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The total synthesis of argyrins A and E were accomplished using a convergent strategy by condensation of
one tripeptide and two dipeptide fragments. The synthesis strategy, which was developed for the protec-
tion of peptide fragments and identification of the optimum macrocylization site, can be applied to fur-
ther synthetic studies involving other members of the argyrin family.
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The proteasome, a multicatalytic proteinase complex, is respon-
sible for the degradation of a large proportion of intracellular pro-
teins.1 Therefore, the proteasome is an interesting target for
therapeutic agents that inhibit cell proliferation in diseases such
as cancer.2 Numerous proteasome inhibitors that have promising
potential in clinical trials have been recently developed.3 Bortezo-
mib was approved by the U.S. food and drug administration (FDA)
for treatment of multiple myeloma and mantle-cell lymphoma.
However, the designing of proteasome inhibitors with high speci-
ficity and wide clinical applicability remains to be accomplished
because some inhibitors display cytotoxicity, whereas others inhi-
bit other proteases such as calpains and cathepsins.3e

In 2002, argyrin A and its congeners were originally isolated
from Archangium gephyra during the screening of myxobacteria
for new antibiotics (Fig. 1).4 Recently, Malek’s group found that arg-
yrin A shows biological activity at remarkably low concentrations
without significant cytotoxic effects. In addition, all antitumoral
activities of argyrin A were found to depend on the prevention of
p27kip1 destruction, because loss of p27kip1 expression confers resis-
tance to this compound. Malek et al. hence concluded that argyrin A
is a more specific proteasome inhibitor than bortezomib.5 These
excellent properties of argyrins have attracted significant attention,
and the total syntheses of argyrin B and F have been accomplished
by two research groups.6,7 To further understand the structure–
activity relationship of argyrin A, we here report a convergent
macrocycle-assembly strategy to synthesize argyrins A and E in
parallel from three fragments: two dipeptides and a tripeptide
(Fig. 1).

In the retrosynthetic analyses of argyrins A and E, the macrocyc-
lization site is so important that it can ultimately determine the
success of the synthesis. Poor disconnections can lead to slow
ll rights reserved.

: +86 20 32290606.
cyclization rates, facilitating side-reactions such as oligomerization
and/or epimerization of the C-terminal residue.8 Analyzing the
sequences of the molecules, we chose the achiral glycine as the
C-terminal end to avoid racemization during backbone macrocyc-
lization. In addition, such disconnection makes the turn-inducing
thiazole residues to be located in the middle of the linear peptide
precursor, which will result in the N- and C-termini approaching
each other to make the head–tail macrocyclization more robust.

The various components of argyrins A (1) and E (2) were syn-
thesized by different routes. Our synthesis of intermediate 5 used
a straightforward route from N-Boc-D-alanine 7 (Boc = tert-butyl-
oxycarbonyl) following the procedure (Scheme 1) provided in liter-
ature.9 The ethyl ester group of 8 was saponified with LiOH and
then coupled with the methyl ester of tryptophan to provide the
dipeptide 5.

The synthesis of the key intermediate 13 started from the pre-
viously characterized compound 10, which was obtained from
commercially available 3-methoxybenzeneamine, 9 (Scheme 2).
Boc-protected 3-methoxybenzeneamine 10, was lithiated with
2.1 equiv of tert-butyllithium in diethyl ether, followed by iodin-
ation with molecular iodine to give tert-butyl (2-iodo-3-methoxy-
phenyl) carbamate, 11, in 90% yield;10 subsequent deprotection of
the Boc group yielded the desired compound 12. The key interme-
diate 15 was easily derived through a palladium-catalyzed hetero-
annulation reaction between the amine 12 and the aldehyde 14,
the latter being synthesized from the dimethyl ester of N-Boc-L-
glutamic acid in two steps.11,12 Bismuth–bromide-based catalytic
selective deprotection13 of the Boc group of 13, followed by hydro-
lysis of the methyl ester group and coupling with glycine methyl
ester, yielded the dipeptide 3. Analogously, the dipeptide 4 was
easily prepared in 82% yield by coupling Boc-protected tryptophan
16 with glycine methyl ester.

Then, we turned our attention to the synthesis of the tripeptide
6, which was prepared from Boc-protected D-alanine, 17
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Figure 1. Structure and retrosynthetic analysis of argyrin A and E.
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Scheme 1. Synthesis of the linear dipeptide 5.
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(Scheme 3). Sequential coupling with L-serine methyl ester yielded
the dipeptide 18, which was further subjected to mesylation, fol-
lowed by elimination, to provide the dehydroalanine moiety 19.
The next peptide coupling was carried out after hydrolysis of the
ester group with the sarcosine ethyl ester (Sar-OEt), using bro-
mo-tris-pyrrolidino-phosphonium hexafluorophosphate (PyBroP)
as the coupling reagent, to provide fragment 6.

Coupling of the above three fragments and completion of the to-
tal syntheses of argyrins A and E were accomplished as shown in
Scheme 4. Removal of the protective group Boc from the dipeptide
5 and coupling with the free acid from tripeptide 6 gave the
product 20 in 92% yield. Subsequently, the methyl ester of 20
was cleaved by LiOH in quantitative yield. The free acid was
BuLi, I2
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immediately coupled with the Boc-deprotected fragment from 3 or
4, respectively, using 1-ethyl-3-(3-dimethylaminopropyl) carbodi-
imide (EDC) and HOBt, to yield the linear heptapeptides 21 and 22,
respectively, in 66% yield. Before macrocyclization, the two pro-
tecting groups were removed by hydrolysis (for the methyl ester
group) and with trifluoroacetic acid (TFA) in dichloromethane
(for the N-terminal Boc group). After examining several macrocyc-
lization conditions, we successfully obtained argyrins A and E in
56% yield, respectively, using HATU as the condensation reagent
in DMF solution (0.7 mM). This step was repeated three times,
and in all cases, comparable chemical yields were obtained. The
spectroscopic (1H NMR and 13C NMR) and the optical rotation data
for the synthetic argyrins A and E fully matched the data published
for the corresponding natural products.14

In summary, the total synthesis of argyrins A and E were accom-
plished through a convergent macrocycle-assembly strategy from
a tripeptide fragment and two dipeptide intermediates (11% over-
all yield from 3-methoxybenzeneamine, with the longest linear se-
quence comprising 14 steps). The methods developed to ensure the
protection of both the peptide fragments and the optimum macro-
cylization site are the useful outcomes of this study, which may
potentially be applicable to the synthesis of other analogs of this
family. Efforts toward applying these methods to other natural
products are currently underway in our laboratory and will be re-
ported in due course.
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