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SUMMARY

Aging, as a complex process involving multiple cellular and molecular pathways, is known to be exacerbated
by various stresses. Because responses to these stresses, such as oxidative stress and genotoxic stress, are
known to interplay with the epigenome and thereby contribute to the development of age-related diseases,
investigations into how such epigenetic mechanisms alter gene expression and maintenance of cellular ho-
meostasis is an active research area. In this review, we highlight recent studies investigating the intricate rela-
tionship between stress and aging, including its underlying epigenetic basis; describe different types of
stresses that originate from both internal and external stimuli; and discuss potential interventions aimed at
alleviating stress and restoring epigenetic patterns to combat aging or age-related diseases. Additionally,

we address the challenges currently limiting advancement in this burgeoning field.

INTRODUCTION

Aging involves a gradual decline in physiological functions over
years, and in humans, decades, increasing susceptibility to
various chronic diseases.’™ Accumulating evidence suggests
that aging is highly variable between individuals and can be
induced by intrinsic and extrinsic stimuli through a combination
of genetic and environmental factors.>® Such stimuli, including
oxidants, radiation, heat shock, chronic stress, and more, are
well-known contributors to aging and related diseases’® and
known to activate intracellular stress responses, leading to cell
biological changes and physiological adaptations. Because the
cumulative impacts of excessive or persistent stresses exacer-
bate cellular damage, resulting in DNA damage and inflammation,
such cascading intrinsic stimuli progressively accelerates cellular
senescence and the consequent aging process, thereby height-
ening vulnerability to age-related disorders. Consequently, deci-
phering underlying causal effects and intricate regulatory mecha-
nisms governing stress-accelerated aging becomes imperative in
informing the formulation of innovative prognostications and inter-
ventions to alleviate aging and chronic diseases.'®"*
Epigenetics refers to heritable changes in gene expression
that occur without altering the DNA sequence.’>™'” Epigenetic
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modifications, such as DNA or RNA methylation, histone modifi-
cations, chromatin remodeling, and non-coding RNAs, are crit-
ical regulators of gene expression and play an essential role in
the aging process.'%'%"® Epigenetic changes can be influenced
by stress and, in turn, affect the stress response, highlighting the
importance of studying the interplay between epigenetics,
stress, and aging. Seminal studies have provided valuable in-
sights into the epigenetic mechanisms linking stress with aging
through the induction of changes in gene expression and cellular
function.'®22 Nevertheless, an in-depth and comprehensive un-
derstanding of recent advances in this area is lacking.

In this review, we will summarize the current advancements in
our knowledge of how various stresses trigger aging and age-
related disorders via epigenetic mechanisms. We will discuss
the interlinked impacts of different types of stresses, considering
both intrinsic and extrinsic stimuli, on aging and related dis-
eases. Furthermore, we will delve into how epigenetic regulation
at multiple layers is involved in stress stimulation and responses.
Additionally, we will review potential interventions aimed at alle-
viating aging and age-related diseases by reducing stress and
restoring epigenetic homeostasis. Lastly, we will address the
challenges in studying the epigenetic interplay between stress
and aging and translating the aging interventions into clinical
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Figure 1. An overview of the interplay
between aging-related stresses and
epigenetic changes
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aging progression and contribute to the develop-
ment of age-related diseases. They act as in-
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applications. Although this review cannot cover all forms and
manifestations of stresses associated with aging, we here focus
on typical representatives, including oxidative stress, genotoxic
stress, inflammatory stress, and metabolic stress.

DIFFERENT TYPES OF STRESSES RELATED TO AGING
AND THE UNDERLYING EPIGENETIC REGULATION

Aging-related stresses induced by a range of internal and external
stimuli can shape aging by triggering accumulation of cellular
damages, ultimately contributing to age-related diseases.®2%2°
Internal stimuli are predominantly produced by the cell itself,
such as cellular-metabolism-derived reactive oxygen species
(ROS), the deposition of which can contribute to cellular aging.
Conversely, external stimuli, such as chemical reagents, radioac-
tivity, ultraviolet (UV) irradiation, extreme temperatures, infections,
etc., can elicit intrinsic stressors, which synergistically exacerbate
the aging process. Stresses originating from both intrinsic and
extrinsic sources are broadly associated with epigenetic alter-
ations, encompassing dynamics in DNA and RNA methylations,
histone modifications, and non-coding RNA expression. In this
section, we will introduce aging-associated stresses induced by
distinct stimuli, including oxidative stress, genotoxic stress, in-
flammatory stress, metabolic stress, etc. and discuss the epige-
netic basis underlying the contribution of these stresses to aging
(Figure 1).

Oxidative stress

ROS, such as hydrogen peroxide (H-0O,), are primarily generated
in the mitochondria as natural by-products of cellular metabolism
but can also be induced in response to environmental factors,
such as radiation and chemicals.”® Accumulation of ROS triggers

the activation of signaling pathways, including the nuclear-factor-
erythroid-2-related factor 2 (NRF2) pathway, and the expression
of antioxidant enzymes, such as superoxide dismutases (SODs),
which aim to eliminate harmful effects of ROS. However, exces-
sive ROS production or impaired antioxidant defense can lead
to oxidative stress, causing damage to cellular macromolecules
and ultimately contributing to cellular dysfunction and aging-
related processes.’’° Interestingly, recent studies have shown
a close relationship between oxidative-stress-related aging and
its underlying epigenetic regulation.

On the one hand, epigenetic regulation is implicated in endog-
enous oxidative-stress-related aging processes due to the hy-
peractive production of intracellular ROS and the impairment of
antioxidant systems. For instance, glyceraldehyde 3-phosphate
dehydrogenase (NADPH) oxidase 4 (NOX4), one of the major
endogenous ROS-generating enzymes, displays increased
expression that is consistently coupled with excessive ROS
accumulation in various aging models of rodents and human
cells.®"* Enrichment of the active histone mark H4K16ac at
the promoter region contributes to the epigenetic activation of
the NOX4 gene and release of H,O5 in cellular aging,®* indicating
NOX4 as a potential aging biomarker and driver with possible
involvement of epigenetics. Multiple layers of epigenetic alter-
ations are also associated with dysregulation of antioxidant sys-
tems during aging. For example, dysregulation of microRNA
(miRNA) processing contributes to DNA methyltransferase 3A
(DNMT3A)-mediated hypermethylation and repressed expres-
sion of SOD2, a mitochondrial SOD, which, in turn, results in
high ROS levels and accelerates aging in human mesenchymal
stem cells (MSCs).*® Moreover, in fibroblasts from aged mice,
decreased expression of SOD3, an extracellular SOD, along
with elevated levels of ROS, coincides with changes in a variety
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of histone marks at the SOD3 promoter region, such as the
decrease in H3K9ac and the increase in H3K27me3.%° Further-
more, the antioxidant activity of NRF2, which declines with hu-
man MSC aging, can also be regulated by DNA methylation
and histone modifications.®”*® For example, deficiency of
SIRTS6, one of the seven mammalian sirtuins, results in failed de-
acetylation of H3K56 and impeded transcription of NRF2 target
genes, such as the gene encoding heme oxygenase 1
(HMOX-1), increasing ROS accumulation and accelerating hu-
man MSC aging.*® Additionally, SIRT3 and SIRT7, two other sir-
tuin members, also participate in maintaining intracellular redox
homeostasis and counteracting stem cell aging at least partially
by stabilizing the nuclear lamina and heterochromatin.*>*" Over-
all, these findings suggest that the epigenetic regulation of ROS-
generating enzymes and antioxidant factors contributes to
intrinsic oxidative stress and the aging process.

On the other hand, oxidative stress induced by exogenous
stimuli can also cause epigenetic alterations and contribute to ag-
ing and age-related diseases. Beyond directly inducing the oxida-
tion of methylated cytosines (5-methylcytosine, abbreviated as
5mC in DNA) to 5-hydroxymethylcytosine (5hmC), ROS are also
able to regulate the activity of epigenetic enzymes modifying
DNA, RNA, and histone modifications. For instance, in human neu-
roblastoma cells, H,O, treatment upregulates the expression of
amyloid precursor protein (APP) and beta-site APP cleaving
enzyme 1 (BACE1) via the induction of DNA hypomethylation
due to the repression of DNMT1 and DNMT3A. This stress
response is associated with increasing 3-amyloid (Ap) deposition,
a mechanism known to play a pivotal role in Alzheimer’s disease
(AD), an aging-related neurodegenerative disorder.*? Moreover,
alterations in DNA methylation may also be involved in ROS-
related aging regulation induced by UV, high glucose, and psycho-
social stress.**™*® Apart from DNA methylation, RNA methylation
and histone modification are also implicated in the regulation of
oxidative-stress-related aging triggered by exogenous inducers.
For example, in H,O,-treated human colon carcinoma cells, the
enhancement of RNA methyltransferases METTL3/METTL14-
mediated N®-methyladenosine (abbreviated as m°A in RNA) and
NSUN2-mediated 5-methylcytidine (abbreviated as m°C in RNA)
modifications facilitates translation of the senescence marker
p21, which exacerbates oxidative-stress-induced cellular aging.*°
Upregulation of p21 can also be triggered by the elevation of
H4K16ac due to the reduced binding of histone deacetylase 2
(HDAC?2) at its promoter region in HoO»-induced neuronal degen-
eration.” Similarly, smoking-associated ROS induction directly
triggers downregulation of HDAC2 and subsequent upregulation
of p21, contributing to cellular aging in patients with chronic
obstructive pulmonary disease, another age-related disorder.”"

Despite numerous studies suggesting that oxidative stress re-
duces longevity and promotes aging, there is countering evidence
showing beneficial roles of ROS in extending lifespan.”® For
example, in yeast, mitochondrial ROS can increase the deposition
of H3K36me3 by downregulating the expression of its demethy-
lase, resulting in Sir3p-mediated transcriptional silence of subtelo-
meric regions and longevity.>? In addition, in C. elegans, early-life
exposure to H>O, can increase stress resistance and lifespan via
the global reduction of H3K4me3.%® These findings suggest that
ROS in aging regulation is both pleiotropic and context dependent.
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Genotoxic stress

Genotoxic stress refers to any disturbance in genomic stability
caused by internal or external factors, including oxidative dam-
age, radiation, and chemical agents, as well as errors in DNA
replication, repair, and transcription. %254~ |n response to gen-
otoxic stress, signaling pathways are activated to safeguard
genomic integrity, such as the DNA damage response (DDR)
pathways, which encompass ataxia telangiectasia mutated
(ATM), ataxia telangiectasia and Rad3-related protein (ATR),
and p53, and can result in either of two outcomes: successful
DNA repair or genomic instability. Genomic instability, character-
ized by DNA damage and genetic mutations, is a critical hallmark
and major contributor to aging and age-related diseases.'®’ In
recent years, significant progress has been made toward under-
standing the regulatory mechanisms responsible for epigenetic
changes during aging within the context of genotoxic stress.

A variety of genetic disorders that show premature aging de-
fects,”®° such as Werner syndrome (WS) and Hutchinson-Gilford
progeria syndrome (HGPS), are usually identified by detecting
accumulation of DNA damage and disruption of the epigenome.
For example, accumulation of phosphorylated H2AX (YH2AX), a
surrogate marker of genotoxic stress detecting double-strand
breaks (DSBs), and increased nuclear foci of 53BP1, evidence
for the activation of DDR, are observed in cellular models of WS
and HGPS.*®*° Extensive epigenetic abnormalities at the genomic
and transcriptomic levels are also detected in these cellular aging
models at multiple levels, including lamina-chromatin interactions,
higher-ordered genomic organization covering compartments, to-
pologically associating domains (TADs) and loops, chromatin
accessibility, multiple histone modifications, as well as DNA and
RNA methylation.®®°> Beyond WS and HGPS, other progeroid
disorders caused by mutations in DNA repair genes, such as Xero-
derma pigmentosa and Cockayne syndrome, also display geno-
toxic stress-related features, including defective DNA repair and
accelerated cellular senescence.®*%* Additionally, genetic muta-
tions in epigenetic modifying enzymes, such as SIRT6, can also
lead to genomic instability, epigenetic dysregulation, and prema-
ture aging.® Finally, it is worth noting that recent research sug-
gests that even non-mutagenic DSBs can disrupt the epigenetic
landscape and contribute to accelerated aging.®®

Intracellular oxidation and replication stress are also internal
sources of genotoxic stress that are associated with epigenetic
regulation and contributing to aging-related processes. For
instance, oxidative DNA modifications induced by cellular ROS,
such as 8-ox0-7,8-dihydro-2’-deoxyguanosine (8-oxodG), which
increases during aging and age-related diseases, erodes
genomic stability but also serves as an epigenetic marker con-
nected to DNA and histone methylation remodeling and for con-
trol of downstream gene transcription.®®®” Similarly, 5hmC, an
oxidized form of 5mC, appears to be localized at DNA damage
sites and acts as a substrate for base excision repair, as well as
an epigenetic mark involved in regulating gene expression
related to neurodegenerative disorders.®®®® Replication stress
caused by disturbances in DNA polymerase progression is
another factor contributing to genomic instability and cellular ag-
ing.>*"° Additionally, epigenomic reorganization, including
changes in histone modifications and nucleosome assembly,
has been implicated in replication stress.**
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Telomere shortening is another critical aspect of aging-associ-
ated genomic instability. It is considered one of the key hallmarks
of aging, triggering DNA damage at chromosome ends and exac-
erbating the progression of aging and related diseases.'®"'~"®
Notably, progressive telomere attrition is associated with epige-
netic alterations at multiple layers such as DNA and RNA methyl-
ation and histone modifications. For instance, a positive correla-
tion has been reported between lower DNA methylation levels
and shorter telomere lengths, which may contribute to increased
genomic instability and susceptibility to diseases and aging.”*
The DNA-damage-inducible protein GADD45¢. also links DNA
methylation status to the regulation of telomere integrity in the ag-
ing-related process.”® Similarly, RNA methylation plays a signifi-
cantrole in telomere stability as well. For example, the RNA-bind-
ing protein HUR enhances telomerase activity through m®C
modification on TERC RNA, a mechanism which counters cellular
senescence.’® Moreover, METTL3-mediated RNA m®A modifica-
tion has also been implicated in maintaining telomere integrity by
stabilizing TERRA.”® In addition, a variety of histone modifica-
tions, including both repressive and active marks, regulate the
integrity of telomeric and subtelomeric regions, such as
H3K9me3, H4K20me3, and various acetylated forms of H3 and
H4.”” In addition to telomeres are various other specialized nu-
cleic acid structures that show high susceptibility to genotoxic
stresses. These include the G-quadruplex (G4),”® a non-canoni-
cal four-stranded DNA structure formed by G-rich sequences,
and the R-loop,”® a three-stranded structure containing a
DNA:RNA hybrid and a displaced single-stranded DNA. These
structures can also interact with multiple histone marks, partici-
pating in the regulation of stem cell pluripotency and differentia-
tion, as well as aging-related processes.?%

Extranuclear nucleic acid structures, including mitochondrial
DNA (mtDNA) and micronuclei (MN), can also function as geno-
toxic stress sentinels. Due to the lack of a refined DNA repair sys-
tem and proximity to the major source of ROS, mtDNA is more
prone to damage or mutation. As a result, mtDNA mutations accu-
mulate with age, leading to mitochondrial dysfunction and the
progression of aging-associated disorders, such as cancer and
age-related infertility.®>® Epigenetic regulation of mtDNA involves
inherent DNA methylation and non-coding RNA within mitochon-
dria, impacting gene expression and subsequent mitochondrial
homeostasis and aging.2>°° On the other hand, mitochondria
also indirectly influence the nuclear epigenome, including DNA
and histone methylation, through metabolic intermediates and
by-products, such as a-ketoglutarate.’"*? In addition, copy-num-
ber variation of mtDNA is also associated with aging-related epige-
netic regulation, as demonstrated by studies on human tissues
supporting a positive correlation between mtDNA copy number
and epigenetic aging.”*°* Unlike mtDNA, MN represent non-ca-
nonical structures formed from mis-segregation of chromosome
and in response to extensive DNA damage.”®°° Aberrant MN are
associated with altered histone modifications and chromatin
accessibility, suggesting a connection to abnormal transcription,
genomic instability, and potentially aging.”®°”

A variety of exogenous factors such as UV radiation, -y rays, and
genotoxic chemicals are also linked to genomic instability and epi-
genomic remodeling during aging. For instance, UV-induced DNA
damage is associated with shifts in DNA and RNA methylation pat-
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terns, which further contribute to the progression of cellular and tis-
sue aging.5>°'% Likewise, y irradiation can induce DNA damage
and accelerate skin aging through a miRNA-mediated regulatory
axis.'”" Bleomycin-induced cellular senescence also involves
accumulation of DNA damage and reorganization of the epige-
nome, characterized by KDM4-mediated demethylation of H3K9
and H3K36.'% Moreover, in exogenous oncogene-induced cellular
aging models, a possible interplay between DDR and higher-or-
dered chromatin organization has been described.'®*~'% In addi-
tion, lifestyle risk factors, such as alcohol,'® "% smoking, %"
and sleep disturbance,’'?"""° also contribute to genotoxic stress
and are associated with aging-related epigenetic variations. Taken
together, these findings provide a concise overview of endogenous
and exogenous sources of genotoxic stresses and their complex
interplay with epigenetic alterations in the regulation of aging.

Inflammatory stress

Inflammation is a vital response that maintains tissue balance,
aids immune responses, and supports tissue repair. However,
excessive inflammation (inflammatory stress) harms physiolog-
ical functions and contributes to age-related diseases.''®""®
Aging itself is associated with a chronic low-grade inflammation
state known as inflammaging, in which immune responses and
tissue regeneration are disrupted.’'®""® A deep-learning
method, based on inflammatory patterns and applied as an ag-
ing clock,'?° emphasized the critical link between inflammation
and aging. Various stimuli such as DNA damage and foreign in-
fections can induce inflammatory stress, triggering downstream
signaling pathways, such as nuclear factor-kB (NF-«B), to pro-
mote the transcription of pro-inflammatory cytokines. Specific
for aging-associated inflammation is the senescence-associ-
ated secretory phenotype (SASP), a common feature of cellular
senescence, Where secreted pro-inflammatory factors exacer-
bate inflammation to further drive development of age-related
conditions.''® Epigenetic modifications play a crucial role in
regulating gene expression during aging-related inflammation.
Understanding the intricate interplay between epigenetics and
inflammation is therefore essential for uncovering the molecular
basis of aging and identifying potential therapies.

Among multifaceted internal causes of inflammatory stress,
genomic instability represents a critical one which can uniquely
drive sterile inflammation related to aging and associates with
many aspects of epigenetics. For example, DNA damage itself
acts as an inducer of inflammation and prompts post-translational
modifications of involved modulators in DDR. Damage-suscepti-
ble R-loops or MN also contribute to aseptic inflammation and
are implicated in aging-related pathways.”® Moreover, mutations
in genes encoding epigenetic modifying enzymes (e.g.,
DNMT3A) also intersect with the regulation of chronic inflamma-
tion linked to aging.'?"'?? Remarkably, genomic-instability-
induced derepression of retrotransposable elements (REs), which
can activate the cyclic GMP-AMP synthase (cGAS)-stimulator of
interferon genes (STING) innate immunity pathway (Figure 2),
has been inextricably intertwined with aging-associated inflam-
mation.'*® For example, knockout of SIRT7 in human MSCs
results in heterochromatin loss, disrupted lamina-chromatin inter-
action, increased chromatin accessibility, and derepression of
long-interspersed element-1 (LINE1) retrotransposons. These
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The cGAS-STING pathway is induced by exogenous or endogenous DNA and then promotes the synthesis of 2'3'-cyclic GMP-AMP (cGAMP), phosphorylation of
interferon regulatory factor 3 (IRF3), and nuclear translocation of NF-«kB. This mechanism triggers activation of interferon (IFN)-I and SASP signaling, which further
contributes to aging-related inflammation. Notably, exogenous DNA comes mainly from bacterial or viral infections. In contrast, endogenous DNA is primarily
derived from genomic instability that produces damaged DNA fragments or micronuclei, cDNA of REs, such as LINE1 and ERV, and DNA leakage from damaged
mitochondrion. Abbreviations are as follows: RT, reverse transcription; cDNA, complementary DNA; RVLP, retrovirus-like particles.

cellular dysfunctions activate the cGAS-STING pathway, upregu-
lating inflammatory factors and further exacerbating stem cell ag-
ing.*! Similar observations are seen in prematurely aged human
MSCs with deficiency of the circadian regulators CLOCK and
BMAL1."*'2> Gonsistent with the findings at the cellular level,
LINE1 activation also induces inflammatory responses in SIRT6-
deficient progeroid mice, as well as in physiologically aged human
and mouse tissues.'?®'?” Additionally, endogenous retroviruses
(ERVSs), another type of RE, whose activation involves the remod-
eling of DNA methylation and histone modifications, can also stim-
ulate the cGAS-STING pathway and upregulate inflammation to
amplify aging, potentially via a paracrine mechanism.'?'?° RNA
m®A decoration is also implicated in the regulation of REs and
SASP factors.'?%"3%7132 However, direct evidence is still lacking
to address whether m®A regulates the aging-related inflammatory
responses via modulation of RE activity. Similar to REs, released
mtDNA can elicit the cGAS-STING activity as well, driving inflam-
mation, neurotoxicity, and brain aging, although it is unknown
whether the epigenome is involved.'*®

Non-coding RNA and three-dimensional (3D) genomic organi-
zation are also involved in the regulatory network of aging-
related inflammation. For example, non-coding RNAs derived
from the pericentromeric region impair the DNA-binding capac-
ity of CCCTC-binding factor (CTCF), a key player in chromatin or-
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ganization, accounting for increased chromatin accessibility and
activated transcription of SASP genes.'®* Moreover, genomic
remodeling of H3K27ac-enriched enhancers within TADs modu-
lates the expression dynamics of adjacent SASP genes in repli-
catively senescent cells.'*® Additionally, METTL3 and METTL14
facilitate the formation of promoter-enhancer loops to regulate
SASP gene expression independently of mPA."*® These findings
reflect the intricate regulation of aging-associated inflammation
from distinct epigenetic layers.

Inflammatory stress related to aging may also originate from
extrinsic stimuli, such as viral or bacterial infections, which usually
trigger acute inflammation. For instance, severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection, which has
received great attentions in recent years, has been coupled to
accumulated DNA damage, hyperactivated inflammation, and
accelerated aging in host cells."®”~"*" Multiple epigenetic regula-
tionis involved in this process. For example, the SARS-CoV-2 pro-
tein ORF8 functions as a histone H3 mimic to affect the host epi-
genome, thus widely disrupting the landscape of histone
modifications, as featured by increased H3K9me3 and
H3K27me3 and decreased H3K9ac.'** Furthermore, SARS-
CoV-2 induces widespread nuclear reorganization in host cells,
especially at the compartment scale, which potentially contributes
to the altered gene expression profile covering inflammatory



Molecular Cell

genes.'*>'%* Besides, the SARS-CoV-2 N-protein disrupts 53BP1
recruitment by competitively binding damage-induced long non-
coding RNA, leading to impaired DNA repair, which, in turn, exac-
erbates inflammation and cellular senescence.'*® To be noted,
increasing evidence support that the high susceptibility to
SARS-CoV-2 infection in the elderly and the lethal “cytokine
storm” may be related to the high expression of SARS-CoV-2 re-
ceptor genes during aging, whereas the specific epigenetic mech-
anisms remain elusive.'*®~'*® Inflammation induced by poly(I:C)
treatment or bacterial infection can promote epigenetic aging as
well.""” Additionally, psychological stress and sleep-deprivation-
induced chronic inflammation have been linked to epigenetic dys-
regulation and accelerated aging.?%'"® 141497158 However,
further research is needed to uncover the precise molecular
mechanisms involved.

Metabolic stress

Nutrition and metabolism intricately regulate a variety of biological
processes. Imbalanced nutrient and metabolic signals profoundly
impact cellular functions, accelerating aging and age-related dis-
eases.’”*'®> Nutrient affects biological functions through
signaling pathways, such as insulin/insulin-like growth factor 1
(IGF-1), mammalian target of rapamycin (mTOR), sirtuins, and
AMP-activated protein kinase (AMPK), which regulate cellular
growth, autophagy, and metabolism. Dysregulation of these path-
ways, often associated with metabolic disorders, such as obesity
and diabetes, accelerates aging.® Metabolic stress, induced by
various causes, such as excessive caloric intake, nutrient depriva-
tion, impaired nutrient sensing, and accumulation of toxic metab-
olites, leads to oxidative damage and mitochondrial dysfunction,
promoting cellular senescence and accelerated aging.'*® Epige-
netic modifications can mediate the effects of metabolic stress
on aging by altering distinct marks and influencing metabolic
gene expression. Understanding these connections will provide
novel insights into the development of strategies for maintaining
metabolic balance and promoting healthy aging.

Metabolic pathways utilize nutrients such as glucose, fatty
acids, and amino acids to generate metabolites that regulate
life activities. Disruptions in nutrient uptake and metabolism
can cause epigenetic changes, impacting gene expression pat-
terns associated with aging. For example, glucose metabolism
involves the non-oxidative pentose phosphate pathway (PPP)
and transketolase, an essential enzyme. Defects in transketolase
impair glucose metabolism, increase oxidative stress, trigger
mitochondrial dysfunction, global DNA hypermethylation,
repression of functional genes in immune cells, and potentially
contribute to immunosenescence.'®”'*® During stem cell ag-
ing-related processes, reduced glucose uptake may contribute
to decreased histone acetylation (including H4K16ac),'*® which
potentially associates with increased CDC42, a Rho family
GTPase involved in aging regulation.'®° Lipid metabolism affects
aging and longevity by interacting with DNA methylation and his-
tone modifications. As an example, the gene encoding a fatty
acid elongase known as elongation of very long chain fatty
acids-like 2 (ELOVL2), a master regulator controlling the synthe-
sis of polyunsaturated fatty acid, is hypermethylated, concomi-
tated with a downregulated expression level during biological
aging. Deficiency of ELOVL2 leads to dysregulated lipid meta-
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bolism, indicated by accumulation of short fatty acids, glucose
intolerance, insulin resistance, and premature aging in mice.'®’
Metabolic dysregulation of specific fatty acids inhibits HDAC, re-
sulting in alterations in histone acylation and crotonylation, and
subsequent gene expression dynamics.'%>'%® Besides, the epi-
transcriptomic machinery, including the RNA m°A demethylase
fat mass- and obesity-associated protein (FTO), also affects lipid
metabolism. For instance, FTO genetic variants associate with
obesity risk, whereas its deficiency reduces adipose tis-
sue."%*"%° Similarly, knockout of FTO in human MSCs causes
impaired lipid synthesis, along with accelerated senescence
phenotypes encompassing nuclear abnormalities, heterochro-
matin loss, and telomere attrition.’®® Amino acid metabolism
and its interconnections with epigenetics also play a role in aging
regulation. For example, vascular endothelial cell (VEC) aging in-
volves downregulation of intracellular serine and phosphoglyc-
erate dehydrogenase (PHGDH), a key enzyme in serine synthe-
sis. Knockdown of PHGDH decreases serine levels and
accelerates VEC aging. Mechanistically, PHGDH facilitates nu-
clear translocation of pyruvate kinase M2 (PKM2) via p300-cata-
lyzed acetylation, leading to histone H3T11 phosphorylation and
expression of aging-associated factors, such as SIRT1."®" In
addition, branched-chain amino acids modulate aging or
longevity potentially through altering the neuronal histone acety-
lome covering H3K9ac.'®%1¢°

Non-coding RNAs, an integral layer of epigenomics, are con-
nected to aging-related metabolic regulation as well. One example
is miRNA, which plays a pivotal role in regulating metabolic bal-
ance during aging and age-related disorders. miRNAs are believed
to target nutrient sensing pathways, such as insulin and mTOR
signaling, affecting glucose and lipid metabolism."”° For instance,
miR-143, downregulated during aging, promotes myogenesis as
an alternative mechanism. However, overexpression of miR-143
interferes with insulin-related regulation and disrupts liver glucose
metabolism in mouse models of obesity.'”" Another important
player is Altre, a long non-coding RNA found in regulatory T cells
that increases with aging. Altre is involved in regulating mitochon-
drial dynamics to maintain immune-metabolic homeostasis in the
liver during aging. Consequently, depletion of Altre leads to dysre-
gulated lipid metabolism, hyperactive ROS accumulation, and in-
flammatory liver microenvironment in aged mice.'”?

Other types of phytochemicals from diets or general metabolic
intermediates and by-products from host cells or gut microbes
also interplay with aging-related epigenetics (Figure 3). For
example, dihydrocaffeic acid (DHCA), present in grapes and other
plants and a microbial metabolite with antioxidant capacity, can
decrease DNMT1 expression in mice, leading to intronic DNA
hypomethylation and downregulated expression of interleukin
(IL)-8, a common SASP factor.'”® S-adenosyl-methionine (SAM),
an important metabolite involved in one-carbon metabolism, en-
hances the trimethylation of H3K36 and production of IL-18,
another well-known SASP factor, thus contributing to aging-
related defects.'”*'”® NAD™, a cofactor of sirtuins, links epigenetic
regulation to aging-related gene expression dynamics such that
declining NAD™ levels during aging are associated with alterations
in histone acetylation patterns.'”® For instance, reduced NAD*
levels concomitant with impaired SIRT2 activity contribute to
aging-induced demyelination through failed inhibition of H3K18
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Figure 3. The interplay between metabolism and epigenetics

Mitochondria provide essential metabolic intermediates or by-products implicated in aging regulation, for example, acetyl-CoA, NAD*, a-ketoglutarate, and
SAM, which function as cofactors to remodel epigenetic marks, such as histone acetylation and methylation, and DNA methylation.

Abbreviations are as follows: HATSs, histone acetyltransferases; HDACs, histone deacetylases; HMTs, histone methyltransferases; HDMs, histone demethylases;
DNMTs, DNA methyltransferases; TETs, ten-eleven translocation DNA demethylases.

acetylation and ID4 transcription.'”” Moreover, decreased SIRT2
activity also disrupts deacetylation but facilitates phosphorylation
of p66°"°, a mitochondrial adaptor protein, resulting in aberrant
mitochondrial ROS and exacerbated vascular aging.'”® Likewise,
acetyl-coenzyme A (CoA), a metabolite that can be derivedfrom
glucose, fatty acids, and amino acids, also participates in aging
regulation by remodeling histone acetylation. For example, the
acetyl-CoA synthetase Acs2 in yeast, or its human ortholog
ACSS2, can promote H4K16ac enrichment at the subtelomeric re-
gion, compromising telomere silencing and accelerating aging.'”®
Similarly, reduced acetyl-CoA production sensed by the nucleo-
some remodeling and deacetylase (NURD) complex leads to
decreased histone acetylation and chromatin remodeling, which
furthers aging progression.'®° Besides, as mentioned earlier, a-ke-
toglutarate, an intermediate of the tricarboxylic acid (TCA) cycle,
acts as a cofactor for both DNA and histone demethylases, exert-
ing extensive effects on gene regulation in aging-related epige-
netic modulation.”'°? Taken together, these findings reveal acom-
plex interplay between multi-dimensional epigenetic regulation,
nutrient sensing, and metabolic pathways in aging-related pro-
cesses.

Other types of stresses

Beyond oxidation, inflammation, genotoxicity, and metabolic
imbalance, other types of stresses such as proteostatic stress
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and thermal stress play significant roles in the aging process
(Figure 1). Proteostatic stress, a disruption of the protein quality
control system leading to accumulation of toxic proteins and
cellular dysfunction, comprises abnormal protein synthesis
and degradation or the accumulation of misfolded or damaged
proteins within cells. It can be induced by oxidative damage,
endoplasmic reticulum (ER) stress, and heat shock, and in-
volves signaling pathways associated with unfolded protein
response (UPR) and autophagy. Thermal stress, on the other
hand, occurs when cells or organisms experience temperature
conditions outside their optimal range. Extremely high or low
temperatures can provoke heat or cold shock response and
even disrupt the thermoregulation system, which further exac-
erbate oxidative stress, protein misfolding, and cellular dam-
age. Both proteostatic stress and thermal stress play important
roles in regulating aging, and investigating such roles stand to
offer additional insights into underlying mechanisms, including
the interactive role of epigenetics.

Proteostatic stress

Loss of proteostasis is regarded as a hallmark and driver of aging
and age-related diseases.'*'®""® Throughout the entire cycle of
protein synthesis, folding, and degradation, epigenetic modifica-
tions play important regulatory roles. During protein synthesis,
disruption of ribosome-associated quality control compromises
translation, resulting in proteostasis collapse and age-dependent
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interventions

Figure 4. Aging interventions related to stress relief and epigenomic
stabilization

A diverse range of interventions, including active health approaches, small
molecule-based strategies, gene therapy, cell transplantation, heterochronic
parabiosis, reprogramming, fecal microbiota transplantation, immunotherapy,
etc., are explored to alleviate harmful stresses and rejuvenate the aging epi-
genome. These intervention strategies demonstrate varying degrees of
effectiveness in attenuating aging and age-related degenerations across
cellular, tissue, or organismal levels.

protein aggregation.'®® Ribosomal mutations causing translation
errors drive premature aging in mice, reflected as shortened life-
span along with weight loss, ROS accumulation, telomere attrition,
and accelerated epigenetic aging.'®* RNA epigenetics and post-
translational modifications are also involved in the regulation of
aging-related proteostasis. As mentioned earlier, m°A and m°C
modifications coordinately regulate the translation efficiency of
p21, impacting cellular aging.” tRNA m’G methylation and
mRNA ac4C modification are also implicated in translational ho-
meostasis regulation, '®>® potentially influencing the aging pro-
cess. Moreover, decreased H3K27me3 is associated with downre-
gulation of the eukaryotic translation initiation factor 4A2 (elF4A2),
which acts as both a translation activator and a repressor.'®’
METTL13-catalyzed dimethylation at lysine 55 enhances the
intrinsic GTPase activity of eukaryotic translation elongation factor
1A (eEF1A), another critical player in protein synthesis, leading to
increased translational output.'®® These observations point to a di-
versity of epigenetic regulation in protein translation potentially
associated with aging progression.

Misfolding and abnormal aggregation of proteins are con-
nected to epigenetic regulation in aging-related processes. For
example, misfolding and aggregation of the AB peptide, which
is linked with the onset and progression of AD, can be exacer-
bated by genome-wide increase in H3K27ac and H3K9ac
levels.'®® Furthermore, aberrant accumulation of the microtu-
bule-binding protein tau causes neurotoxic effects that promote
neurodegeneration, wherein phosphorylation and ubiquitination

¢ CellP’ress

modifications play an important role.'°°~'° Aging-interfered pro-
tein degradation likewise involves epigenetic dysregulation. For
example, global loss of ubiquitination in C. elegans during aging
led to dysregulated proteasomal degradation and a shortened
lifespan.'®® Additionally, aging-induced accumulation of apoli-
poprotein E (APOE) facilitated degradation of the nuclear lamina
and heterochromatin-associated proteins via the autophagy-
lysosomal pathway.'®* This process is accompanied by hetero-
chromatin loss, dissociation of lamina-chromatin interaction,
gain of chromatin accessibility, and reactivation of repetitive el-
ements. Taken together, these findings highlight the involvement
of epigenetics in aging-related loss of proteostasis and provide
valuable insights into aging mechanisms.

Thermal stress

Increasing evidence suggest a complex interaction between aging
and thermoregulation. For instance, rodents and humans experi-
ence age-related declines in body temperature, indicating
reduced heat tolerance and abnormal thermoregulatory re-
sponses.'®>'%® Conversely, impaired thermoregulation due to
age or extreme environmental exposure can exacerbate molecular
and cellular damage, accelerating aging and aging-related disor-
ders.'®"""%° As an example, rodents exposed to hot ambient tem-
peratures acquired elevated body temperature, decreased meta-
bolic rate, and shortened lifespan.”® In contrast, moderate cold
exposure improves proteostasis and prolongs the lifespan of
C. elegans.”®' Recent studies reveal how such epigenetic mecha-
nisms regulate thermal stress-related aging. For example, aging-
induced downregulation of SIRT1 is responsible for the weakened
DNA-binding capacity of the heat shock factor (HSF)-1, potentially
due to failed deacetylation and contributing to the impaired heat
tolerance.'9?9272%% |nterestingly, however, mild heat exposure
can also promote longevity via remodeling DNA and histone mod-
ifications. For instance, heat stress in worms induces heritable
longevity, which is mediated by DNA methyltransferase DAMT-
1-catalyzed N®-methyladenosine (abbreviated as 6mA in DNA)
modification and histone methyltransferase SET-25 and SET-32-
catalyzed H3K9me3 deposition. Meanwhile, transcription factors
like the abnormal dauer formation protein (DAF)-16/forkhead box
protein O (FOXO), HSF-1, and the nuclear receptor DAF-12/
farnesoid X receptor (FXR) are also required for the transgenera-
tional inheritance of heat stress-induced longevity.”® Likewise,
early-life exposure to moderate heat stressin C. elegans promotes
longevity and long-lasting stress resistance but through establish-
ing an epigenetic memory mediated by histone acetyltransferase
CREB-binding protein (CBP)-1 and the chromatin remodeling
complex switch/sucrose nonfermentable (SWI/SNF).?°° These
findings demonstrate the critical role of epigenetics in heat-
stress-related aging regulation and provide potential targets to
enhance stress resistance and outfight aging.

AGING INTERVENTIONS FOR STRESS ALLEVIATION
AND EPIGENETIC REJUVENATION

On the basis of mechanisms underlying the interconnection be-
tween stress and aging, various intervention strategies have
been proposed to combat aging and age-related disorders.
These include adopting a healthy lifestyle and therapeutic treat-
ments, including small molecules, gene therapies, and cell
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transplantation. Additionally, promising interventions for slowing
down aging also include heterochronic parabiosis, reprogram-
ming, gut microbial transfer, and immunotherapy. This section
will briefly discuss representative aging interventions and their
associated stress alleviation and epigenetic regulation (Figure 4).

Active-health-based interventions

Achieving active health involves maintaining a state of well-being
through regular physical activity and adopting a healthy lifestyle
that encompasses various factors such as diet, exercise, sleep,
mood, and environment. Calorie restriction (CR) is an effective
approach for combating aging by reducing calorie intake without
sacrificing essential nutrients. It has shown wide-ranging effects
on extending health span or lifespan through the improvement of
stress resistance in a species-conserved manner from yeast to
human,?°’~2'% with the involvement of epigenetic mechanisms,
including DNA methylation shifting and histone modification re-
modeling.”''~?"® In addition to CR, other dietary control strate-
gies, such as amino acid or protein restriction and intermittent
or periodic fasting, also present beneficial influences on energy
metabolism, health span, and longevity, mostly in animal
models.?®” Exercise, similar to CR, triggers geroprotective ef-
fects and mitigates age-related hazards at least partially by alle-
viating inflammatory and metabolic stresses.?'*?'® Epigenetic
regulation, possibly through alterations in DNA methylation and
histone modifications, plays an important role in the geroprotec-
tive effects of exercise. For example, late-life exercise mitigated
DNA-methylation-indicated epigenetic aging in skeletal muscle
in mice.”'® Exercise also influences H3K9 methylation profiles
in the rat hippocampus with an age-dependent manner.”'” Addi-
tionally, emotional stability, regular sleep patterns, and effective
smoking cessation also present beneficial results to decelerate
epigenetic aging in humans.?'¢-2%

Small-molecule-based interventions

Extensive efforts have been dedicated toward development of
small-molecule-based aging interventions that can be broadly
categorized into two classes. The first class, geroprotective or
rejuvenating compounds, enhances metabolic homeostasis, bol-
sters antioxidant capacity, reduces inflammatory stress, and pro-
motes (epi)genomic stability. For example, metformin, an anti-dia-
betic drug widely applied to promote longevity and healthspan in
model organisms,”?**?* has been approved in a clinical trial
named Targeting Aging with Metformin (TAME) for its potential ag-
ing-targeting effects.??> Metformin exhibits the ability to reverse a
range of aging hallmarks in multiple cellular and animal models,
leading to improved nutrient signaling, enhanced intercellular
communications, ameliorated proteostasis, attenuated genomic
instability, and remodeled epigenetic landscape with increased
DNA methylation and H3K27me3 deposition.?*> Resveratrol, an
activator of SIRT1, retards aging-related deterioration in mice
and prolongs health span or lifespan with metabolic benefits
mimicking dietary restriction,??°2*® potentially by affecting DNA
methylation and histone acetylation.??>**° NAD", as mentioned
earlier, can regulate the activity of sirtuins as well and participate
in aging regulation potentially via histone deacetylation. Supple-
mentation with its precursors, such as nicotinamide riboside
(NR) and nicotinamide mononucleotide (NMN), effectively pre-
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vented the decline of NAD* and triggered geroprotective effects
at least in rodents.?**?%! Vitamin C, also known as ascorbic
acid, has a geroprotective role in prematurely senescent stem
cells via restoration of heterochromatin and nuclear lamina.?*
Nucleoside reverse transcriptase inhibitors, such as lamivudine
(8TC) and abacavir, alleviate aging-related inflammation via inhibi-
tion of LINE1 and ERV."?*"?9 Additionally, other small molecules,
such as rapamycin,>*® aspirin,?** uridine,?*® taurine,>*° quer-
cetin,>®” chloroquine,”*® gallic acid,?*° lycorine hydrochloride,?*°
oltipraz,”*" etc., have also demonstrated rejuvenating effects.

The second class, known as senolytics, involves agents
capable of targeting elimination of senescent cells by inducing
apoptosis.”*? For instance, the pan-tyrosine kinase inhibitor
dasatinib and the flavonoid quercetin were the first senolytic
agents identified to induce apoptosis of senescent cells and
alleviate age-related impairments in various tissues,?**2%°
which may be associated with changes in DNA and histone
methylation profiles.?*®?*” QOther senolytics, including BCL-2
inhibitors, such as Navitoclax (ABT-263), ABT-737, A1331852,
and A1155463,7**72°? heat shock protein 90 (HSP90) inhibi-
tors,?*® cardiac glycosides,”®* and FOXO4 peptide,”®® also
function by inducing senescent cell apoptosis to ameliorate tis-
sue damage, yet their association with epigenetic regulation re-
mains largely unknown.

Gene-therapy-based interventions

Gene therapy interventions hold promise in counteracting hu-
man stem cell aging and age-related degenerations. For
instance, rejuvenating factors, such as DGCR8, CLOCK,
CBX4, and SOX5, counteract human stem cell aging by stabiliz-
ing heterochromatin and, when delivered via lentiviral injection,
have been reported to promote cartilage regeneration and atten-
uate osteoarthritis in mice.'?*?°¢725¢ Similarly, administration of
lentiviral vectors encoding YAP or FOXD1 also alleviate mouse
osteoarthritis.?*® Overexpression of SIRT2 is capable of allevi-
ating cardiac aging in mice.?® In addition, adeno-associated vi-
rus (AAV)-mediated delivery of vascular endothelial growth fac-
tor (VEGF) triggers amelioration of aging-associated
pathologies, such as osteoporosis and inflammaging, rejuvena-
tion of metabolism, and extension of lifespan in mice.”®’
Conversely, genetic inhibition of aging acceleration factors,
such as ERV and KAT7, also result in beneficial effects on allevi-
ating human stem cell aging and extends mouse health span or
lifespan. For example, lentiviral CRISPR-mediated inhibition of
ERV rejuvenated senescent human stem cells and induced
structural and functional improvements in the joints of aged
mice.'?® Similarly, inactivation of KAT7, a histone acetyltransfer-
ase, attenuated human stem cell aging by decreasing H3K14ac
deposition and p15 expression and extended lifespan in both
physiologically and prematurely aged mice.?®> In addition,
knockout of APOE stabilized the nuclear lamina and heterochro-
matin, alleviating stem cell aging and presenting a potential
target for novel gene therapies.'®* Furthermore, targeting pro-
gerin transcripts with antisense technology increased the life-
span of progeroid mice, highlighting another avenue for potential
development of genetic therapeutic strategies.’®® However,
most of these genetic intervention approaches have not yet
been tested in clinical trials.
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Interestingly, learning from long-lived animals also holds great
promise for developing new genetic intervention strategies to
combat aging. The naked mole-rat (NMR), for example, is known
for its outstanding resistance to aging-related diseases,
including cancer and exceptional longevity.?**2%¢ This may be
attributed to its stable genome and epigenome because NMR
cells are characterized by the unusual stabilization of p53 pro-
tein, high deposition of H3K27 methylation, and low deposition
of H3K27 acetylation, alongside a more closed chromatin state
at the promoter region.?°°°® Most recently, a study reported
a mouse model overexpressing NMR hyaluronic acid synthase
2, which showed a higher level of hyaluronan. More intriguingly,
these genetically modified mice displayed resistance to inflam-
mation, oxidative stress, and cancer, as well as an extended
health span and lifespan.?®® These findings suggest that the
NMR longevity mechanism can be extended to other species,
paving a potential way for gene-based strategies against ag-
ing-related disorders in humans.

Cell-transplantation-based interventions

Cell transplantation-based strategies have been developed in
both laboratory and clinical studies to combat aging and age-
related disorders. For example, transplantation of glial progenitor
cells into aged mice achieves long-term integration as well as
improved neurological function.?’® Moreover, administration of
stem cells or vascular cells, expressing genetically enhanced
NRF2 or FOXOB, conferred resistance to both aging and tumori-
genesis and successfully promoted vascular or cardiac regenera-
tion in mice.>”?""2"® In general, MSCs represent a powerful
source for cell transplantation approaches and have been applied
in clinical studies toward antagonizing age-related disorders.?”*
For instance, transfusion of human umbilical cord-derived MSCs
in patients with liver cirrhosis yielded safe and effective improve-
ments in liver function.?”> Furthermore, the therapeutic safety
and efficacy of MSCs in treatment of osteoarthritis lend clinical
validation toward broad applicability of stem cell transplantation
strategies in mitigating aging-related disorders.?’® Interestingly,
stem cell-derived extracellular vesicles also show rejuvenation ef-
fects both in vitro and in vivo. For instance, exosomes derived
from antler stem cells alleviate human MSC aging and mouse
osteoarthritis.””” Similarly, extracellular vesicles from umbilical-
cord-derived MSCs also rejuvenate senescent MSCs and miti-
gate bone and kidney degeneration in aged mice.”’® In addition,
MSC-derived extracellular vesicles have also been reported to
reverse epigenetic aging and improve health span in mice, poten-
tially mediated through miRNA-dependent regulation.?”®*%°

Other intervention strategies

Many other geroprotective strategies, including heterochronic
parabiosis, reprogramming, fecal microbiota transplantation,
and immunotherapy, offer promising effects on combating ag-
ing-related conditions (Figure 4). Heterochronic parabiosis,
where young and aged mice are surgically joined together to
share a common circulatory system, rejuvenates tissue and or-
gan functions in the aged organism through exposure to factors
present in young blood.?® 2% Such rejuvenation may be
achieved in part by DNA methylation remodeling.”®® Reprogram-
ming refers to a rejuvenation strategy via the global remodeling
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to revert somatic cells to a pluripotent state by overexpression
of Yamanaka transcription factors (OCT4, SOX2, KLF4, and
MYC, also known as OSKM) or induction with chemicals.?®5-2%°
This approach restores a youthful epigenetic status via resetting
H3K9me3, H4K20me3, and DNA methylation levels.?6:290-292
Another promising strategy for restoring healthy aging is fecal
microbiota transplantation, which can reshape the host gut mi-
crobiota and alleviate aging in multiple tissues.?“>2 In this pro-
cess, microbiota-derived metabolites may act as epigenetic
players to remodel the host’s DNA and histone modifica-
tions.?%¢°" Additionally, and similar to senolytics, aging-delay-
ing immunotherapies aim to eliminate senescent cells by stimu-
lating the organism’s immune system rather than inducing
apoptosis. In principle, by identifying antigens specifically en-
riched in senescent cells (also known as seno-antigens), such
as the glycoprotein nonmetastatic melanoma protein B
(GPNMB) and urokinase-type plasminogen activator receptor
(UPAR), vaccines or chimeric antigen receptor (CAR) T cells
recognizing these seno-antigens achieve targeted removal of
senescent cells, ultimately enabling the treatment of aging-
related disorders, such as atherosclerosis, liver fibrosis and can-
cers, as well as the extension of health span or lifespan in
mice.?°®?°° However, the possible epigenetic involvement in
these immunotherapy-based interventions remains unexplored.

CONCLUSION AND PERSPECTIVES

In conclusion, we here provide an extensive exploration of cur-
rent advances in understanding the intricate relationship be-
tween stress, aging, and the involved epigenetics. We discuss
a wide range of epigenetic modifications at different layers and
the various, although not all, stresses associated with aging. Of
note, these stresses are interdependent and have crosstalk
with each other to form a complex network of aging mecha-
nisms. Furthermore, we also review intervention strategies
aimed at mitigating aging by alleviating stress and stabilizing
epigenetic processes. These strategies hold great promise for
guiding the development of innovative therapeutic approaches
to combat age-related disorders.

However, it is imperative to acknowledge that most of the cur-
rent evidence on the relationship between epigenetic inheritance
and stress-related aging provides correlation, not causation, high-
lighting the need for deeper mechanistic insights to develop safe
and effective aging interventions. On the other hand, although
some aging interventions have progressed to clinical trials,
many more remain at the laboratory stage, reflecting a significant
gap between basic research and practical application.'? Howev-
er, findings from model organisms and cellular models may not
directly apply to humans in clinical settings, necessitating species,
tissue, and cell-type-specific investigations and cautious interpre-
tation of results. Fortunately, such validation approaches become
increasingly feasible due to advancements in high-resolution,
spatial, single-cell and multi-omics sequencing technologies,**
which will help deepen our understanding of the systemic, hetero-
geneous, and programmed nature of aging, especially from the
perspective of stress and epigenetic interactions. Besides, to
avoid disparities that may emerge in different research models
and settings, establishing uniform standards or guidelines for
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model design, mechanism validation, and evaluation approaches
of intervention effectiveness and safety would be advantageous.
Specifically, for example, preclinical investigations using large an-
imal models, particularly non-human primates,**'**° can prove
valuable in validating molecular targets and assessing the safety
and efficacy of aging interventions, facilitating their translation to
clinical trials. Moreover, the identification and utilization of
increasingly sensitive and specific aging biomarkers will be instru-
mental in precisely evaluating the detrimental effects of stresses
and the efficacy of interventions.**>**® As an example, large-scale
studies involving robust cohorts might be of great significance.**
Additionally, the development of user-friendly and efficient tech-
nical equipment, such as artificial-intelligence-assisted wearable
devices, holds significant promise for advancing data collection
and analysis in this field.*°® These technological advancements
may also facilitate real-time monitoring of molecular changes,
enabling timely interventions and personalized treatment ap-
proaches. Taken together, continued research that focuses on
addressing the existing limitations and challenges in this field
carries immense potential for enhancing our understanding of
the epigenetic crosstalk between stress and aging. Combined,
such efforts will drive the development of novel intervention stra-
tegies for effective clinical translation, ultimately leading to the
successful mitigation of age-associated diseases.
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