell activation.11 BTLA is a type I
transmembrane glycoprotein with an extracellular single immunoglo-
bulin V-like domain, a transmembrane region and a cytoplasmic
region.11,15 The cytoplasmic domain of murine BTLA contains three
conserved tyrosine-based signaling motifs, including a Grb-2 recogni-
tion consensus and two immunoreceptor tyrosine-based inhibitory
motifs (ITIMs).15 Phosphorylation of the cytoplasmic domain of
BTLA induced the association with the protein tyrosine phosphatases
SHP-1 and -2.11

During antigen presentation, the interface between the T cell and
antigen-presenting cell (APC) membranes forms the hot spot for
T-cell activation, a highly organized ultrastructure, the immunologi-
cal synapse (IS), where signaling, adhesion and cytoskeleton mole-
cules are concentrated within lipid raft microdomains following TCR
co-aggregation.16,17 The membrane lipid rafts which are biochemi-
cally characterized as detergent insoluble glycosphingolipid-enriched
microdomains act as platforms that compartmentalize key compo-
nents involved in signaling in different regions of the plasma
membrane.18

CTLA-4 is recruited to the lipid raft during negative signaling and
forms a molecular complex with phosphorylated CD3z within the
lipid raft.19–22 However, BTLA and CTLA-4 are significantly different
in both structure and binding mode than what had been expected
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from the amino-acid sequence.15,23 Thus BTLA signaling must
be activated in a different manner from that of CTLA-4 or CD28.23

Here, we report that BTLA co-clusters with CD3z and its involvement
in the formation of IS during mouse CD4+ T-cell activation. Further-
more, BTLA forms a molecular complex with phosphorylated TCRz
and negatively regulates the tyrosine phosphorylation of TCRz in the
lipid raft.

RESULTS AND DISCUSSION

Co-localization of BTLA and CD3f molecules on activated T cells
and co-clustering to the IS
It has been reported that BTLA expression on T cells was significantly
upregulated during T-cell activation, whereas naive T cells expressed
low or undetectable levels of BTLA.11 This upregulation of BTLA
expression on T cells during activation was confirmed in our labora-
tory.24 Consistently, naive TCR transgenic DO11.10 or wild-type B6
CD4+ T cells expressed undetectable levels of BTLA as determined by
flow cytometry, where significantly higher levels of BTLA were
expressed on activated DO11.10 or B6 CD4+ T cells.24

BTLA is a lymphocyte inhibitory receptor with similarities to
CTLA-4 and PD-1.11,12 BTLA inhibited CD3-induced, but not
chemically (such as PMA plus ionomycin or Con A) induced T-cell
activation and IL-2 production, suggesting that BTLA might impair
the early events of T-cell activation.11 The open question is whether or
not BTLA is involved in IS. Thus, the distribution of BTLA and its
relationship with CD3z on activated CD4+ T cells were assessed with
immunofluorescence assay. The two molecules can be detected and
distributed equably on the membrane of the resting CD4+ T cells,
although, BTLA co-clustered with CD3z on activated T cells (Figure 1).
Sorted CD4+ T cell, cultured with the purified DCs, that were pre-
matured with ovalbumin (OVA) peptide for the formation of IS,
found both BTLA and CD3z molecules were recruited to the IS
locations after CD4+ T cells interacted with DCs for 30 min at 371C
(Figure 2a). We did not find recruitment of BTLA and CD3z
reorganization in resting T cell–DC and activated T cell–DC
conjugates formed in the absence of OVA peptides (Figure 2a).
Thus, BTLA may participate in the early events of sensitized T cells
during activation. CD45 was used as the control because it is not
involved in the conformation of the IS. The immunofluorescence

results showed that CD45 did not join in the conformation of IS, while
CD3z and BTLA could relocalize to the IS (Figures 2b and c). The
percentages of cell conjuates displaying CD3z and BTLA in T cells are
summarized in Figures 2d–f.

The interaction of BTLA with CD3f and the association with the
tyrosine phosphorylated TCRf signals in the lipid raft
Since BTLA co-localization with CD3z in activated T cells (Figure 1),
we hypothesized that BTLA may negatively regulate lipid raft signal-
ing. As the first step in addressing this issue, we examined the
distribution of BTLA within the lipid rafts. TCR-transgenic DO11.10
mouse CD4+ T cells were used for this study. Lysates from stimulated
CD4+ T cells were subjected to sucrose gradient fractionation so that
the lipid raft could be separated as reported before.25 For the
identification of lipid raft, Lck was detected in the lipid raft fraction
(fractions 3 and 4), whereas other fractions exclude the bottom
fraction (fractions 10–12) did not show detectable levels of Lck
(Figure 3), which was consistent with the previous reports.25,26

BTLA and CD3z can be detected both in the lipid raft parts and in
the bottom parts. And control molecule (CD45) was not involved in
lipid raft.27,28 In subsequent experiments, fraction 4 of lipid raft
isolation fractions was used as lipid rafts after determination each
time. Immunoprecipitation of fractions 4 and 12 and total cell lysates
with anti-BTLA polyclonal antibody (pAb) (Figure 4a) resulted in
significant levels of CD3z protein could be detected by western blot
using anti-CD3z mAb, indicating that BTLA might interact with
CD3z both in lipid rafts and bottom fractions (Figure 4a). Immuno-
precipitation assay was repeat with anti-CD3z mAb and western
blotting detection were done with anti-BTLA pAb. Results displayed
that anti-CD3z antibody could also immunoprecipitation BTLA
(Figure 4a). Goat serum and mouse IgG were used as negative control.
It should be noted that the fractions were solubilized by n-octyl b-D-
galactopyranoside to ensure that associations were due to protein–
protein interactions and not co-presence within membrane vehicles.
Furthermore, tyrosine phosphorylation of anti-BTLA pAb-mediated
immunoprecipitated proteins were determined from both the lipid
raft fractions and the bottom fractions (Figure 4b). The pTyr bands
co-precipitated by anti-BTLA mAb mainly migrated at 59, 56, 23 and
21 kDa. The identity of the 59 and 56 kDa bands are Fyn and Lck,
respectively (data not shown).26 Goat serum also was used as negative
immunoprecipitation control here (data not shown). These results
suggest that BTLA may be involved in lipid raft and the BTLA/CD3z
interaction may regulate T-cell signaling, even if BTLA cannot form
a periodic repeating array at the IS.15

Cross-linking of BTLA significantly decreased the phosphorylated
protein accumulation in the lipid raft
BTLA is a negative co-stimulatory molecule for T cells in mice and
humans.14 It has been demonstrated that BTLA significantly inhibited
T-cell proliferation and the production of IL-2.11,29 To confirm
whether or not our ligation system is working, the effects of BLTA
ligation on anti-CD3 and anti-CD28 mAbs-induced proliferation of
activated T cells were observed as described in Methods. Ligation of
BTLA by mAb significantly inhibited the proliferation of T cells
induced by either anti-CD3 mAb or the combination of anti-CD3
and anti-CD28 mAbs as determined by 3H-thymidine incorporation
which has been reported before (Figure 5).14 Therefore, this culture
system was used for the coming studies.

The biochemical techniques used for rafts analysis have shown
that many lipid-modified signaling proteins, such as tyrosine kinases
of the Src family, GPI-linked proteins, and adaptor proteins, are
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Figure 1 Co-clustering of BTLA and CD3z on activated CD4+ T cells.

Distribution of BTLA and CD3z on resting B6 mouse CD4+ T cells and

activated DO.11.10 mouse CD4+ T cells. Cells were first fixed and

permeabilized, and then stained with anti-BTLA pAb and anti-CD3z mAb.

Nucleus was stained with DAPI. Second antibody used anti-goat IgG-FITC

and anti-mouse IgG1-TRITC especially. The images were analyzed by a two-

photon microscope. More than 50 individual CD4+ T cell–DCs conjugates
obstained in three independent experiments were assessed. BTLA, B and T

lymphocyte attenuator; DAPI, 4¢,6-diamidino-2-phenylinodole; FITC,

fluorescein isothiocynate; mAb, monoclonal antibody; pAb, polyclonal

antibody; TRITC, tetramethylrhodamine isothiocynate.
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concentrated in raft domains.30 This selective confinement of signaling
molecules in membrane subdomains has suggested that lipid rafts
could function as platforms for the formation of multicomponent
signaling transduction complexes. After ligation of sensitized CD4+ T
cells, the lysates was subjected to sucrose gradient separation of lipid
rafts as reported before.31 No Anti-CD3 antibody activation and
mouse IgG1k ligation were used as control. TCR tyrosine phosphor-
ylation levels in the anti-CD3 mAb-immunoprecipitated proteins in
the lipid raft fraction or the bottom fraction were determined by
western blot analysis. Significant tyrosine phosphorylated form of
TCRz complex was decreased by BTLA cross-linking (Figure 6). The
accumulation of CD3z in the lipid raft was not markedly inhibited by
BTLA cross-linking as determined by anti-phosphotyrosine blotting
(Figure 6a). Strikingly, the p16z band in the rafts disappeared after
BTLA cross-linking. Similar results in the bottom fraction were

observed (Figure 6b). By contrast, CTLA-4 and BTLA interact with
CD3z, but do not affect CD3z interaction with lipid raft. These
findings suggested that the ligation of BTLA could downregulate
Tyrosine phosphorylated formation of TCRz complex in the lipid
raft, but not CD3z accumulation in the lipid raft.

Stimulation of T cells by APCs induces formation of a highly
organized complex of receptors, intracellular signaling molecules and
F-actin at the contact site between T cells and APCs, or the so-called IS
or supramolecular activation complex.32,33 Studies designed to dissect
the molecular mechanism of BTLA-mediated immune regulation have
been reported by Dr Murphy’s lab.11 BTLA relies on dual ITIMs for its
association with the phosphatases SHP-1 and -2. In this study, we tried
to examine the hypothesis that BTLA is involved in lipid raft during
T-cell activation and associated with tyrosine phosphorylated CD3z.
CD3z is an important molecule in TCR signaling. During T-cell
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Figure 2 Co-localizaiton of BTLA and CD3z at the IS. Sorted CD11c+ cells cultured in the presence of 100mg/ml of OVA protein and 1mM of OVA323-339

peptide for 10 h were allowed to form conjugates with CD4+ T cells. After incubating at 371C for 30min, cells were fixed and permeabilized, and then

stained with anti-BTLA pAb and anti-CD3z mAb. Nucleus was stained with DAPI. Second antibody used anti-goat IgG-FITC and anti-mouse IgG1-TRITC

especially. (a) Co-localization of BTLA and CD3z at the IS of activated T cells. Pre-sensitized DO.11.10 mouse CD4+ T cells and mature splenic CD11c+ OVA

protein or peptide-pulsed DCs were cultured together and the reaction stopped at 30min. Resting T cell–DC conjugate and actived T cell–DC conjugate

without OVA stimulating were used as negative control. (b and c) Distribution of CD45 molecules on the T cell at the formation of IS. Anti-CD45 mAb/anti-

mouse IgG-FITC were used to detect CD45. One representative of three independent experiments is shown. (d–f) Quantification of the number of cell

conjugates displaying BTLA and/or CD3 z at the IS. The images were analyzed by two-photon microscope. More than 50 individual CD4+ T cell–DCs

conjugates obtained in three independent experiments were assessed. BTLA, B and T lymphocyte attenuator; DAPI, 4¢,6-diamidino-2-phenylinodole; DC,

dendritic cell; FITC, fluorescein isothiocynate; mAb, monoclonal antibody; pAb, polyclonal antibody; TRITC, tetramethylrhodamine isothiocynate.
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activation, phosphorylated Fyn and Lck firstly phosphorylate CD3z
SH2 domain, and then phosphorylate other recruited adaptor proteins
by phosphorylated CD3z SH2 domain, such as LAT, PI3K, ZAP70
and PKCy,34–36 all of which are involved in lipid raft, an essential
component of the IS.34,37

In conclusion, we found that BTLA co-clustered with CD3z, as
observed by immunofluorescence assays. It appears that the two
molecules co-localized in the IS, and BTLA might interact with
CD3z in the lipid raft. Cross-linking BTLA significantly reduced
tyrosine phosphorylation of TCRz signaling components.

METHODS

Animals
Balb/c (H-2d) and C57BL/6 (B6, H-2b) mice were purchased from the Institute

of Genetics and Developmental Biology, Chinese Academy of Sciences (Beijing,

China). Balb/c DO11.10 mice,38 which are transgenic for a TCR specific for the

immunodominant epitope of OVA peptide 323-339, were offered by Shanghai

Animal Facility (Shanghai, China). All mice were maintained in specific

pathogen-free facility and were housed in microisolator cages containing

sterilized feed, autoclaved bedding and water. All experimental manipulations

were undertaken in accordance with the Institutional Guidelines for the Care

and Use of Laboratory Animals.

mAb and reagents
Anti-mouse BTLA mAb (clone 6F7) was purchased from eBioscience (San

Diego, CA, USA). Anti-mouse CD3 mAb (clone 145-2C11), anti-mouse CD28

mAb (clone 37.51) and purified IgG isotypic control antibody were purchased

from BD eBiosciences PharMingen (San Diego, CA, USA). Anti-mouse CD3z
mAb (clone 6B10.2) and anti-Fyn mAb (clone Fyn3) were purchased from

Santa Cruz Biotechnology (Palo Alto, CA, USA). Anti-pTyr mAb (clone 4G10)

was purchased from Upstate Biotechnology (Lake Placid, NY, USA). Polyclonal

rabbit anti-mouse BTLA Ab (pAb) was purchased from R&D Systems Inc.

(Minneapolis, MN, USA). n-Octyl b-D-galactopyranoside was purchased from

Sigma (Stlovis, MO, USA). OVA was obtained from Sigma-Aldrich (St Louis,

MO, USA). Mitomycin C (C15H18N4O5) was obtained from Kyowa Hakko Co.

Ltd (Tokyo, Japan).

For mouse T-cell culture, Dulbecco’s modified Eagle’s medium (Gibco,

Karlsruhe, Germany) supplemented with 10% fetal bovinc serum, 10 mM

HEPES, nonessential amino acids (Biosource International, Camarillo, CA,

USA), 55mM 2-mercaptoethanol, 100mg/ml penicillin and 100 U/ml strepto-

mycin was used as medium.

Preparation of CD4+ T cells
Spleens and lymph nodes of DO.11.10 or Balb/c mice were harvested and the

tissues were gently minced in Hanks’ balanced salt solution supplemented with

5% fetal bovine serum (Hyclone Inc., Logan, Utah, USA). Cells were then

passed through a cell strainer (Becton Dickinson, Franklin Lakes, NJ, USA),

and red blood cells were lysed with ACK lysing buffer (BioWhittaker Inc.,

Walkersville, MD, USA). The cells were stimulated with peptide OVA323-339

for 4 days. CD4+ T-cell populations were isolated using a CD4+ T Cells

Isolation Kit with MidiMACS Separator according to the manufacturer’s

protocols (Miltenyi, Bergisch Gladbach, Germany). Briefly, cells were incubated

with a biotin-antibody cocktail against CD8a (Ly2), CD11b (Mac-1), CD45R
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B and T lymphocyte attenuator.
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(B220), CD49B (DX5) and Ter-119 for 20 min at 41C, and then with microbe-

ad-conjugated anti-biotin mAb (Bio318E7.2). The cell suspension was loaded

on a LD column, and then placed in magnetic field of a magnetic-activated cell

sorting (MACS) separator. The remaining fraction in the column is the

enriched CD4+ T cells. The purity of the resultant cell populations was

495% as determined by fluorescence-activated cell sorting.

T-cell proliferation assay
Separated T cells were cultured in the presence of plate-bound antibodies

including 0.5mg/ml anti-CD3 and 10mg/ml anti-CD28 mAbs with or without

10mg/ml anti-BTLA mAb for 72 h at 371C. For the last 12 h, 0.5mCi [3H]thy-

midine (radioactivity, 185 GBq/mmol; Atomic Energy Research Establishment,

China) was added. Cells were harvested onto glass fiber filters with an

automatic cell harvester (Tomtec, Toku, Finland). The radioactivity of each

sample was assayed in a Liquid Scintillation Analyzer (Beckman Instruments,

Fullerton, CA, USA). Values are expressed as counts per minute (c.p.m.) from

triplicate wells.

In vitro antibody cross-linking assay
B6 CD4+ T cells separated by MACS-negative selection were stimulated by

plate-bound anti-CD3 (1mg/ml) and anti-CD28 (1mg/ml) mAbs for 60–70 h.

The live cells were then harvested, washed and plated in T-175 culture flasks in

the presence of fresh medium and 20 U/ml recombinant human IL-2. After

6 days of culture, the live cells were enriched by Ficoll density gradient. An

aliquot of 108 cells was used for each experimental group. T cells were rested for

5 h in complete culture medium at 371C. These cells (107 cells/well) were then

added into wells that were pre-coated with mAbs including 0.5mg/ml anti-CD3,

10mg/ml anti-CD28 and 10mg/ml anti-BTLA mAbs overnight at 41C. The

plates were centrifuged for 30 s, and incubated for 5 min 371C.

Distribution of CD3f and BTLA on the surface of activated CD4+ T
cells and during the formation of IS
Thirty-five millimeter of glass bottom microwell dishes (MatTek Corp, Cades,

SC, USA) were coated overnight with poly-L-lysine (Sigma-Aldrich). DCs were

purified by digesting the spleens of Balb/c mice with collagenase followed by

MACS-positive selection. Sorted CD11c+ cells were cultured in the presence of

100mg/ml of OVA protein or 1mM of OVA323-339 peptide for 10 h to induce

their maturation. The sensitized DO11.10 mouse CD4+T cells (1.0�106) were

added to the above dishes, sedimented by centrifugation to optimize interaction

between the two cell types, incubated at 371C for the 30 min and the reaction

stopped by fixation with paraformaldehyde (the co-cluster assay in CD4+ T cell

used sorted CD4+ T cell only).39 Dishes were washed twice with phosphate-

buffered saline plus 1% fetal calf serum, permeabilized with 0.5% sapoin buffer

and stained with anti-BTLA pAb/anti-goat IgG mAb-FITC and anti-CD3z/

anti-mIgG mAb-tetramethylrhodamine isothiocyanate. Image capture was

done with a two-photon microscope (Carl Zeiss Inc, Oberkochen, Germany)

and analyzed with the LSM 510 software (Carl Zeiss Inc.).
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Isolation of the lipid raft by sucrose density gradient
Sorted CD4+ T cells were stimulated as described above and suspended with

500ml of ice-cold lysis buffer (containing 0.2% Triton X-100, 50 mM Tris

(pH 7.6), 150 mM NaCl, 5 mM ethylenediaminetetraacetic acid (EDTA), 1 mM

Na3VO4, 10mg/ml aprotinin, 10mg/ml leupeptin, and 1 mM phenylmethylsul-

fonyl fluoride) on ice.4 The lysates were disrupted with 10 strokes using

a Dounce cell homogenizer and mixed with an equal volume of sucrose as

an 85% solution in TNE buffer (20 mM Tris (pH 8.0), 150 mM NaCl and 50 mM

EDTA). The suspension was transferred into an ultracentrifuge tube (Kendro

Laboratory Products, Newtown, CO, USA), where it was overlaid with 3 ml of

30% sucrose and 1 ml of 5% sucrose both suspended in TNE. The tube was

then filled to the top with TNE buffer. These gradients were spun for 12–16 h at

40 000 r.p.m. in a SW-40 Ti swinging bucket rotor at 41C in a Beckman

ultracentrifuge as reported before.25 After removing top TNE buffer, the

gradients were harvested into six 0.8-ml fraction from top to bottom. The

glycosphingolipid-enriched membrane domainss were identified by western

blotting with anti-Lck mAb.31 The individual fractions were mixed with 0.1

volume of 0.6 M n-octyl b-D-galactopyranoside (final 60 mM), incubated for 2 h

to solubilize the rafts, and subjected to immunoprecipitation and western blot

analyses, as previously reported.26
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