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ABSTRACT
The soldier caste is one of the most distinguished castes inside the termite colony.
The mechanism of soldier caste differentiation has mainly been studied at the
transcriptional level, but the function of microRNAs (miRNAs) in soldier caste
differentiation is seldom studied. In this study, the workers of Coptotermes
formosanus Shiraki were treated with methoprene, a juvenile hormone analog which
can induce workers to transform into soldiers. The miRNomes of the
methoprene-treated workers and the controls were sequenced. Then, the
differentially expressed miRNAs (DEmiRs) were corrected with the differentially
expressed genes DEGs to construct the DEmiR-DEG regulatory network.
Afterwards, the DEmiR-regulated DEGs were subjected to GO enrichment and
KEGG enrichment analysis. A total of 1,324 miRNAs were identified, among which
116 miRNAs were screened as DEmiRs between the methoprene-treated group and
the control group. A total of 4,433 DEmiR-DEG pairs were obtained. No GO term
was recognized as significant in the cellular component, molecular function, or
biological process categories. The KEGG enrichment analysis of the
DEmiR-regulated DEGs showed that the ribosome biogenesis in eukaryotes and
circadian rhythm-fly pathways were enriched. This study demonstrates that DEmiRs
and DEGs form a complex network regulating soldier caste differentiation in
termites.
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INTRODUCTION
Termites are a typical example of polyphenism, and individuals with divergent
morphologies are categorized into different castes in the colony (Nijhout, 1999; Simpson,
Sword & Lo, 2011; Wilson, 1971). Among these castes, the soldier caste is responsible for
defending the colony. The ratio of the soldier caste is relatively stable, which is a
characteristic of each termite species (Haverty, 1977). Termites in other castes can develop
into soldiers when the soldier ratio falls below the standard level in the colony. The soldier
caste develops differently in different species; for example, the soldier caste develops from
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pseudergates in Kalotermes, while in Termitidae it is larvae that develop into soldiers
(Edwards & Mill, 1986). Before a termite becomes a soldier, it experiences a presoldier
stage, and then molts again into the soldier stage. This transformation is controlled by both
the termite’s genomic information and the social environment inside the colony (Miura,
2005; Noirot, 1991). One key substance that drives the transformation into soldiers is
juvenile hormone (JH; Korb, 2015; Lüscher, 1969; Lüscher & Springhetti, 1960).
Consistently high JH titer is required for transformation into the presoldier stage (Cornette
et al., 2008; Nijhout & Wheeler, 1982); therefore, the application of juvenile hormone
analog (JHA) has been shown to induce the change to presoldier in termites (Hrdý &
Křeček, 1972; Su & Scheffrahn, 1990).

The most obvious change is the development of fat body at the histological level during
the transformation from worker to soldier in Hodotermopsis sjostedtiHolmgren (Cornette,
Matsumoto & Miura, 2007). During this process, the storage protein, hexamerin, which
acts as a suppressor of soldier formation, is largely synthesized inside the fat body and
constitutes a significant proportion of the protein in Reticulitermes flavipes (Kollar) (Zhou,
Oi & Scharf, 2006). A series of metabolic pathways, including carbohydrate, amino acid,
and lipid metabolism pathways, are also mobilized to produce the metabolites needed for
the transformation to soldier in Coptotermes formosanus Shiraki (Du et al., 2020). Previous
gene expression studies have shown that the signaling pathways, especially those related to
JH, such as the JH signaling pathway (Masuoka et al., 2015), insulin signaling pathway
(Hattori et al., 2013), and transforming growth factor β (TGFβ) signaling pathway
(Masuoka et al., 2018), participate in soldier caste differentiation. In one previous study,
the JH and insulin signaling pathways stimulated the expression of the Hox gene deformed,
which further stimulated the appendage-patterning gene dachshund, influencing the
elongation of soldier mandible in H. sjostedti (Sugime et al., 2019). The transformation
from worker to presoldier is regulated by a complex network (Korb & Hartfelder, 2008;
Miura & Scharf, 2011; Miura & Maekawa, 2020), but the regulation of soldier caste
differentiation has mostly been studied at the transcriptional level.

MicroRNAs (miRNAs) play an important role in post-transcriptional regulation
through mRNA degradation and translation inhibition (Huntzinger & Izaurralde, 2011).
miRNAs only need an ∼7-nt seed sequence to target mRNAs and are thus widely engaged
in the post-transcriptional gene expression regulation. miRNAs regulate a wide range of
physiological activities, such as development, reproduction, and immunity in insects
(Belles, 2017; Lucas et al., 2015; Song & Zhou, 2020). Previous studies have reported that
miRNAs are involved in caste regulation in insects. For example, the expression levels of
miR-6001-5p and -3p are higher in queen-destined larvae than in worker-destined larvae of
Apis mellifera L., indicating these miRNAs may be involved in caste differentiation (Collins
et al., 2017). In A. mellifera, miRNA-34 and miRNA-210may affect the brain development
of honeybee castes (Vieira et al., 2021), and miR162a has been shown to promote the
formation of worker bees by regulating the target of rapamycin (TOR) (Zhu et al., 2017).
Although miRNAs can target the JH signaling pathway, insulin signaling pathway, and
TGFβ signaling pathway (Ebrahimi et al., 2019; Lozano, Montañez & Belles, 2015; Suzuki,
2018), and these signaling pathways are involved in soldier caste differentiation in termites
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(Hattori et al., 2013; Masuoka et al., 2015, 2018), experimental proof is still lacking that
miRNAs can control soldier caste differentiation by targeting these pathways.

Considering the widespread role of miRNAs, it is hypothesized that miRNAs regulate
soldier caste differentiation. miRNAs may add another layer of gene expression regulation
to control soldier caste formation. However, research into the role of miRNAs on caste
regulation in termites is limited (Itakura, Hattori & Umezawa, 2018; Matsunami et al.,
2019). The objective of this study was to identify the miRNAs involved in soldier caste
differentiation in C. formosanus.

MATERIALS AND METHODS
Methoprene bioassay
Termites (C. formosanus) were collected using a termite ground trap in Shangchong Fruit
Tree Park, Guangzhou, China (Su & Scheffrahn, 1986; Chouvenc, Ban & Su, 2022). Only
workers and soldiers were collected with the trap. The termites were then kept at room
temperature and were used within two weeks of collection.

Soldiers were artificially induced using a JHA (methoprene) as follows. Filter paper
(32 mm in diameter) was treated with acetone solution of methoprene and air dried for
15 min to evaporate the acetone, making the concentration of methoprene 1,000 ppm. The
acetone-treated filter paper was used as a control. Two pieces of treated filter paper were
placed in a plastic Petri dish (35 mm in diameter). A volume of 245 mL water was added to
the two pieces of filter paper. Twenty workers were then put into the Petri dish. One
colony of termites was used in this study. There were three replicates each in the
methoprene-treated filter paper group (M group) and acetone-treated filter paper group
(C group). After feeding on the filter paper for four days, the workers were collected and
decapitated with a scalpel. The worker heads from the same Petri dish were placed into an
Eppendorf tube with 100 mL Trizol reagent. The tube was then immersed in liquid
nitrogen. All the samples were stored at −80 �C before use.

RNA extraction and sequencing
Total RNA was extracted using TRIzol reagent. The concentration and integrity of the
RNA were measured using an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto,
CA, USA). RNAs of 18–30 nt were enriched by polyacrylamide gel electrophoresis. Six
libraries (three for the M group, three for the C group) were constructed by the NEBNext
small RNA library prep set (New England Biolabs; E7300). Briefly, the 3’ and 5’ adapters
were added to the RNAs. Then, the RNAs were reverse transcribed and amplified by PCR.
The PCR products (140–160 bp in length) were recycled for sequencing. The libraries were
evaluated by the Agilent 2100 and the ABI StepOnePlus Real-Time PCR System (Life
Technologies, CA, United States). Finally, the libraries were sequenced by Illumina
Hiseq2000 (Illumina, San Diego, CA, USA).

Identification of miRNAs and miRNA target prediction
The sequence of the adapters and the low-quality bases were filtered out to acquire clean
tags. The following reads were filtered out: reads containing more than one low-quality
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(Q-value ≤ 20) or unknown nucleotides; reads without 5’ or 3’ adapters; reads without a
nucleotide between the 5’ and 3’ adapters; reads containing polyA; and reads shorter than
18 nt (not including adapters). The clean reads were then aligned with small RNAs in
GeneBank and Rfam using Blastall 2.2.25 (blastn). The reads of the non-coding RNAs
(ncRNAs), including rRNAs, scRNAs, snoRNAs, snRNAs, and tRNAs, were removed
from the clean tags. The miRNAs of C. formosanus were not included in the miRBases, so
the remaining tags were searched against the miRBases database to identify known
miRNAs by aligning with the miRNAs of other species using Bowtie (version 1.1.2)
(Langmead & Salzberg, 2012). For the known miRNA of C. formosanus, x denoted that the
miRNA was aligned with a 5’mature miRNA in the miRBases database; y denoted that the
miRNA was aligned with a 3’ mature miRNA in the miRBases database. Possible novel
miRNAs were identified according to their position on the unigenes and hairpin structures
predicted by Mireap_v0.2 using the default parameters for animals. The reads of the
known miRNAs and novel miRNAs were then removed from the clean tags, and the
remaining tags were aligned with the RNA-Seq data of C. formosanus to remove the reads
from mRNA degradation. The RNA-Seq data were obtained by sequencing the
transcriptomes of C. formosanus workers feeding on methoprene-treated filter paper and
workers feeding on acetone-treated filter paper for four days (Du et al., 2020). After
identification of ncRNAs, known miRNAs, novel miRNAs, and reads from mRNA
degradation, the rest of the tags were recorded as unannotated.

The transcriptomes of C. formosanus were used for miRNA target prediction (Du et al.,
2020). The target genes of miRNAs were predicted by RNAhybrid (v2.1.2) + svm_light
(v6.01), Miranda (v3.3a), and TargetScan (Version:7.0). The intersection of the target
genes identified by all three of these methods were identified as the miRNA target genes.

Analysis of sample relationship and differentially expressed miRNAs
(DEmiRs)
The expression levels of miRNAs were normalized to transcripts per million (TPM). The
normalized expression levels of miRNAs were subjected to a principal component analysis
(PCA) using the R package gmodels (R Core Team, 2013). The software edgeR was used to
identify the differentially expressed miRNAs between the C group and the M group with
the criteria |log2(fold change)| > 1 and P value < 0.05 (Robinson, McCarthy & Smyth, 2010).
The statistical power analysis was performed using RNASeqPower.

Validation of miRNA sequencing results
The expression levels of the miRNAs were quantified using the methods outlined by Chen
et al. (2005). RNA samples were reverse transcribed using stem-loop RT primers and the
cDNAs were analyzed by dye-based qPCR. The stem-loop RT primers for the target genes
and the reference gene were used to reverse transcribe the RNA samples with M-MuLV
(NEB, Ipswich, Massachusetts, US). The PowerUp SYBR Green Master Mix (Thermo
Fisher Scientific, Waltham, MA, USA) was used to conduct the qPCR with the miRNA
specific forward primer and a universal reverse primer (sequence: GTGCAGGGTCCG
AGGT). Four miRNAs were selected from the DEmiRs, i.e., let-7-y, miR-1175-y,
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miR-181-x, and miR-305-y. Novel-m0649-y was used as the reference gene based on the
screening results of the most stable reference gene (Du et al., 2023). The sequences of the
stem-loop RT primers and the forward primers are summarized in Table S1. The data were
analyzed using the 2−ΔΔCt method (Livak & Schmittgen, 2001). The 2−ΔΔCt data were log2
transformed and analyzed using a t-test to compare the expression value between the C
group and the M group.

Determination of DEmiR-regulated genes
The differentially expressed genes (DEGs) were obtained from the transcriptome data of
C. formosanus (Du et al., 2020). Because miRNAs mediate the repression of mRNA
expression post-transcriptionally, the DEmiRs with the potential to control soldier caste
differentiation should have an inverse expression relationship with their targeting DEGs.
For visualization of the DEmiR-DEG regulatory network, a pair-wise Spearman
correlation was conducted for DEmiR-DEG targeting pairs using R. The DEmiR-DEG
targeting pairs with Spearman’s rank correlation coefficient <−0.6 and P < 0.05 were
selected to construct the DEmiR-DEG regulatory network with Cytoscape. For clarity, only
the top 18 most expressed DEmiRs were shown from a total of 116 DEmiRs.

Enrichment analysis of the DEmiR-targeted DEGs
Gene Ontology (GO) systematically describes the features of genes and gene products with
a standardized vocabulary in three categories: cellular components, molecular functions,
and biological processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a
database incorporating molecular-level data to assist in the exploration of high-level
functions and utilities of biological systems. KEGG pathway establishes a relatively
comprehensive group of pathway maps about interaction, reaction, and relation networks
at the molecular level. In order to evaluate the functions of the DEmiRs in soldier caste
differentiation and identify the significant GO terms and KEGG pathways that are
regulated by miRNAs, the DEmiR-regulated DEGs were subjected to the GO and KEGG
pathway enrichment analysis using Fisher’s exact test. False discovery rate was used to
adjust the P value.

RESULTS
Sequencing quality
Six libraries were constructed, three for each treatment. The sequencing quality of the
libraries is shown in Table S2. There were 74,791,183 clean reads after filtering out the
invalid sequences. After removing the low-quality reads and contaminants, including
adapters, inserts, polyA reads, reads smaller than 18 nt, and low cutoff reads, a total
number of 67,959,005 clean tags were acquired. There were 33,598,522 and 34,360,483
clean tags for the three libraries in the C group and the M group, respectively (Tables 1 and
S2). All the samples had more than 91% clean tags. The length distribution of the tag is a
characteristic animal small RNA, with the highest percentage at 22 nt. The percentage of
the 22 nt tag was 33.93%, 33.91%, 34.41%, 34.29%, 33.37%, 34.97% for C-1, C-2, C-3, M-1,
M-2, M-3, respectively (Fig. S1).
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Identification of miRNAs and target prediction
Four ncRNAs, including rRNAs, snRNAs, snoRNAs, and tRNAs, were identified by
searching the Rfam ncRNA database, while only two ncRNAs (rRNAs and tRNAs) were
identified using the Genbank ncRNA database. However, more counts of rRNAs and
tRNAs were identified using Genbank than when using Rfam (Table S3). The percentage of
known miRNAs was the highest among all the tags in either the M or the C group, and its
percentage in the C group was similar to that in the M group (76.52 ± 0.47% vs 77.37 ±
1.93%; Table 1). However, the reads annotated as novel miRNAs only accounted for a
small portion of the total reads (0.39 ± 0.01% in the C group, 0.37 ± 0.00% in the M group).
There were 6.82 ± 0.19% counts which were identified as transcriptome data in the C
group, and 6.24 ± 0.08% in the M group. A total of 1,324 miRNAs were identified, with 589
known miRNAs and 735 novel miRNAs (Table 2). In addition, 21,281 genes were
predicted as the targets of the miRNAs. The miRNAs and their computationally-
predicted-targets are summarized in Table S4.

Sample relationship between treatments
The PCA analysis showed high variability among samples (Fig. 1). The first component
only accounted for 35.6% of the variance, while the second component accounted for
20.2% of the variance. According to the 3-dimensional figure of the PCA analysis, the third
component accounted for 17.3% of the variance. The three components together
accounted for 73.1% of the total variance.

DEmiRs between treatments
There were 116 differentially expressed miRNAs between the C group and the M group: 16
up-regulated miRNAs and 100 down-regulated miRNAs in the M group, using the C
group as the reference. Some of the DEmiRs were expressed at relatively low expression

Table 1 Read counts and percentage of different tags in the C group and the M group.

Type C M

Read count Percentage (%) Read count Percentage (%)

rRNA 106,350 ± 5,708 0.95 ± 0.03 126,087 ± 22,500 1.12 ± 0.25

snRNA 4,176 ± 1,352 0.04 ± 0.01 4,518 ± 2,550 0.04 ± 0.02

snoRNA 378 ± 34 0.003 ± 0.000 135 ± 24 0.001 ± 0.000

tRNA 44,440 ± 10,750 0.40 ± 0.10 32,962 ± 11,163 0.30 ± 0.11

Known miRNA 8,569,615 ± 167,997 76.52 ± 0.47 8,881,603 ± 723,339 77.37 ± 1.93

Novel miRNA 43,863 ± 2,129 0.39 ± 0.01 42,076 ± 2,786 0.37 ± 0.00

Transcriptome 763,489 ± 27,327 6.82 ± 0.19 714,109 ± 35,751 6.24 ± 0.08

Unannotated 1,667,196 ± 45,213 14.89 ± 0.29 1,652,004 ± 115,416 14.56 ± 1.52

Total 33,598,522 100 34,360,483 100

Note:
C = control group, M = methoprene-treated group. Workers in the C group were fed with acetone-treated filter paper;
workers in the M group were fed with methoprene-treated filter paper.
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levels. The DEmiRs, their sequences, and their expression levels are shown in Table S5. The
statistical power of this experimental design was 0.41 (n = 3).

Validation of miRNA sequencing results
The qPCR data were only partially consistent with the miRNome data. There were
significant differences between the C group and the M group for let-7-y and miR-305-y
(Figs. 2A and 2B). According to the qPCR results, there was no significant difference for
miR-1175-y and miR-181-x between the C group and the M group (Figs. 2C and 2D), but
the miRNome sequencing data showed different expression levels ofmiR-1175-y andmiR-
181-x between the C group and the M group.

Table 2 Number of miRNAs, target genes, and target sites identified.

Sample Known miRNA Novel miRNA Total miRNA Target gene Target site

C 373 ± 32 555 ± 5 928 ± 36 20,852 ± 47 1,007,981 ± 31,277

M 315 ± 25 543 ± 5 858 ± 20 20,700 ± 20 924,439 ± 9,607

Total 589 735 1,324 21,281 1,405,633

Note:
C = control group, M = methoprene-treated group. Workers in the C group were fed with acetone-treated filter paper;
workers in the M group were fed with methoprene-treated filter paper.
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DEmiR-DEG pairs and functional analysis of the DEmiR-regulated
DEGs
A total of 2,547 DEGs were found between the C group and the M group after treating
workers with methoprene for four days, including 1,480 up-regulated genes, and 1,067
down-regulated genes in the M group, using the C group as the reference (Du et al., 2020).
In combination with the results of the inverse relationship and the targeting relationship, a
total of 4,433 DEmiR-DEG pairs were obtained (Table S6). The DEGs in the DEmiR-DEG
pairs were considered to be the genes regulated by the DEmiRs. Among the top 18 most
expressed DEmiRs, miR-148-y targeted the most DEGs that were down-regulated after
workers were treated with methoprene (Fig. 3A), while let-7-y targeted the largest number
of genes that were up-regulated after methoprene treatment (Fig. 3B). The KEGG pathway
classification and GO annotation of the DEmiR-targeted DEGs are shown in Table S6. The
DEmiRs were involved in the regulation of genes in metabolic pathways, the TGFβ
signaling pathway, hedgehog signaling pathway, and FoxO signaling pathway (Table S6).

Although several GO items in the cellular component, molecular function, and
biological process categories were enriched according to the P values, no GO term was
recognized as significant after adjusting the P values (Fig. 4). The KEGG enrichment
analysis showed that there were two significantly enriched pathways: ribosome biogenesis
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in eukaryotes (Q < 0.009) and the circadian rhythm-fly pathway (Q < 0.036; Fig. 5). The
top 10 enriched pathways were mainly related to biogenesis and metabolism, with the
circadian rhythm-fly pathway being the only enriched KEGG pathway related to signal
transduction.

DISCUSSION
Through the sequencing of the miRNomes of workers of C. formosanus, a total of 1,324
miRNAs were identified. High variability in miRNA expression levels among the three
replicates was observed, because the first component only explained 35.6% of the variance,
as indicated by the PCA analysis. The variability among the replicates was also
demonstrated by high standard errors of the relative expression values of the genes seen in
the qPCR results. A total of 116 candidate DEmiRs were identified that have an inhibitory
effect on the DEGs. However, many DEmiRs had very low expression levels, which may
not be detected by the qPCR method. Most of the low-expression DEmiRs were novel
miRNAs, so there is a high likelihood that they do not play an important role in soldier
caste regulation. Most of the DEmiRs with high expression levels were conserved miRNAs,
so the differentiation of soldier caste is more likely to be regulated by conserved miRNAs
(Matsunami et al., 2019). Because a seed sequence of only ∼7-nt long is required for
mRNA target recognition, a miRNA has many target genes, and a gene can be regulated by
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genes. Full-size DOI: 10.7717/peerj.16843/fig-3

Du et al. (2024), PeerJ, DOI 10.7717/peerj.16843 9/17

http://dx.doi.org/10.7717/peerj.16843/fig-3
http://dx.doi.org/10.7717/peerj.16843
https://peerj.com/


many miRNAs. Thus, the DEmiRs and DEGs form a complex network regulating soldier
caste differentiation.

JH and JH signaling pathways play an essential role in caste differentiation. Knockdown
of the JH receptor gene Met affects the morphogenesis of the soldier mandible (Masuoka
et al., 2015). The JH signaling pathway is regulated by miRNAs. The miR-2 family (miR-2,
miR-13a, andmiR-13b) targets Kr-h1 (the downstream gene ofMet) in Blattella germanica
(L.), facilitating Kr-h1 degradation and thus promoting metamorphosis from nymphs to
adults (Lozano, Montañez & Belles, 2015). let-7 and miR-278 regulate Kr-h1 to control
metamorphosis and oogenesis in Locusta migratoria L. (Song et al., 2018), but in this study,
no target site of let-7-y was found in the 3’ UTR of Kr-h1 of C. formosanus. The miRNA
target site is under selection pressure, and dynamic changes of the miRNA target site have
been observed (Xu et al., 2013). This is likely one reason for the loss of the let-7-y target site
in Kr-h1 in C. formosanus. let-7, one of the first discovered miRNAs, is conserved across
species, and plays an important role in the regulation of cell differentiation and
proliferation (Roush & Slack, 2008). According to the miRNome results of C. formosanus,
35 genes were found to have a target relationship and negative correlation relationship
with let-7-y, including cytochrome P450, which has been reported to be involved in soldier
caste differentiation (Tarver, Coy & Scharf, 2012). Therefore, there is a high possibility that
let-7-y is engaged in soldier caste differentiation.
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Figure 4 The GO analysis of the DEmiR-targeted DEGs. The top 20 enriched GO terms are shown in
the bubble chart. No GO terms were enriched according to the GO analysis. Note: The y-axis is the name
of the GO term, the x-axis is the rich factor. Full-size DOI: 10.7717/peerj.16843/fig-4
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The KEGG enrichment analysis of the DEmiR-targeted DEGs revealed two enriched
KEGG pathways, one of which was the circadian rhythm-fly pathway. There are many
control genes for circadian rhythm, and period was the first discovered (Bargiello, Jackson
& Young, 1984; Zehring et al., 1984). The regulation of period includes a feedback
mechanism. The transcription of period is activated by the CLOCK-BMAL1 heterodimers
(Gekakis et al., 1998), and PER can inhibit its own transcription by inhibiting CLOCK
activity (Darlington et al., 1998). The circadian rhythm genes can also control other non-
circadian-rhythm activities, such as cancer development (Wood, Yang & Hrushesky, 2009).
The circadian rhythm-fly pathway was enriched in the KEGG enrichment analysis after
treating workers with methoprene in C. formosanus, indicating the circadian rhythm-fly
pathway may regulate soldier differentiation (Du et al., 2020). period is one of the
differentially expressed genes in the circadian rhythm-fly pathway in C. formosanus. After
checking the DEmiR-DEG pairs in C. formosanus, 23 miRNAs with expression levels that

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●ECM−receptor interaction
Glycerophospholipid metabolism

Wnt signaling pathway
Longevity regulating pathway−worm

Apoptosis−multiple species
FoxO signaling pathway

Metabolic pathways
Caffeine metabolism

Ether lipid metabolism
Insect hormone biosynthesis

Ubiquinone and other terpenoid−quinone biosynthesis

Arachidonic acid metabolism
Tryptophan metabolism

Phenylalanine metabolism
alpha−Linolenic acid metabolism

Tyrosine metabolism
Linoleic acid metabolism

Terpenoid backbone biosynthesis
Circadian rhythm−fly

Ribosome biogenesis in eukaryotes

0.0 0.1 0.2 0.3 0.4
Rich factor

Gene number
●

●

●
●
●

10

20

30

40

50

0.1

0.2

0.3

0.4
Q value

Figure 5 The KEGG enrichment analysis of the DEmiR-targeted DEGs. The top 20 enriched KEGG
pathways are shown in the bubble chart. Note: the y-axis is the name of the pathway, the x-axis is the rich
factor. Full-size DOI: 10.7717/peerj.16843/fig-5

Du et al. (2024), PeerJ, DOI 10.7717/peerj.16843 11/17

http://dx.doi.org/10.7717/peerj.16843/fig-5
http://dx.doi.org/10.7717/peerj.16843
https://peerj.com/


were negatively correlated with period were identified, includingmiR-142-x,miR-30-x, and
miR-21-x, indicating that these miRNAs may be involved in soldier caste differentiation by
regulating the circadian rhythm-fly pathway.

The insulin signaling pathway is also involved in soldier caste differentiation (Hattori
et al., 2013; Sugime et al., 2019). The FoxO pathway has crosstalk with the insulin signaling
pathway (Accili & Arden, 2004). FoxO has been found to be differentially expressed after
treating workers with JHA (Du et al., 2020; Hattori et al., 2013), indicating that the FoxO
pathway may also be involved in soldier caste differentiation. FoxO is regulated by many
miRNAs, such as miR-9, miR-10b, and miR-21 (Urbánek & Klotz, 2017). The miRNAs
which targeted and anti-correlated with FoxO include miR-144-y and miR-19-y in
C. formosansus. The downstream gene of FoxO, BNIP3, is also regulated by miRNA (Chen
et al., 2010). BNIP3 formed anti-correlation DEmiR-DEG pairs with miR-142-x and miR-
181-x during soldier differentiation in C. formosansus. According to the miRNome data in
this study, miRNAs may play an important role in soldier caste differentiation by
regulating the FoxO pathway.

Besides being involved in signaling transduction regulation, miRNAs have also been
reported to control metabolic pathways. For example, miRNA-133 regulates dopamine
synthesis to control the density-dependent phenotype in locusts (Yang et al., 2014). Of the
top 10 enriched pathways in the present study, nine of them were related to biogenesis and
metabolism. Ribosome biogenesis in eukaryotes was the most of the enriched pathway in
this study. The ribosome is the site for protein translation and ribosome biogenesis is
related to cell proliferation. During soldier caste differentiation, fat body increases
significantly (Cornette, Matsumoto &Miura, 2007). Correspondingly, many proteins, such
as hexamerin, are largely synthesized (Zhou, Oi & Scharf, 2006). This may explain the
importance of the ribosome biosynthesis in soldier caste differentiation. miRNAs are
involved in the regulation of ribosome biogenesis (McCool, Bryant & Baserga, 2020).
According to the miRNome data in this study, 11 DEGs related to ribosome biosynthesis
were regulated by 45 DEmiRs, indicating miRNAs form a complex network to regulate
ribosome biosynthesis, thus regulating soldier caste differentiation.

Termite colonies are able to maintain a stable ratio of soldiers, indicating that the
transformation of worker to soldier is precisely controlled in termites. The roles of
miRNAs in controlling caste differentiation in the honey bee have been widely reported
(Ashby et al., 2016; Guo et al., 2016; Guo et al., 2013; Shi et al., 2015). This study identified a
candidate pool of miRNAs which may be involved in soldier caste regulation in termites.
The regulation of miRNAs in soldier caste differentiation adds another layer to soldier
caste differentiation to improve the precision of the process. Further research is needed to
study the function of these miRNAs and confirm the target relationships with
corresponding mRNAs.

CONCLUSIONS
miRNAs are powerful regulators of various cellular activities, such as differentiation,
proliferation, and development (Inui, Martello & Piccolo, 2010; Plasterk, 2006). This study
aimed to investigate the functions of miRNAs in the soldier caste differentiation of

Du et al. (2024), PeerJ, DOI 10.7717/peerj.16843 12/17

http://dx.doi.org/10.7717/peerj.16843
https://peerj.com/


termites. By comparing the miRNomes of workers feeding on methoprene-treated filter
paper and workers feeding on acetone-treated filter paper, 116 DEmiRs were identified
between the two groups. These DEmiRs formed a complex network with DEGs, including
genes in ribosome biogenesis, the circadian rhythm-fly, and metabolic pathways. By
controlling soldier caste differentiation post-transcriptionally, miRNAs add another layer
of gene regulation to maintain a stable soldier ratio in the termite colony, thus maintaining
colony homeostasis.
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