'.) Check for updates

Received: 26 February 2024 Accepted: 11 March 2024

DOI: 10.1111/2041-210X.14325

Methods in Ecology and Evolution EES&'ESE.:.L
—————————— T SOCIETY

PERSPECTIVE

Harnessing large language models for coding, teaching and
inclusion to empower research in ecology and evolution

Natalie Cooper'® | Adam T.Clark?® | Nicolas Lecomte®*® | Huijie Qiao*® |
Aaron M. Ellison®>®

1Science Group, Natural History Museum London, London, UK; 2Department of Biology, University of Graz, Graz, Austria; 3Canada Research Chair in Polar

and Boreal Ecology and Centre d'Etudes Nordiques, Department of Biology, University of Moncton, Moncton, New Brunswick, Canada; “Key Laboratory of
Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; *Harvard University Herbaria, Harvard University,
Cambridge, Massachusetts, USA and 6Sound Solutions for Sustainable Science, Boston, Massachusetts, USA

Correspondence
Natalie Cooper Abstract

Email: natalie.cooper@nhm.ac.uk 1. Large language models (LLMs) are a type of artificial intelligence (Al) that can

Handling Editor: Bob O'Hara perform various natural language processing tasks. The adoption of LLMs has
become increasingly prominent in scientific writing and analyses because of the
availability of free applications such as ChatGPT. This increased use of LLMs not
only raises concerns about academic integrity but also presents opportunities for
the research community. Here we focus on the opportunities for using LLMs for
coding in ecology and evolution. We discuss how LLMs can be used to generate,
explain, comment, translate, debug, optimise and test code. We also highlight the
importance of writing effective prompts and carefully evaluating the outputs of
LLMs. In addition, we draft a possible road map for using such models inclusively
and with integrity.

2. LLMs can accelerate the coding process, especially for unfamiliar tasks, and free
up time for higher level tasks and creative thinking while increasing efficiency
and creative output. LLMs also enhance inclusion by accommodating individu-
als without coding skills, with limited access to education in coding, or for whom
English is not their primary written or spoken language. However, code generated
by LLMs is of variable quality and has issues related to mathematics, logic, non-
reproducibility and intellectual property; it can also include mistakes and approxi-
mations, especially in novel methods.

3. We highlight the benefits of using LLMs to teach and learn coding, and advo-
cate for guiding students in the appropriate use of Al tools for coding. Despite
the ability to assign many coding tasks to LLMs, we also reaffirm the continued

importance of teaching coding skills for interpreting LLM-generated code and to

develop critical thinking skills.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2024 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.

Methods Ecol Evol. 2024;00:1-7. wileyonlinelibrary.com/journal/mee3 1

www.wileyonlinelibrary.com/journal/mee3
mailto:
https://orcid.org/0000-0003-4919-8655
https://orcid.org/0000-0002-8843-3278
https://orcid.org/0000-0002-8473-5375
https://orcid.org/0000-0002-5345-6234
https://orcid.org/0000-0003-4151-6081
http://creativecommons.org/licenses/by/4.0/
mailto:natalie.cooper@nhm.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1111%2F2041-210X.14325&domain=pdf&date_stamp=2024-05-02

COOPERET AL.

Methods in Ecology and Evol i

Al platform.

KEYWORDS

1 | INTRODUCTION

Artificial intelligence (Al) is a rapidly expanding field, with myr-
iad uses in ecology and evolution (Borowiec et al., 2022; Christin
et al,, 2019; Han et al., 2023; Pichler & Hartig, 2023; Tabak
et al., 2019). Although Al is not new, the increasing availability of
resources such as GitHub Copilot, ChatGPT and Dall-E is leading
to more researchers and students using these tools for research
and study. While there is widespread concern within the commu-
nity about the use of Al tools (van Dis et al., 2023), our focus in
this perspective is on the positive opportunities for responsibly
using Al, specifically large language models (LLMs), to assist with
coding, both for research and in the classroom. We provide recom-
mendations for publishing research that has used ‘LLMs’, which we
take herein to include LLMs and comparable generative Al tools,
but not more widely used aids such as spell-checkers, Grammarly
and Writefull.

1.1 | Whatare LLMs and how do they work?

Artificial intelligence (Al) is the ability of a machine, generally a com-
puter or robot, to perform tasks normally associated with intelligent
humans (for an extended discussion of the merits of calling Al ‘in-
telligent’, which is well outside the bounds of this perspective; see
Searle, 1997). Current discussion mostly centres on forms of genera-
tive Al, in which computers are able to produce content based on a
set of training data. There are many types of generative Al, includ-
ing several with which ecologists and evolutionary biologists will
have some familiarity (e.g. machine-learning, deep learning, neural
networks). Our focus here is on LLMs, which are machine learning
algorithms that can perform various natural language processing
tasks, such as classifying and generating text (including computer
code), and responding to questions in a conversational style. There
are several available LLMs, including ChatGPT (see Box 1), Gemini
(previously Bard), Llama, Guanaco and OpenLLaMA, and many more
are in development.

In simple terms, LLMs such as ChatGPT aim to predict the next
part of a word or phrase based on a user-provided text prompt. The

4. As editors of MEE, we support—to a limited extent—the transparent, accountable
and acknowledged use of LLMs and other Al tools in publications. If LLMs or com-
parable Al tools (excluding commonly used aids like spell-checkers, Grammarly
and Writefull) are used to produce the work described in a manuscript, there must
be a clear statement to that effect in its Methods section, and the corresponding

or senior author must take responsibility for any code (or text) generated by the

artificial intelligence, ChatGPT, coding, inclusion, large language models, teaching

BOX 1 Whatis ChatGPT?

ChatGPT (https://chat.openai.com) was launched in late
2022 (Open Al, 2022), and is the most popular (and infa-
mous) LLM currently available. It uses a generative pre-
trained transformer (GPT) LLM that functions as a chatbot,
allowing users to have interactive conversations to gener-
ate content. ChatGPT is popular because it is (still) free, al-
though you need to pay for the newest version (at the time
of writing version 3.5 is free, and version 4.0 must be paid
for). It is a ‘very large’ LLM, which means it performs better
than other ‘large’ LLMs. It is also relatively versatile, allow-
ing users to apply it to multiple kinds of tasks. Note that
although it is the most commonly used LLM application,
ChatGPT is not always the best tool for what you want to
do; other Al tools, such as GitHub Copilot and Llama, are
optimised for programming. The LLM market is changing
rapidly, so being flexible and investigating new tools as
they emerge is likely to be a good strategy.

prediction is made by passing the prompt through a deep neural
network, which itself has been trained to find relationships among
words and phrases in an enormous corpus of training data (the ‘large’
in LLMs refers to the massive amount of data used to train these
models). The predictions of LLMs are based on the content and struc-
ture of the corpus used to train them, including rules of grammar and
syntax, how often words are found in a particular sequence and even
how facts and ideas are presented together (regardless of whether
or not that presentation is actually correct). Contextual clues also
are used to improve the accuracy of the predictions, and models can
be (imperfectly) trained to reduce the prevalence of certain prob-
lematic words and phrases (e.g. violent, racist or illegal ones). Rather
than always selecting the absolute best option, most LLM algorithms
build in a degree of randomness into their responses. This random-
ness has consequences for reproducibility (see below) though sev-
eral tools now allow implementations where the user can remove

this random component (e.g. ChatGPT v 4.0).

85U80|7 SUOWWIOD 3AIIaID 3|qeoljdde au A peusenob aJe sajone O ‘88N 4O SajnJ 10} Arlq1T8UlUQ /8|1 UO (SUOIIPUOD-PUe-SWB}/W0D /B 1M ATe.d 1 [BuI|UO//:SANY) SUORIPUOD Pue SWiB | 841 89S *[202/60/8T] U0 A%iqiT8uljuo AB|IM ‘GZEFT" XOTZ-T0Z/TTTT 0T/I0p/L00 A8 M Aeiq1jpulUO'S feunoaqy/sdny wioij papeojumoq ‘0 *XOTZT#0Z

https://chat.openai.com

COOPERET AL.

BRITISH

2 | USING LLMs FOR CODING

Large language models and other Al applications are uncannily good at
generating well-functioning and understandable computer code based
on natural language prompts from users—including users without a
programming background (Ellis & Slade, 2023). Within ecology and
evolution, many researchers and students already are using LLMs to
help them write code (Duffy, 2024). Doing so requires two main skills:
writing effective prompts and evaluating the responses. In addition,

users need to know how to apply these tools responsibly.

2.1 | Writing effective prompts

Prompts are how you interact with an Al to generate a response.
Prompts can include questions, comments, code snippets or exam-
ples, and should be written in full sentences in ‘natural’ language (i.e.
plain text, as you might use to communicate with a colleague), not as
a string of keywords as you would enter into a search engine. For ex-
ample, if you wanted to learn how to run a linear regression in R, you
might use the keywords ‘linear regression’ and ‘R’ in a search engine,
but for an LLM, a better prompt would be something like ‘Please
show me how to perform a linear regression in R’ (it is up to the user
whether polite terms like ‘please’ are necessary). A good prompt will
be detailed and specify as much context as possible (the who, what,
when, where, why and how of the question).

For programming questions, prompts should include the pro-
gramming language, any specific packages you want to use, and what
you want to achieve with the code. Prompts also can be ‘chained’;
you can query the LLM with an initial prompt and then follow up
with another prompt to update the response. Most LLMs intended
for use by the general public will ‘remember’ the context provided in
previous prompts within a single chat session (or multiple previous
sessions depending on the tool in question), and use this to generate
its responses. For example, if you ask for code to create a boxplot,
in the next prompt you could ask it to change the colours, without
needing to respecify the details of the boxplot. Another useful tip is
to ask the LLM to ‘explain with examples’, or ‘explain as if | am a high
school student’. Note, however, that most LLMs have a character or
token limit for questions. In ChatGPT version 3.5 (which is currently
free), the limit is 4096 tokens or approximately 3000 words, which
may limit the amount of detail you can put into your prompt.

2.2 | Evaluating the outputs

The hardest, yet most important, part of using LLMs to gener-
ate code is evaluating the accuracy of the code produced (Lubiana
et al., 2023). An often underappreciated problem with Als is that
they ‘hallucinate’, that is, they can be completely confident in a re-
sponse even when that response is inaccurate or entirely incorrect.
Hallucinations tend to occur either when the prompts have not given
the Al enough context to answer correctly, when the training data

Methods in Ecology and Evolution B

ECOLOGICAL
SOCIETY

do not include sufficient information to address the prompt, or if
the training data include mistakes. Hallucinations are more likely to
occur when LLMs respond to prompts about less frequently used
analytical methods, packages or programming languages. Because
most LLMs are trained to produce answers that are perceived as cor-
rect by human editors, they also may favour grammatical correctness
and plausibility over accuracy. It is therefore extremely important to
be sceptical of any response given by any Al, and to always check
that any code produced works in the way you want or expect it to.
Consequently, to effectively use LLMs for coding, you still need to
understand enough about the programming language to understand
whether the outputs are correct or not.

2.3 | Other uses of LLMs in coding

In addition to generating code, LLMs can also assist with the follow-
ing routine coding activities (see also Lubiana et al., 2023).

1. Explain code (to yourself and others): It is not uncommon to
have code or code snippets that you did not write (e.g. im-
ported or modified from a paper, a collaborator, GitHub or
Stack Overflow) or code that you wrote in the past and did
not document well. With good prompts, LLMs can explain
what the code is doing and why. A major advantage is that
Als are infinitely patient, so you can continue asking the same
question repeatedly if the first explanation does not make
sense.

2. Commenting code: Commenting is key to good, reproducible code
(Cooper & Hsing, 2017), but some routine commenting is often
skipped. LLMs can quickly comment code, including routine sec-
tions, saving researcher time and effort, which can be applied to
commenting on more complex or bespoke sections of the code.
Again, verifying the generated comments is critical.

3. Translate code: Many researchers are familiar with only one pro-
gramming language, but may find they need to use another lan-
guage to solve certain problems. LLMs can translate code from
one language to another (e.g. from Python to R) or from one pack-
age to another (e.g. from tidyverse to base R).

4. Debug code: If your code is broken, you can provide the code to
an LLM and ask it to find any errors. Ideally you should include
any error messages and the aim of the code as context to your
question. LLMs can be particularly good at explaining arcane error
messages.

5. Optimise code: Sometimes it is easier to quickly write code that
works, rather than spending a lot of time optimising the code to
make it efficient and fast to run. LLMs can take unoptimised code
and edit it to make it run faster and more efficiently. However,
the correct metrics of optimization are important to verify
beforehand.

6. Unit tests: Standard unit tests for functions are critical for many al-
gorithms and packages. LLMs can assist in suggesting which tests
would be most suitable and how to structure and write them.

85U80|7 SUOWWIOD 3AIIaID 3|qeoljdde au A peusenob aJe sajone O ‘88N 4O SajnJ 10} Arlq1T8UlUQ /8|1 UO (SUOIIPUOD-PUe-SWB}/W0D /B 1M ATe.d 1 [BuI|UO//:SANY) SUORIPUOD Pue SWiB | 841 89S *[202/60/8T] U0 A%iqiT8uljuo AB|IM ‘GZEFT" XOTZ-T0Z/TTTT 0T/I0p/L00 A8 M Aeiq1jpulUO'S feunoaqy/sdny wioij papeojumoq ‘0 *XOTZT#0Z

COOPERET AL.

Methods in Ecology and Evol i

You must check that the Al has done these routine coding activ-
ities correctly. In particular, debugging with LLMs can be rife with
errors—recall that most LLMs are trained to produce results that
look plausible to a human, meaning that errors in the code can be
difficult to find.

2.4 | Benefits and challenges of using LLMs
for coding

The primary benefit of using LLMs to generate code is that it is often
faster than writing it ourselves, especially if we are non-professional
programmers (i.e. most of us in ecology and evolution) or for tasks
and problems that we have not encountered before. LLMs can lower
the opportunity cost of trying something that might be complex to
learn independently, and can speed up routine tasks leaving more
time for other things like synthesis and idea development. LLMs also
increase equity and inclusion, as they provide more opportunities
for people without coding skills, with neurodivergent traits, who
have less fluent English skills, and others who may benefit from dif-
ferent ways of working (Box 2).

Furthermore, LLMs can generate more than one suggestion for
running a given data analysis task, complete with implemented and
well-commented solutions and code examples. This not only can in-
crease the rate at which coding skills can be learned but also may
enable less-seasoned scholars, particularly students, to rapidly de-
velop complex, multi-step methods for analysing a specific dataset,
compare the outputs and choose the most appropriate way(s) to in-
terpret the results.

The challenges of using LLMs for coding include the fact that
responses vary greatly in quality—often in ways that are not readily
apparent. For commonly used, well-documented functions, pack-
ages and languages, LLMs are typically fast, efficient and largely ac-
curate because they have more examples of these in their training
datasets; for example, answers using R packages like ggplot2 tend to
be correct. Hallucinations are more common, however, when asking
about less-used packages; for example, fitting phylogenetic compar-
ative models using OUwie (Beaulieu & O'Meara, 2022) often give
nonsensical results. Many LLMs also struggle with mathematics and
logic, and need efficient prompts and extensive testing to debug or
identify the errors (Chang et al., 2024; Lépez Espejel et al., 2023).
Responses also are typically not reproducible (at least for regular
users), so different people may get different results with the same

prompt. This inconsistency can be disconcerting to novice users.

3 | LLMs AND CODING IN THE
CLASSROOM

As long as LLMs remain easy to access (and particularly while they
remain free to use), students will use them whether educators like
it or not. Our recommendation is to guide and advise students on
responsible use of Al rather than attempting to regulate or ban its

BOX 2 Equity and inclusion with LLMs.

Debate around LLMs and inclusion tends to focus on the
biases inherent in these models (Schwartz et al., 2022). If
the training data being used to generate responses are bi-
ased (and we know that it is), then LLMs naturally will re-
flect this bias in their outputs, including in code outputs.
This is obviously undesirable. Many developers of LLMs are
trying to fix this issue, but training data are still focused
on materials that are available in languages that are well-
represented on the internet (both computer and human),
and that are produced in wealthy nations of the Global
North. Although there are arguably fewer cultural and re-
gional differences in code than in say, prose or art, some
of the same concerns are likely to apply with regard to the
audiences for whom the tools are produced, the goals that
they are meant to further, and the way that they are ap-
plied. New LLMs are also expensive to develop, in terms of
staff, equipment and infrastructure, and their development
will, in all likelihood, continue to be dominated by those
with the most money and power. An additional large con-
cern is that currently free platforms may either cease to be
free, or stop being supported and developed; either way,
the result will be to widen the existing gaps in computing
and programming resources among institutions and world
regions. It is important to ask who is benefitting from Al

and who is missing out.

There are also potential equity and inclusion benefits of
LLMs, especially for coding. The availability of free Al tools
should help to increase opportunities for those who do not
have coding skills, access to coding education or the abil-
ity to pay to learn them. Already, LLMs are being used in
classrooms to provide bespoke advice and feedback to stu-
dents. A student may be more comfortable asking a chat-
bot for help than a teaching assistant or lecturer, especially
if they need to ask the same question multiple times to un-
derstand the answer, or students may be able to use LLMs
to get those answers in a language or style that is more
approachable to them. Teaching students to use LLMs for
coding also can reduce inequities introduced by some stu-
dents finding coding much harder than others. There are
special advantages for neurodivergent students and stu-
dents whose first language is not English. These benefits
should also be considered when thinking about equity and

inclusion in Al.

use (see also Duffy, 2024; Lubiana et al., 2023; and https://cs50.ai/).
Our own experience is that LLMs can be excellent aids for teach-
ing and learning coding. Students can use LLMs to generate, explain,
comment, translate, debug and optimise code. Students also can
use Als as personal tutors, and continue asking the same question

85U80|7 SUOWWIOD 3AIIaID 3|qeoljdde au A peusenob aJe sajone O ‘88N 4O SajnJ 10} Arlq1T8UlUQ /8|1 UO (SUOIIPUOD-PUe-SWB}/W0D /B 1M ATe.d 1 [BuI|UO//:SANY) SUORIPUOD Pue SWiB | 841 89S *[202/60/8T] U0 A%iqiT8uljuo AB|IM ‘GZEFT" XOTZ-T0Z/TTTT 0T/I0p/L00 A8 M Aeiq1jpulUO'S feunoaqy/sdny wioij papeojumoq ‘0 *XOTZT#0Z

https://cs50.ai/

COOPERET AL.

BRITISH

repeatedly in different ways as they work to fully understand the
answers. Students also may be happier to ask chatbots for help than
to ask a human instructor, out of fear that the latter will judge them
harshly for not knowing the answers to simple questions. Likewise,
LLMs can be a real help for instructors in crowded classrooms by
providing a first point of contact for student questions. This facil-
ity may be particularly valuable for neurodivergent students or stu-
dents whose first language is not English (or whatever the working
language of the class in question is) and naturally shy students (e.g.
Liu et al., 2024; Box 2). Two especially helpful features are that most
LLMs can readily provide answers in multiple languages and they
can quickly summarise or translate text from user manuals or help

forums.

3.1 | Should we still teach or learn coding?

One commonly asked question when discussing LLMs and cod-
ing is whether we still need to teach coding skills or learn them
as researchers, or if we should just outsource the process to Als.
We think that we should still teach students to code. Although
LLMs can facilitate learning by students who otherwise struggle
with coding, interpreting the outputs of LLMs and determining
whether they are accurate still require a basic understanding of
coding, statistics and mathematics. In addition, we must be able to
detect when and why the code generated by an LLM is not work-
ing. Students also need to know what to ask the LLM to do, and
why. Thus, coding skills will continue to be vital for students in
ecology and evolution, in the same way that learning the basics
of arithmetic is necessary for the effective use of a calculator or
spreadsheet. We anticipate that simple debugging features and
repetitive tasks can be identified and addressed easily with LLMs,
saving time and efficiency, just as spelling and grammar checkers
speed up proof reading of manuscripts.

Teaching coding skills also provides pedagogical benefits. For in-
stance, learning to code requires us to break down large problems
into smaller chunks that are usually easier to solve. It also requires
strong logic and scientific reasoning to understand what you need to
do and how to get a machine to do it for you. Moreover, developing
these skills is a strategic process that can help to maximise creativ-
ity and create novel material, both of which are essential for doing
science, making discoveries and spurring innovations (e.g. Fletcher &
Benveniste, 2022). In summary, critical thinking skills will continue
to be important, even in a world replete with text, video and code

generated by LLMs.

4 | BEST PRACTICE FOR PUBLISHING
CODE GENERATED USING LLMs

Current journal policies for publishing code at Methods in Ecology
and Evolution (MEE) require that code needs to be novel, usable
and understandable. MEE places emphasis on the quality, usability,

Methods in Ecology and Evolution B

ECOLOGICAL
SOCIETY

accessibility and functionality of code (see https://besjournals.
onlinelibrary.wiley.com/hub/editorial-policies). Concern has been
raised about the accountability and transparency of publishing
code generated using Al (e.g. van Dis et al., 2023). Who is account-
able for the code (or text) and who should get credit for it? Most
journals, including MEE, expect that the corresponding and sen-
ior authors of a paper are accountable for all of its contents. All
authors are asked to read and agree to the submission of a final
draft of a manuscript before submission. We know that not every
author reads all the code associated with a paper, but at least one
author must do so, and take responsibility for it. Using an LLM
to help generate the code does not change this fact. When using
an LLM, we would expect the responsible author(s) to follow the
same kinds of quality assurance checks as they would if the code
was written by them independently.

Going forward, when LLMs are used to generate code in publica-
tions at MEE, we will require the following:

1. At least one author must take responsibility for all associated
code (or text) generated by the LLM. This responsibility must
be explicitly noted in the Author Contributions section.

2. Theuse of Al/LLMs must be clearly stated in the manuscriptin the
Methods section. The Al application (e.g. ChatGPT) and version
(e.g. 3.5) must be reported, along with details of how much of the
content was generated by the Al.

3. The portions of code generated by the LLM must be annotated

with comments stating that they were generated in this way.

Note that our focus here is on using LLMs for coding; the British
Ecological Society (BES) journals, including MEE, also have a policy
on Al-generated content more generally (https://besjournals.onlin
elibrary.wiley.com/hub/editorial-policies), which also must be fol-
lowed. One important part of this is that an Al cannot be considered
as an author.

Another critical concern regarding code produced by LLMs is a
lack of reproducibility. It is true that if you ask most LLMs the same
question repeatedly, they will give different, and perhaps inaccurate,
answers—but how much of a problem is this? Two researchers work-
ing on the same problem may produce different code solutions; in-
deed, one researcher working on the same problem at different times
may do so, too. There will be specific situations where this will be a
problem (e.g. using an LLM to collate data for a meta-analysis), but
for basic code generation, this lack of reproducibility is not an issue
as long as the code itself generates reproducible results and meets
MEE's criteria of quality, usability, accessibility and functionality
(https://besjournals.onlinelibrary.wiley.com/hub/editorial-policies),
and that the authors acknowledge the use of LLMs in generating the
code. To this end, it appears to us that the lack of reproducibility
related to LLMs is similar to that of other tools—the results should
be replicable but the precise process that went into deciding how to
create those specific results may not be. In our opinion, that is simply
how the creative process of science works. Being transparent in the
use of Al and LLMs will continue to increase accountability.

85U80|7 SUOWWIOD 3AIIaID 3|qeoljdde au A peusenob aJe sajone O ‘88N 4O SajnJ 10} Arlq1T8UlUQ /8|1 UO (SUOIIPUOD-PUe-SWB}/W0D /B 1M ATe.d 1 [BuI|UO//:SANY) SUORIPUOD Pue SWiB | 841 89S *[202/60/8T] U0 A%iqiT8uljuo AB|IM ‘GZEFT" XOTZ-T0Z/TTTT 0T/I0p/L00 A8 M Aeiq1jpulUO'S feunoaqy/sdny wioij papeojumoq ‘0 *XOTZT#0Z

https://besjournals.onlinelibrary.wiley.com/hub/editorial-policies
https://besjournals.onlinelibrary.wiley.com/hub/editorial-policies
https://besjournals.onlinelibrary.wiley.com/hub/editorial-policies
https://besjournals.onlinelibrary.wiley.com/hub/editorial-policies
https://besjournals.onlinelibrary.wiley.com/hub/editorial-policies

COOPERET AL.

Methods in Ecology and Evol i

More generally, we also caution that any uses of LLMs and Al
require careful consideration of credit and liability. These consid-
erations are relevant in terms of both intellectual contribution (i.e.
who came up with the relevant ideas) and intellectual property (i.e.
who has copyrighted the material that you or your LLM are using).
Both the United States and the European Union are in the midst
of enacting regulations on the topic, and, in most cases, it appears
that if an LLM draws heavily on copyrighted text or images in the
production of a published output, the human author may be held
liable for copyright infringement. Similarly, if an LLM reproduces
illegal contents (e.g. hate speech or symbols from banned politi-
cal parties) that are then included in a published work, then the
human author, not the LLM, likely will be held responsible for its

products.

5 | CONCLUSIONS

Al and LLMs are not new technologies; various Al applications
have existed since the 1960s. Many researchers concerned about
the rise of LLM applications like ChatGPT forget that spell check-
ers and autocomplete functions, which we use every day in many
different settings, also are various types of Al. However, the ca-
pabilities of generative Al and LLMs are increasing rapidly, and
new developments appear almost daily. It is partially this speed
of change, and the feeling of not being able to keep up, that is
driving concerns. For example, that the Al in Excel reformats ge-
netic sequences as dates is, after decades of pain, relatively com-
mon knowledge, but what do we know about similar bugs in tools
like ChatGPT or Gemini? Change does not always have to be bad,
however, and Al and LLMs are not going away anytime soon. We
need to engage with these tools proactively and responsibly while
promoting the best available practices, which themselves will con-
tinue to change. We accept that Al is a rapidly evolving field and
we expect that our thoughts about it also will continue to evolve.
We also note that we have different levels of expertise in using
and developing Al tools; even experts do not know where the field
will be a year from now. However, we still think—at least for now—
that the potential positives of using LLMs for coding outweigh the
potential negatives.

We also recognise the challenges inherent in these methods.
Training LLMs has a staggeringly large environmental impact
(Box 3), and these tools have the potential to increase global ineq-
uities (Box 2). As a community, we should consider how to use Al
tools most effectively and ethically, how to improve transparency,
who is benefiting, who is missing out and how we can reduce their
environmental impacts. Ultimately, we think that Al is not here to
replace us, but rather to assist us (more like the robots in Asimov's
| Robot books than those in Capek's R.U.R. or The Terminator films).
However, given the rapid advances in Al, it probably would not
hurt to add ‘please’ and ‘thank you’ to your ChatGPT prompts. Just

in case.

BOX 3 The environmental impact of LLMs.

There has been much public concern about the effects of Al
on academic integrity but there has been far less discussion
about the direct and indirect environmental impacts of Al
(Jay et al., 2024; Rillig et al., 2023; van Wynsberghe, 2021).
CO, emissions for model training and tuning for just one
natural language processing model have been estimated to
exceed the average lifetime CO, emissions for a person liv-
ing in the USA (Strubell et al., 2019). Using ChatGPT-like
services in a single year produced 25 times the carbon
emissions of training GPT-3 (Chien et al., 2023). LLMs also
require a lot of infrastructure and equipment, all of which
have associated environmental impacts; examples include
water use and contamination, mining for rare-earth ele-
ments and the energy required for temperature control
of servers (Rillig et al., 2023). Much current research is fo-
cussed on creating sustainable, lower-carbon LLMs (Chien
et al., 2023; Patterson et al., 2021), but until these are suc-
cessful, it is worth being very circumspect about the un-
necessary use of Al for simple tasks. You might be adding
substantially to your carbon footprint just to save a couple

of minutes of effort.

AUTHOR CONTRIBUTIONS

Natalie Cooper wrote the first draft with input from other authors.
All authors edited the manuscript and approved the final version for
submission.

ACKNOWLEDGEMENTS

Thanks to the attendees of our ‘Coding with ChatGPT and other
LLMs’ workshops at the BES 2023 Annual Meeting in Belfast, Natural
History Museum London, and University of Sheffield, and to various
contributors on social media, for discussion and suggestions which
informed this perspective. ChatGPT v. 3.5 wrote the title under su-
pervision of NC. The title was gently rearranged for clarity by AME.

FUNDING INFORMATION
NL was supported by NSERC and the Canada Research Chair
program.

CONFLICT OF INTEREST STATEMENT

We are all editors at British Ecological Society (BES) journals, and
(excluding ATC) we are compensated by BES for our work, thus we
have vested interest in the adoption of these guidelines.

PEER REVIEW

The peer review history for this article is available at https://www.
webofscience.com/api/gateway/wos/peer-review/10.1111/2041-
210X.14325.

85U80|7 SUOWWIOD 3AIIaID 3|qeoljdde au A peusenob aJe sajone O ‘88N 4O SajnJ 10} Arlq1T8UlUQ /8|1 UO (SUOIIPUOD-PUe-SWB}/W0D /B 1M ATe.d 1 [BuI|UO//:SANY) SUORIPUOD Pue SWiB | 841 89S *[202/60/8T] U0 A%iqiT8uljuo AB|IM ‘GZEFT" XOTZ-T0Z/TTTT 0T/I0p/L00 A8 M Aeiq1jpulUO'S feunoaqy/sdny wioij papeojumoq ‘0 *XOTZT#0Z

https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.14325
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.14325
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.14325

COOPERET AL.

BRITISH

DATA AVAILABILITY STATEMENT

This paper uses no new data.

ORCID
Natalie Cooper "= https://orcid.org/0000-0003-4919-8655
Adam T. Clark "= https://orcid.org/0000-0002-8843-3278
Nicolas Lecomte " https://orcid.org/0000-0002-8473-5375
https://orcid.org/0000-0002-5345-6234

https://orcid.org/0000-0003-4151-6081

Huijie Qiao
Aaron M. Ellison

REFERENCES

Beaulieu, J. M., & O'Meara, B. (2022). OUwie: Analysis of evolutionary
rates in an OU framework. R package version 2.10. https://github.
com/thej022214/OUwie

Borowiec, M. L., Dikow, R. B., Frandsen, P. B., McKeeken, A., Valentini,
G., & White, A. E. (2022). Deep learning as a tool for ecology and
evolution. Methods in Ecology and Evolution, 13, 1640-1660. https://
doi.org/10.1111/2041-210X.13901

Chang, Y., Wang, X., Wang, J., Wu, Y,, Yang, L., Zhu, K., Chen, H., Yi, X.,
Wang, C., Wang, Y., Ye, W., Zhang, Y., Chang, Y., Yu, P. S., Yang, Q.,
& Xie, X. (2024). A survey on evaluation of large language models.
ACM Transactions on Intelligent Systems and Technology, 15, 1-45.
https://doi.org/10.1145/3641289

Chien, A. A., Lin, L., Nguyen, H., Rao, V., Sharma, T., & Wijayawardana,
R. (2023). Reducing the carbon impact of generative Al inference
(today and in 2035). In Proceedings of the 2nd workshop on sus-
tainable computer systems (pp. 1-7). Association for Computing
Machinery. https://dl.acm.org/doi/10.1145/3604930.3605705

Christin, S., Hervet, E., & Lecomte, N. (2019). Applications for deep learn-
ing in ecology. Methods in Ecology and Evolution, 10, 1632-1644.
https://doi.org/10.1111/2041-210X.13256

Cooper, N., & Hsing, P.-Y. (2017). A guide to reproducible code in ecology
and evolution. BES Guides to Better Science. https://www.briti
shecologicalsociety.org/wp-content/uploads/2017/12/guide-to-
reproducible-code.pdf

Duffy, M. (2024). Generative Al and graduate training in ecology. Dynamic
Ecology Blog. https://dynamicecology.wordpress.com/2024/01/
15/generative-ai-graduate-training-in-ecology/#more-66157

Ellis, A. R., & Slade, E. (2023). A new era of learning: Considerations for
ChatGPT as a tool to enhance statistics and data science educa-
tion. Journal of Statistics and Data Science Education, 31, 128-133.
https://doi.org/10.1080/26939169.2023.2223609

Fletcher, A., & Benveniste, M. (2022). A new method for training cre-
ativity: Narrative as an alternative to divergent thinking. Annals of
the New York Academy of Sciences, 1512, 29-45. https://doi.org/10.
1111/nyas.14763

Han, B. A., Varshney, K. R., LaDeau, S., Subramaniam, A., Weathers,
K. C., & Zwart, J. (2023). A synergistic future for Al and ecology.
Proceedings of the National Academy of Sciences of the United States
of America, 120, €2220283120. https://doi.org/10.1073/pnas.
2220283120

Jay, C., Yu, Y., Crawford, I., Archer-Nicholls, S., James, P., Gledson, A.,
Shaddick, G., Haines, R., Lannelongue, L., Lines, E., Hosking, S., &
Topping, D. (2024). Prioritize environmental sustainability in use
of Al and data science methods. Nature Geoscience, 17, 106-108.
https://doi.org/10.1038/s41561-023-01369-y

Liu, R., Zenke, C., Liu, C., Holves, A., Thornton, P., & Malan, D. J. (2024).
Teaching CS50 with Al: Leveraging generative artificial intelligence
in computer science education. In Proceedings of the 55th ACM
Technical Symposium on Computer Science education V. 1 (SIGCSE

Methods in Ecology and Evolution B

ECOLOGICAL
SOCIETY

2024, March 20-23, 2024) (pp. 1-7). ACM. https://doi.org/10.1145/
3626252.3630938

Lopez Espejel, J., Ettifouri, E. H., Yahaya Alassan, M. S., Chouham, E. M.,
& Dahhane, W. (2023). GPT-3.5, GPT-4, or BARD? Evaluating LLMs
reasoning ability in zero-shot setting and performance boosting
through prompts. Natural Language Processing Journal, 5, 100032.
https://doi.org/10.1016/j.nlp.2023.100032

Lubiana, T., Lopes, R., Medeiros, P., Silva, J. C., Goncalves, A. N. A.,
Maracaja-Coutinho, V., & Nakaya, H. I. (2023). Ten quick tips for
harnessing the power of ChatGPT in computational biology. PLoS
Computational Biology, 19, €1011319. https://doi.org/10.1371/
journal.pcbi.1011319

Open Al. (2022). ChatGPT: Optimizing language models for dialogue.
https://openai.com/blog/chatgpt/

Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L. M., Rothchild,
D., So, D., Texier, M., & Dean, J. (2021). Carbon emissions and large
neural network training. arXiv:2104.10350. https://doi.org/10.
48550/arXiv.2104.10350

Pichler, M., & Hartig, F. (2023). Machine learning and deep learning—A
review for ecologists. Methods in Ecology and Evolution, 14, 994-
1016. https://doi.org/10.1111/2041-210X.14061

Rillig, M. C., Agerstrand, M., Bi, M., Gould, K. A., & Sauerland, U. (2023).
Risks and benefits of large language models for the environment.
Environmental Science and Technology, 57, 3464-3466. https://doi.
org/10.1021/acs.est.3c01106

Schwartz, R., Vassilev, A., Greene, K., Perine, L., Burt, A., & Hall, P.(2022).
Towards a standard for identifying and managing bias in artificial intel-
ligence. National Institute of Standards Special Publication, 1270.
https://doi.org/10.6028/NIST.SP.1270

Searle, J. R. (1997). The mystery of consciousness. The New York Review
of Books.

Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy consid-
erations for deep learning in NLP. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics (pp. 3645-
3650). Association for Computational Linguistics. https://doi.org/
10.18653/v1/P19-1355

Tabak, M. A., Norouzzadeh, M. S., Wolfson, D. W., Sweeney, S. J.,
Vercauteren, K. C., Snow, N. P, Halseth, J. M., Di Salvo, P. A.,
Lewis, J. S., White, M. D., Teton, B., Beasley, J. C., Schlichting, P.
E., Boughton, R. K., Wight, B., Newkirk, E. S., Ivan, J. S., Odell, E.
A., Brook, R. K., ... Miller, R. S. (2019). Machine learning to clas-
sify animal species in camera trap images: Applications in ecology.
Methods in Ecology and Evolution, 10, 585-590. https://doi.org/10.
1111/2041-210X.13120

van Dis, E. A. M., Bollen, J., Zuidema, W., van Rooij, R., & Bockting, C. L.
(2023). ChatGPT: Five priorities for research. Nature, 614, 224-226.
https://doi.org/10.1038/d41586-023-00288-7

van Wynsberghe, A. (2021). Sustainable Al: Al for sustainability and the
sustainability of Al. Al and Ethics, 1, 213-218. https://doi.org/10.
1007/s43681-021-00043-6

How to cite this article: Cooper, N., Clark, A. T., Lecomte, N.,
Qiao, H., & Ellison, A. M. (2024). Harnessing large language
models for coding, teaching and inclusion to empower
research in ecology and evolution. Methods in Ecology and
Evolution, 00, 1-7. https://doi.org/10.1111/2041-
210X.14325

85U80|7 SUOWWIOD 3AIIaID 3|qeoljdde au A peusenob aJe sajone O ‘88N 4O SajnJ 10} Arlq1T8UlUQ /8|1 UO (SUOIIPUOD-PUe-SWB}/W0D /B 1M ATe.d 1 [BuI|UO//:SANY) SUORIPUOD Pue SWiB | 841 89S *[202/60/8T] U0 A%iqiT8uljuo AB|IM ‘GZEFT" XOTZ-T0Z/TTTT 0T/I0p/L00 A8 M Aeiq1jpulUO'S feunoaqy/sdny wioij papeojumoq ‘0 *XOTZT#0Z

https://orcid.org/0000-0003-4919-8655
https://orcid.org/0000-0003-4919-8655
https://orcid.org/0000-0002-8843-3278
https://orcid.org/0000-0002-8843-3278
https://orcid.org/0000-0002-8473-5375
https://orcid.org/0000-0002-8473-5375
https://orcid.org/0000-0002-5345-6234
https://orcid.org/0000-0002-5345-6234
https://orcid.org/0000-0003-4151-6081
https://orcid.org/0000-0003-4151-6081
https://github.com/thej022214/OUwie
https://github.com/thej022214/OUwie
https://doi.org/10.1111/2041-210X.13901
https://doi.org/10.1111/2041-210X.13901
https://doi.org/10.1145/3641289
https://dl.acm.org/doi/10.1145/3604930.3605705
https://doi.org/10.1111/2041-210X.13256
https://www.britishecologicalsociety.org/wp-content/uploads/2017/12/guide-to-reproducible-code.pdf
https://www.britishecologicalsociety.org/wp-content/uploads/2017/12/guide-to-reproducible-code.pdf
https://www.britishecologicalsociety.org/wp-content/uploads/2017/12/guide-to-reproducible-code.pdf
https://dynamicecology.wordpress.com/2024/01/15/generative-ai-graduate-training-in-ecology/#more-66157
https://dynamicecology.wordpress.com/2024/01/15/generative-ai-graduate-training-in-ecology/#more-66157
https://doi.org/10.1080/26939169.2023.2223609
https://doi.org/10.1111/nyas.14763
https://doi.org/10.1111/nyas.14763
https://doi.org/10.1073/pnas.2220283120
https://doi.org/10.1073/pnas.2220283120
https://doi.org/10.1038/s41561-023-01369-y
https://doi.org/10.1145/3626252.3630938
https://doi.org/10.1145/3626252.3630938
https://doi.org/10.1016/j.nlp.2023.100032
https://doi.org/10.1371/journal.pcbi.1011319
https://doi.org/10.1371/journal.pcbi.1011319
https://openai.com/blog/chatgpt/
https://doi.org/10.48550/arXiv.2104.10350
https://doi.org/10.48550/arXiv.2104.10350
https://doi.org/10.1111/2041-210X.14061
https://doi.org/10.1021/acs.est.3c01106
https://doi.org/10.1021/acs.est.3c01106
https://doi.org/10.6028/NIST.SP.1270
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.1111/2041-210X.13120
https://doi.org/10.1111/2041-210X.13120
https://doi.org/10.1038/d41586-023-00288-7
https://doi.org/10.1007/s43681-021-00043-6
https://doi.org/10.1007/s43681-021-00043-6
https://doi.org/10.1111/2041-210X.14325
https://doi.org/10.1111/2041-210X.14325

	Harnessing large language models for coding, teaching and inclusion to empower research in ecology and evolution
	Abstract
	1|INTRODUCTION
	1.1|What are LLMs and how do they work?

	2|USING LLMs FOR CODING
	2.1|Writing effective prompts
	2.2|Evaluating the outputs
	2.3|Other uses of LLMs in coding
	2.4|Benefits and challenges of using LLMs for coding

	3|LLMs AND CODING IN THE CLASSROOM
	3.1|Should we still teach or learn coding?

	4|BEST PRACTICE FOR PUBLISHING CODE GENERATED USING LLMs
	5|CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	PEER REVIEW
	DATA AVAILABILITY STATEMENT

	REFERENCES

