

Review

Stress, epigenetics, and aging: Unraveling the intricate crosstalk

Zeming Wu, 1,2,3 Jing Qu, 2,3,4,5,* Weiqi Zhang, 2,4,6,7,8,* and Guang-Hui Liu1,2,3,4,9,10,*

SUMMARY

Aging, as a complex process involving multiple cellular and molecular pathways, is known to be exacerbated by various stresses. Because responses to these stresses, such as oxidative stress and genotoxic stress, are known to interplay with the epigenome and thereby contribute to the development of age-related diseases, investigations into how such epigenetic mechanisms alter gene expression and maintenance of cellular homeostasis is an active research area. In this review, we highlight recent studies investigating the intricate relationship between stress and aging, including its underlying epigenetic basis; describe different types of stresses that originate from both internal and external stimuli; and discuss potential interventions aimed at alleviating stress and restoring epigenetic patterns to combat aging or age-related diseases. Additionally, we address the challenges currently limiting advancement in this burgeoning field.

INTRODUCTION

Aging involves a gradual decline in physiological functions over years, and in humans, decades, increasing susceptibility to various chronic diseases. 1-4 Accumulating evidence suggests that aging is highly variable between individuals and can be induced by intrinsic and extrinsic stimuli through a combination of genetic and environmental factors.^{5,6} Such stimuli, including oxidants, radiation, heat shock, chronic stress, and more, are well-known contributors to aging and related diseases⁷⁻⁹ and known to activate intracellular stress responses, leading to cell biological changes and physiological adaptations. Because the cumulative impacts of excessive or persistent stresses exacerbate cellular damage, resulting in DNA damage and inflammation, such cascading intrinsic stimuli progressively accelerates cellular senescence and the consequent aging process, thereby heightening vulnerability to age-related disorders. Consequently, deciphering underlying causal effects and intricate regulatory mechanisms governing stress-accelerated aging becomes imperative in informing the formulation of innovative prognostications and interventions to alleviate aging and chronic diseases. 10-14

Epigenetics refers to heritable changes in gene expression that occur without altering the DNA sequence. 15-17 Epigenetic modifications, such as DNA or RNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs, are critical regulators of gene expression and play an essential role in the aging process. 10,12,13 Epigenetic changes can be influenced by stress and, in turn, affect the stress response, highlighting the importance of studying the interplay between epigenetics, stress, and aging. Seminal studies have provided valuable insights into the epigenetic mechanisms linking stress with aging through the induction of changes in gene expression and cellular function. 18-22 Nevertheless, an in-depth and comprehensive understanding of recent advances in this area is lacking.

In this review, we will summarize the current advancements in our knowledge of how various stresses trigger aging and agerelated disorders via epigenetic mechanisms. We will discuss the interlinked impacts of different types of stresses, considering both intrinsic and extrinsic stimuli, on aging and related diseases. Furthermore, we will delve into how epigenetic regulation at multiple layers is involved in stress stimulation and responses. Additionally, we will review potential interventions aimed at alleviating aging and age-related diseases by reducing stress and restoring epigenetic homeostasis. Lastly, we will address the challenges in studying the epigenetic interplay between stress and aging and translating the aging interventions into clinical

¹State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China

²Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China

³Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China

⁴University of Chinese Academy of Sciences, Beijing 100049, China

⁵State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China ⁶China National Center for Bioinformation, Beijing 100101, China

⁷CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China

⁸The Fifth People's Hospital of Chongging, Chongging 400062, China

⁹Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China

¹⁰ Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China

^{*}Correspondence: qujing@ioz.ac.cn (J.Q.), zhangwq@big.ac.cn (W.Z.), ghliu@ioz.ac.cn (G.-H.L.) https://doi.org/10.1016/j.molcel.2023.10.006

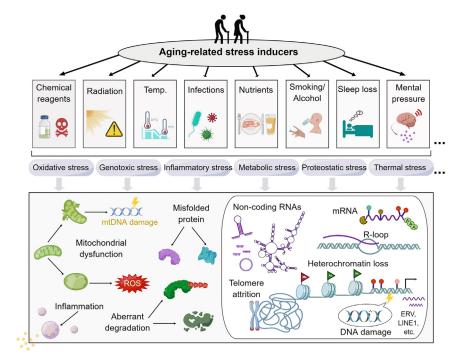


Figure 1. An overview of the interplay between aging-related stresses and epigenetic changes

Aging-related stressors, such as chemical reagents, radiation, abnormal temperatures (Temp.), infections, imbalanced nutrients, unhealthy habits (e.g., smoking and alcohol consumption), sleep deprivation, mental pressure, and spontaneous intracellular dysregulation, significantly impact aging progression and contribute to the development of age-related diseases. They act as inducers of oxidative stress, genotoxic stress, inflammatory stress, metabolic stress, proteostatic stress, and thermal stress, which have crosstalk with each other. Such crosstalk may lead to diverse cellular damages, including DNA damage, genetic mutation, telomere shortening, aberrant transcription, protein aggregation, mitochondrial dysfunction, and inflammation. These intracellular dysregulations can further stimulate cascading responses involving specific epigenetic changes. Such changes are occurring at distinct layers, which encompass higher-ordered genomic architecture, chromatin accessibility, histone modifications, DNA methylation, RNA modifications, and non-coding RNA expression.

applications. Although this review cannot cover all forms and manifestations of stresses associated with aging, we here focus on typical representatives, including oxidative stress, genotoxic stress, inflammatory stress, and metabolic stress.

DIFFERENT TYPES OF STRESSES RELATED TO AGING AND THE UNDERLYING EPIGENETIC REGULATION

Aging-related stresses induced by a range of internal and external stimuli can shape aging by triggering accumulation of cellular damages, ultimately contributing to age-related diseases.^{8,9,23–25} Internal stimuli are predominantly produced by the cell itself, such as cellular-metabolism-derived reactive oxygen species (ROS), the deposition of which can contribute to cellular aging. Conversely, external stimuli, such as chemical reagents, radioactivity, ultraviolet (UV) irradiation, extreme temperatures, infections, etc., can elicit intrinsic stressors, which synergistically exacerbate the aging process. Stresses originating from both intrinsic and extrinsic sources are broadly associated with epigenetic alterations, encompassing dynamics in DNA and RNA methylations, histone modifications, and non-coding RNA expression. In this section, we will introduce aging-associated stresses induced by distinct stimuli, including oxidative stress, genotoxic stress, inflammatory stress, metabolic stress, etc. and discuss the epigenetic basis underlying the contribution of these stresses to aging (Figure 1).

Oxidative stress

ROS, such as hydrogen peroxide (H₂O₂), are primarily generated in the mitochondria as natural by-products of cellular metabolism but can also be induced in response to environmental factors, such as radiation and chemicals.²⁶ Accumulation of ROS triggers the activation of signaling pathways, including the nuclear-factorerythroid-2-related factor 2 (NRF2) pathway, and the expression of antioxidant enzymes, such as superoxide dismutases (SODs), which aim to eliminate harmful effects of ROS. However, excessive ROS production or impaired antioxidant defense can lead to oxidative stress, causing damage to cellular macromolecules and ultimately contributing to cellular dysfunction and agingrelated processes.²⁷⁻³⁰ Interestingly, recent studies have shown a close relationship between oxidative-stress-related aging and its underlying epigenetic regulation.

On the one hand, epigenetic regulation is implicated in endogenous oxidative-stress-related aging processes due to the hyperactive production of intracellular ROS and the impairment of antioxidant systems. For instance, glyceraldehyde 3-phosphate dehydrogenase (NADPH) oxidase 4 (NOX4), one of the major endogenous ROS-generating enzymes, displays increased expression that is consistently coupled with excessive ROS accumulation in various aging models of rodents and human cells.31-33 Enrichment of the active histone mark H4K16ac at the promoter region contributes to the epigenetic activation of the NOX4 gene and release of H₂O₂ in cellular aging,³⁴ indicating NOX4 as a potential aging biomarker and driver with possible involvement of epigenetics. Multiple layers of epigenetic alterations are also associated with dysregulation of antioxidant systems during aging. For example, dysregulation of microRNA (miRNA) processing contributes to DNA methyltransferase 3A (DNMT3A)-mediated hypermethylation and repressed expression of SOD2, a mitochondrial SOD, which, in turn, results in high ROS levels and accelerates aging in human mesenchymal stem cells (MSCs).³⁵ Moreover, in fibroblasts from aged mice, decreased expression of SOD3, an extracellular SOD, along with elevated levels of ROS, coincides with changes in a variety

of histone marks at the SOD3 promoter region, such as the decrease in H3K9ac and the increase in H3K27me3.36 Furthermore, the antioxidant activity of NRF2, which declines with human MSC aging, can also be regulated by DNA methylation and histone modifications.^{37,38} For example, deficiency of SIRT6, one of the seven mammalian sirtuins, results in failed deacetylation of H3K56 and impeded transcription of NRF2 target genes, such as the gene encoding heme oxygenase 1 (HMOX-1), increasing ROS accumulation and accelerating human MSC aging.³⁹ Additionally, SIRT3 and SIRT7, two other sirtuin members, also participate in maintaining intracellular redox homeostasis and counteracting stem cell aging at least partially by stabilizing the nuclear lamina and heterochromatin. 40,41 Overall, these findings suggest that the epigenetic regulation of ROSgenerating enzymes and antioxidant factors contributes to intrinsic oxidative stress and the aging process.

On the other hand, oxidative stress induced by exogenous stimuli can also cause epigenetic alterations and contribute to aging and age-related diseases. Beyond directly inducing the oxidation of methylated cytosines (5-methylcytosine, abbreviated as 5mC in DNA) to 5-hydroxymethylcytosine (5hmC), ROS are also able to regulate the activity of epigenetic enzymes modifying DNA, RNA, and histone modifications. For instance, in human neuroblastoma cells, H₂O₂ treatment upregulates the expression of amyloid precursor protein (APP) and beta-site APP cleaving enzyme 1 (BACE1) via the induction of DNA hypomethylation due to the repression of DNMT1 and DNMT3A. This stress response is associated with increasing β -amyloid (A β) deposition, a mechanism known to play a pivotal role in Alzheimer's disease (AD), an aging-related neurodegenerative disorder. 42 Moreover, alterations in DNA methylation may also be involved in ROSrelated aging regulation induced by UV, high glucose, and psychosocial stress. 43-48 Apart from DNA methylation, RNA methylation and histone modification are also implicated in the regulation of oxidative-stress-related aging triggered by exogenous inducers. For example, in H₂O₂-treated human colon carcinoma cells, the enhancement of RNA methyltransferases METTL3/METTL14mediated N⁶-methyladenosine (abbreviated as m⁶A in RNA) and NSUN2-mediated 5-methylcytidine (abbreviated as m⁵C in RNA) modifications facilitates translation of the senescence marker p21, which exacerbates oxidative-stress-induced cellular aging. 49 Upregulation of p21 can also be triggered by the elevation of H4K16ac due to the reduced binding of histone deacetylase 2 (HDAC2) at its promoter region in H₂O₂-induced neuronal degeneration.⁵⁰ Similarly, smoking-associated ROS induction directly triggers downregulation of HDAC2 and subsequent upregulation of p21, contributing to cellular aging in patients with chronic obstructive pulmonary disease, another age-related disorder.⁵¹

Despite numerous studies suggesting that oxidative stress reduces longevity and promotes aging, there is countering evidence showing beneficial roles of ROS in extending lifespan.²⁶ For example, in yeast, mitochondrial ROS can increase the deposition of H3K36me3 by downregulating the expression of its demethylase, resulting in Sir3p-mediated transcriptional silence of subtelomeric regions and longevity.⁵² In addition, in *C. elegans*, early-life exposure to H₂O₂ can increase stress resistance and lifespan via the global reduction of H3K4me3.53 These findings suggest that ROS in aging regulation is both pleiotropic and context dependent.

Genotoxic stress

Genotoxic stress refers to any disturbance in genomic stability caused by internal or external factors, including oxidative damage, radiation, and chemical agents, as well as errors in DNA replication, repair, and transcription. 9,28,54-56 In response to genotoxic stress, signaling pathways are activated to safeguard genomic integrity, such as the DNA damage response (DDR) pathways, which encompass ataxia telangiectasia mutated (ATM), ataxia telangiectasia and Rad3-related protein (ATR), and p53, and can result in either of two outcomes: successful DNA repair or genomic instability. Genomic instability, characterized by DNA damage and genetic mutations, is a critical hallmark and major contributor to aging and age-related diseases. 10,57 In recent years, significant progress has been made toward understanding the regulatory mechanisms responsible for epigenetic changes during aging within the context of genotoxic stress.

A variety of genetic disorders that show premature aging defects, 9,55 such as Werner syndrome (WS) and Hutchinson-Gilford progeria syndrome (HGPS), are usually identified by detecting accumulation of DNA damage and disruption of the epigenome. For example, accumulation of phosphorylated H2AX (γH2AX), a surrogate marker of genotoxic stress detecting double-strand breaks (DSBs), and increased nuclear foci of 53BP1, evidence for the activation of DDR, are observed in cellular models of WS and HGPS. 58,59 Extensive epigenetic abnormalities at the genomic and transcriptomic levels are also detected in these cellular aging models at multiple levels, including lamina-chromatin interactions, higher-ordered genomic organization covering compartments, topologically associating domains (TADs) and loops, chromatin accessibility, multiple histone modifications, as well as DNA and RNA methylation. 60-62 Beyond WS and HGPS, other progeroid disorders caused by mutations in DNA repair genes, such as Xeroderma pigmentosa and Cockayne syndrome, also display genotoxic stress-related features, including defective DNA repair and accelerated cellular senescence. 63,64 Additionally, genetic mutations in epigenetic modifying enzymes, such as SIRT6, can also lead to genomic instability, epigenetic dysregulation, and premature aging.⁵⁶ Finally, it is worth noting that recent research suggests that even non-mutagenic DSBs can disrupt the epigenetic landscape and contribute to accelerated aging.

Intracellular oxidation and replication stress are also internal sources of genotoxic stress that are associated with epigenetic regulation and contributing to aging-related processes. For instance, oxidative DNA modifications induced by cellular ROS, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which increases during aging and age-related diseases, erodes genomic stability but also serves as an epigenetic marker connected to DNA and histone methylation remodeling and for control of downstream gene transcription. 66,67 Similarly, 5hmC, an oxidized form of 5mC, appears to be localized at DNA damage sites and acts as a substrate for base excision repair, as well as an epigenetic mark involved in regulating gene expression related to neurodegenerative disorders. 68,69 Replication stress caused by disturbances in DNA polymerase progression is another factor contributing to genomic instability and cellular aging. 54,70 Additionally, epigenomic reorganization, including changes in histone modifications and nucleosome assembly, has been implicated in replication stress.⁵⁴

Review

Telomere shortening is another critical aspect of aging-associated genomic instability. It is considered one of the key hallmarks of aging, triggering DNA damage at chromosome ends and exacerbating the progression of aging and related diseases. 10,71-73 Notably, progressive telomere attrition is associated with epigenetic alterations at multiple layers such as DNA and RNA methylation and histone modifications. For instance, a positive correlation has been reported between lower DNA methylation levels and shorter telomere lengths, which may contribute to increased genomic instability and susceptibility to diseases and aging.⁷⁴ The DNA-damage-inducible protein GADD45α also links DNA methylation status to the regulation of telomere integrity in the aging-related process.⁷³ Similarly, RNA methylation plays a significant role in telomere stability as well. For example, the RNA-binding protein HuR enhances telomerase activity through m⁵C modification on TERC RNA, a mechanism which counters cellular senescence. ⁷⁵ Moreover, METTL3-mediated RNA m⁶A modification has also been implicated in maintaining telomere integrity by stabilizing TERRA.76 In addition, a variety of histone modifications, including both repressive and active marks, regulate the integrity of telomeric and subtelomeric regions, such as H3K9me3, H4K20me3, and various acetylated forms of H3 and H4.⁷⁷ In addition to telomeres are various other specialized nucleic acid structures that show high susceptibility to genotoxic stresses. These include the G-quadruplex (G4),⁷⁸ a non-canonical four-stranded DNA structure formed by G-rich sequences. and the R-loop, 79 a three-stranded structure containing a DNA:RNA hybrid and a displaced single-stranded DNA. These structures can also interact with multiple histone marks, participating in the regulation of stem cell pluripotency and differentiation, as well as aging-related processes.80-84

Extranuclear nucleic acid structures, including mitochondrial DNA (mtDNA) and micronuclei (MN), can also function as genotoxic stress sentinels. Due to the lack of a refined DNA repair system and proximity to the major source of ROS, mtDNA is more prone to damage or mutation. As a result, mtDNA mutations accumulate with age, leading to mitochondrial dysfunction and the progression of aging-associated disorders, such as cancer and age-related infertility. 85-88 Epigenetic regulation of mtDNA involves inherent DNA methylation and non-coding RNA within mitochondria, impacting gene expression and subsequent mitochondrial homeostasis and aging. 89,90 On the other hand, mitochondria also indirectly influence the nuclear epigenome, including DNA and histone methylation, through metabolic intermediates and by-products, such as α-ketoglutarate. 91,92 In addition, copy-number variation of mtDNA is also associated with aging-related epigenetic regulation, as demonstrated by studies on human tissues supporting a positive correlation between mtDNA copy number and epigenetic aging. 93,94 Unlike mtDNA, MN represent non-canonical structures formed from mis-segregation of chromosome and in response to extensive DNA damage. 79,95 Aberrant MN are associated with altered histone modifications and chromatin accessibility, suggesting a connection to abnormal transcription, genomic instability, and potentially aging. 96,97

A variety of exogenous factors such as UV radiation, γ rays, and genotoxic chemicals are also linked to genomic instability and epigenomic remodeling during aging. For instance, UV-induced DNA damage is associated with shifts in DNA and RNA methylation patterns, which further contribute to the progression of cellular and tissue aging. $^{62,98-100}$ Likewise, γ irradiation can induce DNA damage and accelerate skin aging through a miRNA-mediated regulatory axis. 101 Bleomycin-induced cellular senescence also involves accumulation of DNA damage and reorganization of the epigenome, characterized by KDM4-mediated demethylation of H3K9 and H3K36. 102 Moreover, in exogenous oncogene-induced cellular aging models, a possible interplay between DDR and higher-ordered chromatin organization has been described. 103-105 In addition, lifestyle risk factors, such as alcohol, 106-108 smoking, 109-111 and sleep disturbance, 112-115 also contribute to genotoxic stress and are associated with aging-related epigenetic variations. Taken together, these findings provide a concise overview of endogenous and exogenous sources of genotoxic stresses and their complex interplay with epigenetic alterations in the regulation of aging.

Inflammatory stress

Inflammation is a vital response that maintains tissue balance, aids immune responses, and supports tissue repair. However, excessive inflammation (inflammatory stress) harms physiological functions and contributes to age-related diseases. 116-118 Aging itself is associated with a chronic low-grade inflammation state known as inflammaging, in which immune responses and tissue regeneration are disrupted. 116,119 A deep-learning method, based on inflammatory patterns and applied as an aging clock, 120 emphasized the critical link between inflammation and aging. Various stimuli such as DNA damage and foreign infections can induce inflammatory stress, triggering downstream signaling pathways, such as nuclear factor-κB (NF-κB), to promote the transcription of pro-inflammatory cytokines. Specific for aging-associated inflammation is the senescence-associated secretory phenotype (SASP), a common feature of cellular senescence, where secreted pro-inflammatory factors exacerbate inflammation to further drive development of age-related conditions. 119 Epigenetic modifications play a crucial role in regulating gene expression during aging-related inflammation. Understanding the intricate interplay between epigenetics and inflammation is therefore essential for uncovering the molecular basis of aging and identifying potential therapies.

Among multifaceted internal causes of inflammatory stress, genomic instability represents a critical one which can uniquely drive sterile inflammation related to aging and associates with many aspects of epigenetics. For example, DNA damage itself acts as an inducer of inflammation and prompts post-translational modifications of involved modulators in DDR. Damage-susceptible R-loops or MN also contribute to aseptic inflammation and are implicated in aging-related pathways. 79 Moreover, mutations in genes encoding epigenetic modifying enzymes (e.g., DNMT3A) also intersect with the regulation of chronic inflammation linked to aging. 121,122 Remarkably, genomic-instabilityinduced derepression of retrotransposable elements (REs), which can activate the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) innate immunity pathway (Figure 2), has been inextricably intertwined with aging-associated inflammation.¹²³ For example, knockout of SIRT7 in human MSCs results in heterochromatin loss, disrupted lamina-chromatin interaction, increased chromatin accessibility, and derepression of long-interspersed element-1 (LINE1) retrotransposons. These

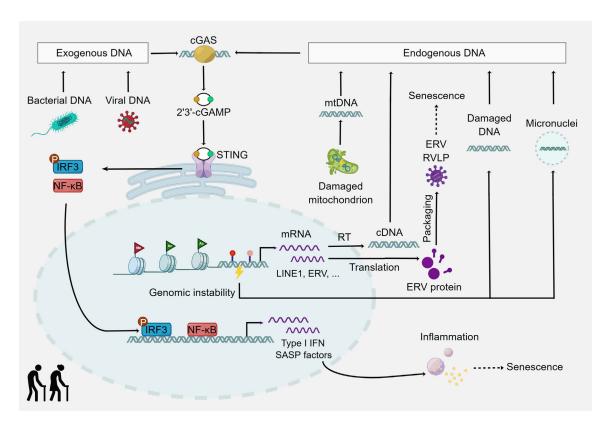


Figure 2. The cGAS-STING signaling in aging-related inflammation

The cGAS-STING pathway is induced by exogenous or endogenous DNA and then promotes the synthesis of 2'3'-cyclic GMP-AMP (cGAMP), phosphorylation of interferon regulatory factor 3 (IRF3), and nuclear translocation of NF-κB. This mechanism triggers activation of interferon (IFN)-I and SASP signaling, which further contributes to aging-related inflammation. Notably, exogenous DNA comes mainly from bacterial or viral infections. In contrast, endogenous DNA is primarily derived from genomic instability that produces damaged DNA fragments or micronuclei, cDNA of REs, such as LINE1 and ERV, and DNA leakage from damaged mitochondrion. Abbreviations are as follows: RT, reverse transcription; cDNA, complementary DNA; RVLP, retrovirus-like particles.

cellular dysfunctions activate the cGAS-STING pathway, upregulating inflammatory factors and further exacerbating stem cell aging.41 Similar observations are seen in prematurely aged human MSCs with deficiency of the circadian regulators CLOCK and BMAL1. 124,125 Consistent with the findings at the cellular level, LINE1 activation also induces inflammatory responses in SIRT6deficient progeroid mice, as well as in physiologically aged human and mouse tissues. 126,127 Additionally, endogenous retroviruses (ERVs), another type of RE, whose activation involves the remodeling of DNA methylation and histone modifications, can also stimulate the cGAS-STING pathway and upregulate inflammation to amplify aging, potentially via a paracrine mechanism. 128,129 RNA m⁶A decoration is also implicated in the regulation of REs and SASP factors. 100,130-132 However, direct evidence is still lacking to address whether m⁶A regulates the aging-related inflammatory responses via modulation of RE activity. Similar to REs, released mtDNA can elicit the cGAS-STING activity as well, driving inflammation, neurotoxicity, and brain aging, although it is unknown whether the epigenome is involved. 13

Non-coding RNA and three-dimensional (3D) genomic organization are also involved in the regulatory network of agingrelated inflammation. For example, non-coding RNAs derived from the pericentromeric region impair the DNA-binding capacity of CCCTC-binding factor (CTCF), a key player in chromatin or-

ganization, accounting for increased chromatin accessibility and activated transcription of SASP genes. 134 Moreover, genomic remodeling of H3K27ac-enriched enhancers within TADs modulates the expression dynamics of adjacent SASP genes in replicatively senescent cells. 135 Additionally, METTL3 and METTL14 facilitate the formation of promoter-enhancer loops to regulate SASP gene expression independently of m⁶A. 136 These findings reflect the intricate regulation of aging-associated inflammation from distinct epigenetic layers.

Inflammatory stress related to aging may also originate from extrinsic stimuli, such as viral or bacterial infections, which usually trigger acute inflammation. For instance, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which has received great attentions in recent years, has been coupled to accumulated DNA damage, hyperactivated inflammation, and accelerated aging in host cells. 137-141 Multiple epigenetic regulation is involved in this process. For example, the SARS-CoV-2 protein ORF8 functions as a histone H3 mimic to affect the host epigenome, thus widely disrupting the landscape of histone modifications, as featured by increased H3K9me3 and H3K27me3 and decreased H3K9ac. 142 Furthermore, SARS-CoV-2 induces widespread nuclear reorganization in host cells, especially at the compartment scale, which potentially contributes to the altered gene expression profile covering inflammatory

Review

genes. 143,144 Besides, the SARS-CoV-2 N-protein disrupts 53BP1 recruitment by competitively binding damage-induced long noncoding RNA, leading to impaired DNA repair, which, in turn, exacerbates inflammation and cellular senescence. 145 To be noted, increasing evidence support that the high susceptibility to SARS-CoV-2 infection in the elderly and the lethal "cytokine storm" may be related to the high expression of SARS-CoV-2 receptor genes during aging, whereas the specific epigenetic mechanisms remain elusive. 146-148 Inflammation induced by poly(I:C) treatment or bacterial infection can promote epigenetic aging as well. Additionally, psychological stress and sleep-deprivationinduced chronic inflammation have been linked to epigenetic dysregulation and accelerated aging.^{22,113,114,149–153} However, further research is needed to uncover the precise molecular mechanisms involved.

Metabolic stress

Nutrition and metabolism intricately regulate a variety of biological processes. Imbalanced nutrient and metabolic signals profoundly impact cellular functions, accelerating aging and age-related diseases. 154,155 Nutrient affects biological functions through signaling pathways, such as insulin/insulin-like growth factor 1 (IGF-1), mammalian target of rapamycin (mTOR), sirtuins, and AMP-activated protein kinase (AMPK), which regulate cellular growth, autophagy, and metabolism. Dysregulation of these pathways, often associated with metabolic disorders, such as obesity and diabetes, accelerates aging. Metabolic stress, induced by various causes, such as excessive caloric intake, nutrient deprivation, impaired nutrient sensing, and accumulation of toxic metabolites, leads to oxidative damage and mitochondrial dysfunction, promoting cellular senescence and accelerated aging. 156 Epigenetic modifications can mediate the effects of metabolic stress on aging by altering distinct marks and influencing metabolic gene expression. Understanding these connections will provide novel insights into the development of strategies for maintaining metabolic balance and promoting healthy aging.

Metabolic pathways utilize nutrients such as glucose, fatty acids, and amino acids to generate metabolites that regulate life activities. Disruptions in nutrient uptake and metabolism can cause epigenetic changes, impacting gene expression patterns associated with aging. For example, glucose metabolism involves the non-oxidative pentose phosphate pathway (PPP) and transketolase, an essential enzyme. Defects in transketolase impair glucose metabolism, increase oxidative stress, trigger mitochondrial dysfunction, global DNA hypermethylation, repression of functional genes in immune cells, and potentially contribute to immunosenescence. 157,158 During stem cell aging-related processes, reduced glucose uptake may contribute to decreased histone acetylation (including H4K16ac), 159 which potentially associates with increased CDC42, a Rho family GTPase involved in aging regulation. 160 Lipid metabolism affects aging and longevity by interacting with DNA methylation and histone modifications. As an example, the gene encoding a fatty acid elongase known as elongation of very long chain fatty acids-like 2 (ELOVL2), a master regulator controlling the synthesis of polyunsaturated fatty acid, is hypermethylated, concomitated with a downregulated expression level during biological aging. Deficiency of ELOVL2 leads to dysregulated lipid metabolism, indicated by accumulation of short fatty acids, glucose intolerance, insulin resistance, and premature aging in mice.11 Metabolic dysregulation of specific fatty acids inhibits HDAC, resulting in alterations in histone acylation and crotonylation, and subsequent gene expression dynamics. 162,163 Besides, the epitranscriptomic machinery, including the RNA m⁶A demethylase fat mass- and obesity-associated protein (FTO), also affects lipid metabolism. For instance, FTO genetic variants associate with obesity risk, whereas its deficiency reduces adipose tissue. 164,165 Similarly, knockout of FTO in human MSCs causes impaired lipid synthesis, along with accelerated senescence phenotypes encompassing nuclear abnormalities, heterochromatin loss, and telomere attrition. 166 Amino acid metabolism and its interconnections with epigenetics also play a role in aging regulation. For example, vascular endothelial cell (VEC) aging involves downregulation of intracellular serine and phosphoglycerate dehydrogenase (PHGDH), a key enzyme in serine synthesis. Knockdown of PHGDH decreases serine levels and accelerates VEC aging. Mechanistically, PHGDH facilitates nuclear translocation of pyruvate kinase M2 (PKM2) via p300-catalyzed acetylation, leading to histone H3T11 phosphorylation and expression of aging-associated factors, such as SIRT1.167 In addition, branched-chain amino acids modulate aging or longevity potentially through altering the neuronal histone acetylome covering H3K9ac. 168,169

Non-coding RNAs, an integral layer of epigenomics, are connected to aging-related metabolic regulation as well. One example is miRNA, which plays a pivotal role in regulating metabolic balance during aging and age-related disorders. miRNAs are believed to target nutrient sensing pathways, such as insulin and mTOR signaling, affecting glucose and lipid metabolism. ¹⁷⁰ For instance, miR-143, downregulated during aging, promotes myogenesis as an alternative mechanism. However, overexpression of miR-143 interferes with insulin-related regulation and disrupts liver glucose metabolism in mouse models of obesity.¹⁷¹ Another important player is Altre, a long non-coding RNA found in regulatory T cells that increases with aging. Altre is involved in regulating mitochondrial dynamics to maintain immune-metabolic homeostasis in the liver during aging. Consequently, depletion of Altre leads to dysregulated lipid metabolism, hyperactive ROS accumulation, and inflammatory liver microenvironment in aged mice. 172

Other types of phytochemicals from diets or general metabolic intermediates and by-products from host cells or gut microbes also interplay with aging-related epigenetics (Figure 3). For example, dihydrocaffeic acid (DHCA), present in grapes and other plants and a microbial metabolite with antioxidant capacity, can decrease DNMT1 expression in mice, leading to intronic DNA hypomethylation and downregulated expression of interleukin (IL)-6, a common SASP factor. 173 S-adenosyl-methionine (SAM), an important metabolite involved in one-carbon metabolism, enhances the trimethylation of H3K36 and production of IL-1β, another well-known SASP factor, thus contributing to agingrelated defects. 174,175 NAD $^+$, a cofactor of sirtuins, links epigenetic regulation to aging-related gene expression dynamics such that declining NAD+ levels during aging are associated with alterations in histone acetylation patterns.¹⁷⁶ For instance, reduced NAD+ levels concomitant with impaired SIRT2 activity contribute to aging-induced demyelination through failed inhibition of H3K18

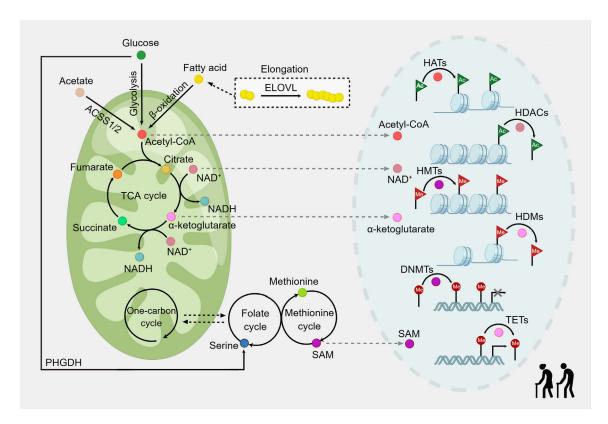


Figure 3. The interplay between metabolism and epigenetics

Mitochondria provide essential metabolic intermediates or by-products implicated in aging regulation, for example, acetyl-CoA, NAD+, α-ketoglutarate, and SAM, which function as cofactors to remodel epigenetic marks, such as histone acetylation and methylation, and DNA methylation. Abbreviations are as follows: HATs, histone acetyltransferases; HDACs, histone deacetylases; HMTs, histone methyltransferases; HDMs, histone demethylases; DNMTs, DNA methyltransferases; TETs, ten-eleven translocation DNA demethylases.

acetylation and ID4 transcription. 177 Moreover, decreased SIRT2 activity also disrupts deacetylation but facilitates phosphorylation of p66^{Shc}, a mitochondrial adaptor protein, resulting in aberrant mitochondrial ROS and exacerbated vascular aging. 178 Likewise, acetyl-coenzyme A (CoA), a metabolite that can be derived from glucose, fatty acids, and amino acids, also participates in aging regulation by remodeling histone acetylation. For example, the acetyl-CoA synthetase Acs2 in yeast, or its human ortholog ACSS2, can promote H4K16ac enrichment at the subtelomeric region, compromising telomere silencing and accelerating aging. 179 Similarly, reduced acetyl-CoA production sensed by the nucleosome remodeling and deacetylase (NuRD) complex leads to decreased histone acetylation and chromatin remodeling, which furthers aging progression. ¹⁸⁰ Besides, as mentioned earlier, α -ketoglutarate, an intermediate of the tricarboxylic acid (TCA) cycle, acts as a cofactor for both DNA and histone demethylases, exerting extensive effects on gene regulation in aging-related epigenetic modulation. 91,92 Taken together, these findings reveal a complex interplay between multi-dimensional epigenetic regulation, nutrient sensing, and metabolic pathways in aging-related processes.

Other types of stresses

Beyond oxidation, inflammation, genotoxicity, and metabolic imbalance, other types of stresses such as proteostatic stress

and thermal stress play significant roles in the aging process (Figure 1). Proteostatic stress, a disruption of the protein quality control system leading to accumulation of toxic proteins and cellular dysfunction, comprises abnormal protein synthesis and degradation or the accumulation of misfolded or damaged proteins within cells. It can be induced by oxidative damage, endoplasmic reticulum (ER) stress, and heat shock, and involves signaling pathways associated with unfolded protein response (UPR) and autophagy. Thermal stress, on the other hand, occurs when cells or organisms experience temperature conditions outside their optimal range. Extremely high or low temperatures can provoke heat or cold shock response and even disrupt the thermoregulation system, which further exacerbate oxidative stress, protein misfolding, and cellular damage. Both proteostatic stress and thermal stress play important roles in regulating aging, and investigating such roles stand to offer additional insights into underlying mechanisms, including the interactive role of epigenetics.

Proteostatic stress

Loss of proteostasis is regarded as a hallmark and driver of aging and age-related diseases. 10,181,182 Throughout the entire cycle of protein synthesis, folding, and degradation, epigenetic modifications play important regulatory roles. During protein synthesis, disruption of ribosome-associated quality control compromises translation, resulting in proteostasis collapse and age-dependent

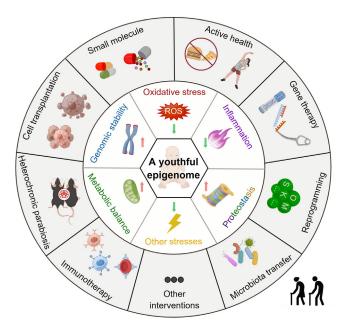


Figure 4. Aging interventions related to stress relief and epigenomic stabilization

A diverse range of interventions, including active health approaches, small molecule-based strategies, gene therapy, cell transplantation, heterochronic parabiosis, reprogramming, fecal microbiota transplantation, immunotherapy, etc., are explored to alleviate harmful stresses and rejuvenate the aging epigenome. These intervention strategies demonstrate varying degrees of effectiveness in attenuating aging and age-related degenerations across cellular, tissue, or organismal levels.

protein aggregation. 183 Ribosomal mutations causing translation errors drive premature aging in mice, reflected as shortened lifespan along with weight loss, ROS accumulation, telomere attrition, and accelerated epigenetic aging. 184 RNA epigenetics and posttranslational modifications are also involved in the regulation of aging-related proteostasis. As mentioned earlier, m⁶A and m⁵C modifications coordinately regulate the translation efficiency of p21, impacting cellular aging.49 tRNA m7G methylation and mRNA ac4C modification are also implicated in translational homeostasis regulation, 185,186 potentially influencing the aging process. Moreover, decreased H3K27me3 is associated with downregulation of the eukaryotic translation initiation factor 4A2 (eIF4A2), which acts as both a translation activator and a repressor.¹⁸ METTL13-catalyzed dimethylation at lysine 55 enhances the intrinsic GTPase activity of eukaryotic translation elongation factor 1A (eEF1A), another critical player in protein synthesis, leading to increased translational output. 188 These observations point to a diversity of epigenetic regulation in protein translation potentially associated with aging progression.

Misfolding and abnormal aggregation of proteins are connected to epigenetic regulation in aging-related processes. For example, misfolding and aggregation of the Aß peptide, which is linked with the onset and progression of AD, can be exacerbated by genome-wide increase in H3K27ac and H3K9ac levels. 189 Furthermore, aberrant accumulation of the microtubule-binding protein tau causes neurotoxic effects that promote neurodegeneration, wherein phosphorylation and ubiquitination modifications play an important role. 190-192 Aging-interfered protein degradation likewise involves epigenetic dysregulation. For example, global loss of ubiquitination in C. elegans during aging led to dysregulated proteasomal degradation and a shortened lifespan. 193 Additionally, aging-induced accumulation of apolipoprotein E (APOE) facilitated degradation of the nuclear lamina and heterochromatin-associated proteins via the autophagylysosomal pathway. 194 This process is accompanied by heterochromatin loss, dissociation of lamina-chromatin interaction, gain of chromatin accessibility, and reactivation of repetitive elements. Taken together, these findings highlight the involvement of epigenetics in aging-related loss of proteostasis and provide valuable insights into aging mechanisms.

Thermal stress

Increasing evidence suggest a complex interaction between aging and thermoregulation. For instance, rodents and humans experience age-related declines in body temperature, indicating reduced heat tolerance and abnormal thermoregulatory responses. 195,196 Conversely, impaired thermoregulation due to age or extreme environmental exposure can exacerbate molecular and cellular damage, accelerating aging and aging-related disorders. 197-199 As an example, rodents exposed to hot ambient temperatures acquired elevated body temperature, decreased metabolic rate, and shortened lifespan.²⁰⁰ In contrast, moderate cold exposure improves proteostasis and prolongs the lifespan of C. elegans. 201 Recent studies reveal how such epigenetic mechanisms regulate thermal stress-related aging. For example, aginginduced downregulation of SIRT1 is responsible for the weakened DNA-binding capacity of the heat shock factor (HSF)-1, potentially due to failed deacetylation and contributing to the impaired heat tolerance. 197,202-204 Interestingly, however, mild heat exposure can also promote longevity via remodeling DNA and histone modifications. For instance, heat stress in worms induces heritable longevity, which is mediated by DNA methyltransferase DAMT-1-catalyzed N⁶-methyladenosine (abbreviated as 6mA in DNA) modification and histone methyltransferase SET-25 and SET-32catalyzed H3K9me3 deposition. Meanwhile, transcription factors like the abnormal dauer formation protein (DAF)-16/forkhead box protein O (FOXO), HSF-1, and the nuclear receptor DAF-12/ farnesoid X receptor (FXR) are also required for the transgenerational inheritance of heat stress-induced longevity.²⁰⁵ Likewise, early-life exposure to moderate heat stress in C. elegans promotes longevity and long-lasting stress resistance but through establishing an epigenetic memory mediated by histone acetyltransferase CREB-binding protein (CBP)-1 and the chromatin remodeling complex switch/sucrose nonfermentable (SWI/SNF).206 These findings demonstrate the critical role of epigenetics in heatstress-related aging regulation and provide potential targets to enhance stress resistance and outfight aging.

AGING INTERVENTIONS FOR STRESS ALLEVIATION AND EPIGENETIC REJUVENATION

On the basis of mechanisms underlying the interconnection between stress and aging, various intervention strategies have been proposed to combat aging and age-related disorders. These include adopting a healthy lifestyle and therapeutic treatments, including small molecules, gene therapies, and cell

transplantation. Additionally, promising interventions for slowing down aging also include heterochronic parabiosis, reprogramming, gut microbial transfer, and immunotherapy. This section will briefly discuss representative aging interventions and their associated stress alleviation and epigenetic regulation (Figure 4).

Active-health-based interventions

Achieving active health involves maintaining a state of well-being through regular physical activity and adopting a healthy lifestyle that encompasses various factors such as diet, exercise, sleep, mood, and environment. Calorie restriction (CR) is an effective approach for combating aging by reducing calorie intake without sacrificing essential nutrients. It has shown wide-ranging effects on extending health span or lifespan through the improvement of stress resistance in a species-conserved manner from yeast to human.^{207–210} with the involvement of epigenetic mechanisms. including DNA methylation shifting and histone modification remodeling. 211-213 In addition to CR, other dietary control strategies, such as amino acid or protein restriction and intermittent or periodic fasting, also present beneficial influences on energy metabolism, health span, and longevity, mostly in animal models.²⁰⁷ Exercise, similar to CR, triggers geroprotective effects and mitigates age-related hazards at least partially by alleviating inflammatory and metabolic stresses. 214,215 Epigenetic regulation, possibly through alterations in DNA methylation and histone modifications, plays an important role in the geroprotective effects of exercise. For example, late-life exercise mitigated DNA-methylation-indicated epigenetic aging in skeletal muscle in mice.²¹⁶ Exercise also influences H3K9 methylation profiles in the rat hippocampus with an age-dependent manner.²¹⁷ Additionally, emotional stability, regular sleep patterns, and effective smoking cessation also present beneficial results to decelerate epigenetic aging in humans.218-221

Small-molecule-based interventions

Extensive efforts have been dedicated toward development of small-molecule-based aging interventions that can be broadly categorized into two classes. The first class, geroprotective or rejuvenating compounds, enhances metabolic homeostasis, bolsters antioxidant capacity, reduces inflammatory stress, and promotes (epi)genomic stability. For example, metformin, an anti-diabetic drug widely applied to promote longevity and healthspan in model organisms, 222-224 has been approved in a clinical trial named Targeting Aging with Metformin (TAME) for its potential aging-targeting effects.²²⁵ Metformin exhibits the ability to reverse a range of aging hallmarks in multiple cellular and animal models, leading to improved nutrient signaling, enhanced intercellular communications, ameliorated proteostasis, attenuated genomic instability, and remodeled epigenetic landscape with increased DNA methylation and H3K27me3 deposition.²²⁵ Resveratrol, an activator of SIRT1, retards aging-related deterioration in mice and prolongs health span or lifespan with metabolic benefits mimicking dietary restriction, 226-228 potentially by affecting DNA methylation and histone acetylation. 229,230 NAD+, as mentioned earlier, can regulate the activity of sirtuins as well and participate in aging regulation potentially via histone deacetylation. Supplementation with its precursors, such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), effectively prevented the decline of NAD+ and triggered geroprotective effects at least in rodents. 224,231 Vitamin C, also known as ascorbic acid, has a geroprotective role in prematurely senescent stem cells via restoration of heterochromatin and nuclear lamina.²³² Nucleoside reverse transcriptase inhibitors, such as lamivudine (3TC) and abacavir, alleviate aging-related inflammation via inhibition of LINE1 and ERV. 126-129 Additionally, other small molecules, such as rapamycin, ²³³ aspirin, ²³⁴ uridine, ²³⁵ taurine, ²³⁶ quercetin, ²³⁷ chloroquine, ²³⁸ gallic acid, ²³⁹ lycorine hydrochloride, ²⁴⁰ oltipraz, ²⁴¹ etc., have also demonstrated rejuvenating effects.

The second class, known as senolytics, involves agents capable of targeting elimination of senescent cells by inducing apoptosis.242 For instance, the pan-tyrosine kinase inhibitor dasatinib and the flavonoid guercetin were the first senolytic agents identified to induce apoptosis of senescent cells and alleviate age-related impairments in various tissues, 243-245 which may be associated with changes in DNA and histone methylation profiles. 246,247 Other senolytics, including BCL-2 inhibitors, such as Navitoclax (ABT-263), ABT-737, A1331852, and A1155463, 248-252 heat shock protein 90 (HSP90) inhibitors, 253 cardiac glycosides, 254 and FOXO4 peptide, 255 also function by inducing senescent cell apoptosis to ameliorate tissue damage, yet their association with epigenetic regulation remains largely unknown.

Gene-therapy-based interventions

Gene therapy interventions hold promise in counteracting human stem cell aging and age-related degenerations. For instance, rejuvenating factors, such as DGCR8, CLOCK, CBX4, and SOX5, counteract human stem cell aging by stabilizing heterochromatin and, when delivered via lentiviral injection, have been reported to promote cartilage regeneration and attenuate osteoarthritis in mice. 124,256-258 Similarly, administration of lentiviral vectors encoding YAP or FOXD1 also alleviate mouse osteoarthritis.²⁵⁹ Overexpression of SIRT2 is capable of alleviating cardiac aging in mice. 260 In addition, adeno-associated virus (AAV)-mediated delivery of vascular endothelial growth fac-(VEGF) triggers amelioration of aging-associated pathologies, such as osteoporosis and inflammaging, rejuvenation of metabolism, and extension of lifespan in mice.²⁶¹ Conversely, genetic inhibition of aging acceleration factors, such as ERV and KAT7, also result in beneficial effects on alleviating human stem cell aging and extends mouse health span or lifespan. For example, lentiviral CRISPR-mediated inhibition of ERV rejuvenated senescent human stem cells and induced structural and functional improvements in the joints of aged mice. 128 Similarly, inactivation of KAT7, a histone acetyltransferase, attenuated human stem cell aging by decreasing H3K14ac deposition and p15 expression and extended lifespan in both physiologically and prematurely aged mice.262 In addition, knockout of APOE stabilized the nuclear lamina and heterochromatin, alleviating stem cell aging and presenting a potential target for novel gene therapies. 194 Furthermore, targeting progerin transcripts with antisense technology increased the lifespan of progeroid mice, highlighting another avenue for potential development of genetic therapeutic strategies.²⁶³ However, most of these genetic intervention approaches have not yet been tested in clinical trials.

Review

Interestingly, learning from long-lived animals also holds great promise for developing new genetic intervention strategies to combat aging. The naked mole-rat (NMR), for example, is known for its outstanding resistance to aging-related diseases, including cancer and exceptional longevity. 264-266 This may be attributed to its stable genome and epigenome because NMR cells are characterized by the unusual stabilization of p53 protein, high deposition of H3K27 methylation, and low deposition of H3K27 acetylation, alongside a more closed chromatin state at the promoter region.²⁶⁶⁻²⁶⁸ Most recently, a study reported a mouse model overexpressing NMR hyaluronic acid synthase 2, which showed a higher level of hyaluronan. More intriguingly, these genetically modified mice displayed resistance to inflammation, oxidative stress, and cancer, as well as an extended health span and lifespan.²⁶⁹ These findings suggest that the NMR longevity mechanism can be extended to other species, paving a potential way for gene-based strategies against aging-related disorders in humans.

Cell-transplantation-based interventions

Cell transplantation-based strategies have been developed in both laboratory and clinical studies to combat aging and agerelated disorders. For example, transplantation of glial progenitor cells into aged mice achieves long-term integration as well as improved neurological function.²⁷⁰ Moreover, administration of stem cells or vascular cells, expressing genetically enhanced NRF2 or FOXO3, conferred resistance to both aging and tumorigenesis and successfully promoted vascular or cardiac regeneration in mice. 37,271-273 In general, MSCs represent a powerful source for cell transplantation approaches and have been applied in clinical studies toward antagonizing age-related disorders.²⁷⁴ For instance, transfusion of human umbilical cord-derived MSCs in patients with liver cirrhosis yielded safe and effective improvements in liver function.²⁷⁵ Furthermore, the therapeutic safety and efficacy of MSCs in treatment of osteoarthritis lend clinical validation toward broad applicability of stem cell transplantation strategies in mitigating aging-related disorders.²⁷⁶ Interestingly, stem cell-derived extracellular vesicles also show rejuvenation effects both in vitro and in vivo. For instance, exosomes derived from antler stem cells alleviate human MSC aging and mouse osteoarthritis.²⁷⁷ Similarly, extracellular vesicles from umbilicalcord-derived MSCs also rejuvenate senescent MSCs and mitigate bone and kidney degeneration in aged mice.²⁷⁸ In addition, MSC-derived extracellular vesicles have also been reported to reverse epigenetic aging and improve health span in mice, potentially mediated through miRNA-dependent regulation.^{279,2}

Other intervention strategies

Many other geroprotective strategies, including heterochronic parabiosis, reprogramming, fecal microbiota transplantation, and immunotherapy, offer promising effects on combating aging-related conditions (Figure 4). Heterochronic parabiosis, where young and aged mice are surgically joined together to share a common circulatory system, rejuvenates tissue and organ functions in the aged organism through exposure to factors present in young blood.²⁸¹⁻²⁸⁴ Such rejuvenation may be achieved in part by DNA methylation remodeling.²⁸⁵ Reprogramming refers to a rejuvenation strategy via the global remodeling to revert somatic cells to a pluripotent state by overexpression of Yamanaka transcription factors (OCT4, SOX2, KLF4, and MYC, also known as OSKM) or induction with chemicals.²⁸⁶ This approach restores a youthful epigenetic status via resetting H3K9me3, H4K20me3, and DNA methylation levels.^{286,290-2} Another promising strategy for restoring healthy aging is fecal microbiota transplantation, which can reshape the host gut microbiota and alleviate aging in multiple tissues. 293-295 In this process, microbiota-derived metabolites may act as epigenetic players to remodel the host's DNA and histone modifications.^{296,297} Additionally, and similar to senolytics, aging-delaying immunotherapies aim to eliminate senescent cells by stimulating the organism's immune system rather than inducing apoptosis. In principle, by identifying antigens specifically enriched in senescent cells (also known as seno-antigens), such as the glycoprotein nonmetastatic melanoma protein B (GPNMB) and urokinase-type plasminogen activator receptor (uPAR), vaccines or chimeric antigen receptor (CAR) T cells recognizing these seno-antigens achieve targeted removal of senescent cells, ultimately enabling the treatment of agingrelated disorders, such as atherosclerosis, liver fibrosis and cancers, as well as the extension of health span or lifespan in mice.^{298,299} However, the possible epigenetic involvement in these immunotherapy-based interventions remains unexplored.

CONCLUSION AND PERSPECTIVES

In conclusion, we here provide an extensive exploration of current advances in understanding the intricate relationship between stress, aging, and the involved epigenetics. We discuss a wide range of epigenetic modifications at different layers and the various, although not all, stresses associated with aging. Of note, these stresses are interdependent and have crosstalk with each other to form a complex network of aging mechanisms. Furthermore, we also review intervention strategies aimed at mitigating aging by alleviating stress and stabilizing epigenetic processes. These strategies hold great promise for guiding the development of innovative therapeutic approaches to combat age-related disorders.

However, it is imperative to acknowledge that most of the current evidence on the relationship between epigenetic inheritance and stress-related aging provides correlation, not causation, highlighting the need for deeper mechanistic insights to develop safe and effective aging interventions. On the other hand, although some aging interventions have progressed to clinical trials, many more remain at the laboratory stage, reflecting a significant gap between basic research and practical application. 12 However, findings from model organisms and cellular models may not directly apply to humans in clinical settings, necessitating species, tissue, and cell-type-specific investigations and cautious interpretation of results. Fortunately, such validation approaches become increasingly feasible due to advancements in high-resolution, spatial, single-cell and multi-omics sequencing technologies, 300 which will help deepen our understanding of the systemic, heterogeneous, and programmed nature of aging, especially from the perspective of stress and epigenetic interactions. Besides, to avoid disparities that may emerge in different research models and settings, establishing uniform standards or guidelines for

model design, mechanism validation, and evaluation approaches of intervention effectiveness and safety would be advantageous. Specifically, for example, preclinical investigations using large animal models, particularly non-human primates, 301,302 can prove valuable in validating molecular targets and assessing the safety and efficacy of aging interventions, facilitating their translation to clinical trials. Moreover, the identification and utilization of increasingly sensitive and specific aging biomarkers will be instrumental in precisely evaluating the detrimental effects of stresses and the efficacy of interventions. 242,303 As an example, large-scale studies involving robust cohorts might be of great significance. 304 Additionally, the development of user-friendly and efficient technical equipment, such as artificial-intelligence-assisted wearable devices, holds significant promise for advancing data collection and analysis in this field. 305 These technological advancements may also facilitate real-time monitoring of molecular changes, enabling timely interventions and personalized treatment approaches. Taken together, continued research that focuses on addressing the existing limitations and challenges in this field carries immense potential for enhancing our understanding of the epigenetic crosstalk between stress and aging. Combined, such efforts will drive the development of novel intervention strategies for effective clinical translation, ultimately leading to the successful mitigation of age-associated diseases.

ACKNOWLEDGMENTS

We apologize for the many relevant studies that were not discussed or cited in this review owing to space limitations. We thank Lei Bai for her administrative assistance. This work was supported by the National Key Research and Development Program of China (2020YFA0804000, 2022YFA1103700, 2022YFA1103800, 2020YFA0112200, and 2021YFF1201000), the National Natural Science Foundation of China (81921006, 82125011, 92149301, 92168201, 91949209, 92049304, 92049116, 32121001, 82192863, and 32100937), CAS Project for Young Scientists in Basic Research (YSBR-076 and YSBR-012), the Program of the Beijing Natural Science Foundation (Z190019), Youth Innovation Promotion Association of CAS (E1CAZW0401), New Cornerstone Science Foundation through the XPLORER PRIZE (2021-1045), and CAS Special Research Assistant (SRA) Program. All figures were prepared with Figdraw (https://www.figdraw.com/static/index.html).

AUTHOR CONTRIBUTIONS

G.-H.L., W.Z., and J.Q. designed the review. Z.W. drafted the manuscript. All authors performed manuscript reviewing and editing and approved the final version.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

- 1. Tian, Y.E., Cropley, V., Maier, A.B., Lautenschlager, N.T., Breakspear, M., and Zalesky, A. (2023). Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality. Nat. Med. 29, 1221-1231. https://doi.org/10.1038/s41591-023-02296-6.
- 2. Kennedy, B.K., Berger, S.L., Brunet, A., Campisi, J., Cuervo, A.M., Epel, E.S., Franceschi, C., Lithgow, G.J., Morimoto, R.I., Pessin, J.E., et al. (2014). Geroscience: linking aging to chronic disease. Cell 159, 709-713. https://doi.org/10.1016/j.cell.2014.10.039.
- 3. Sun, Y., Li, Q., and Kirkland, J.L. (2022). Targeting senescent cells for a healthier longevity: the roadmap for an era of global aging. Life Med. 1, 103-119. https://doi.org/10.1093/lifemedi/lnac030.

- 4. Cai, Y., Song, W., Li, J., Jing, Y., Liang, C., Zhang, L., Zhang, X., Zhang, W., Liu, B., An, Y., et al. (2022). The landscape of aging. Sci. China Life Sci. 65, 2354-2454. https://doi.org/10.1007/s11427-022-2161-3.
- 5. Melzer, D., Pilling, L.C., and Ferrucci, L. (2020). The genetics of human ageing. Nat. Rev. Genet. 21, 88-101. https://doi.org/10.1038/s41576-019-0183-6.
- 6. Benayoun, B.A., Pollina, E.A., and Brunet, A. (2015). Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat. Rev. Mol. Cell Biol. 16, 593-610. https://doi.org/10.1038/nrm4048.
- 7. Galluzzi, L., Yamazaki, T., and Kroemer, G. (2018). Linking cellular stress responses to systemic homeostasis. Nat. Rev. Mol. Cell Biol. 19, 731-745. https://doi.org/10.1038/s41580-018-0068-0.
- 8. de Magalhães, J.P., and Passos, J.F. (2018). Stress, cell senescence and organismal ageing. Mech. Ageing Dev. 170, 2-9. https://doi.org/10.1016/
- 9. Haigis, M.C., and Yankner, B.A. (2010). The aging stress response. Mol. Cell 40, 333-344. https://doi.org/10.1016/j.molcel.2010.10.002.
- 10. López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2023). Hallmarks of aging: an expanding universe. Cell 186, 243-278. https://doi.org/10.1016/j.cell.2022.11.001.
- 11. Liu, B., Qu, J., Zhang, W., Izpisua Belmonte, J.C., and Liu, G.H. (2022). A stem cell aging framework, from mechanisms to interventions. Cell Rep. 41, 111451. https://doi.org/10.1016/j.celrep.2022.111451.
- 12. Wang, K., Liu, H., Hu, Q., Wang, L., Liu, J., Zheng, Z., Zhang, W., Ren, J., Zhu, F., and Liu, G.H. (2022). Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct. Target. Ther. 7, 374. https://doi.org/10.1038/s41392-022-01211-8.
- 13. Zhang, W., Qu, J., Liu, G.H., and Belmonte, J.C.I. (2020). The ageing epigenome and its rejuvenation. Nat. Rev. Mol. Cell Biol. 21, 137-150. https://doi.org/10.1038/s41580-019-0204-5.
- 14. Aging Biomarker Consortium, Bao, H., Cao, J., Chen, M., Chen, M., Chen, W., Chen, X., Chen, Y., Chen, Y., Chen, Y., et al. (2023). Biomarkers of aging. Sci. China Life Sci. 66, 893-1066. https://doi.org/10. 1007/s11427-023-2305-0.
- 15. Jaenisch, R., and Bird, A. (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33 (Suppl), 245-254. https://doi.org/10.1038/ng1089.
- 16. Handy, D.E., Castro, R., and Loscalzo, J. (2011). Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation 123, 2145-2156. https://doi.org/10.1161/CIRCULATIONAHA.110.
- 17. Yao, Q., Chen, Y., and Zhou, X. (2019). The roles of microRNAs in epigenetic regulation. Curr. Opin. Chem. Biol. 51, 11-17. https://doi.org/10. 1016/j.cbpa.2019.01.024.
- 18. Chiu, S., Woodbury-Fariña, M.A., Shad, M.U., Husni, M., Copen, J., Bureau, Y., Cernovsky, Z., Hou, J.J., Raheb, H., Terpstra, K., et al. (2014). The role of nutrient-based epigenetic changes in buffering against stress, aging, and Alzheimer's disease. Psychiatr. Clin. North Am. 37, 591-623. https://doi.org/10.1016/j.psc.2014.09.001.
- 19. Cencioni, C., Spallotta, F., Martelli, F., Valente, S., Mai, A., Zeiher, A.M., and Gaetano, C. (2013). Oxidative stress and epigenetic regulation in ageing and age-related diseases. Int. J. Mol. Sci. 14, 17643-17663. https://doi.org/10.3390/ijms140917643.
- 20. Puigoriol-Illamola, D., Martínez-Damas, M., Griñán-Ferré, C., and Pallàs, M. (2020). Chronic mild stress modified epigenetic mechanisms leading to accelerated senescence and impaired cognitive performance in mice. Int. J. Mol. Sci. 21. https://doi.org/10.3390/ijms21031154
- 21. Zhu, X., Chen, Z., Shen, W., Huang, G., Sedivy, J.M., Wang, H., and Ju, Z. (2021). Inflammation, epigenetics, and metabolism converge to cell senescence and ageing: the regulation and intervention. Signal Transduct. Target. Ther. 6, 245. https://doi.org/10.1038/s41392-021-00646-9.
- 22. Harvanek, Z.M., Fogelman, N., Xu, K., and Sinha, R. (2021). Psychological and biological resilience modulates the effects of stress on

- epigenetic aging. Transl. Psychiatry 11, 601. https://doi.org/10.1038/
- 23. van Deursen, J.M. (2014). The role of senescent cells in ageing. Nature 509, 439-446. https://doi.org/10.1038/nature13193.
- 24. Staschke, K.A., and Wek, R.C. (2019). Adapting to cell stress from inside and out. Nat. Cell Biol. 21, 799-800. https://doi.org/10.1038/s41556-
- 25. Farage, M.A., Miller, K.W., Elsner, P., and Maibach, H.I. (2008). Intrinsic and extrinsic factors in skin ageing: a review. Int. J. Cosmet. Sci. 30, 87-95. https://doi.org/10.1111/j.1468-2494.2007.00415.x
- 26. Sies, H., and Jones, D.P. (2020). Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363-383. https://doi.org/10.1038/s41580-020-0230-3
- 27. Ermolaeva, M., Neri, F., Ori, A., and Rudolph, K.L. (2018). Cellular and epigenetic drivers of stem cell ageing. Nat. Rev. Mol. Cell Biol. 19, 594-610. https://doi.org/10.1038/s41580-018-0020-3.
- 28. Gladyshev, V.N., Kritchevsky, S.B., Clarke, S.G., Cuervo, A.M., Fiehn, O., de Magalhães, J.P., Mau, T., Maes, M., Moritz, R., Niedernhofer, L.J., et al. (2021). Molecular damage in aging. Nat. Aging 1, 1096-1106. https://doi.org/10.1038/s43587-021-00150-3.
- 29. Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., et al. (2018). Oxidative stress, aging, and diseases. Clin. Interv. Aging 13, 757-772. https://doi. org/10.2147/CIA.S158513.
- 30. Cheng, F., Ji, Q., Wang, L., Wang, C.C., Liu, G.H., and Wang, L. (2023). Reducing oxidative protein folding alleviates senescence by minimizing ER-to-nucleus H2O2 release. EMBO Rep. 24, e56439. https://doi.org/ 10.15252/embr.202256439.
- 31. Vendrov, A.E., Vendrov, K.C., Smith, A., Yuan, J., Sumida, A., Robidoux, J., Runge, M.S., and Madamanchi, N.R. (2015). NOX4 NADPH oxidasedependent mitochondrial oxidative stress in aging-associated cardiovascular disease. Antioxid. Redox Signal. 23, 1389-1409. https://doi. org/10.1089/ars.2014.6221.
- 32. McCrann, D.J., Yang, D., Chen, H., Carroll, S., and Ravid, K. (2009). Upregulation of Nox4 in the aging vasculature and its association with smooth muscle cell polyploidy. Cell Cycle 8, 902-908. https://doi.org/ 10.4161/cc.8.6.7900
- 33. Weyemi, U., Lagente-Chevallier, O., Boufraqech, M., Prenois, F., Courtin, F., Caillou, B., Talbot, M., Dardalhon, M., Al Ghuzlan, A., Bidart, J.M., et al. (2012). ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. Oncogene 31, 1117-1129. https://doi.org/10.1038/onc.2011.327
- 34. Sanders, Y.Y., Liu, H., Liu, G., and Thannickal, V.J. (2015). Epigenetic mechanisms regulate NADPH oxidase-4 expression in cellular senescence. Free Radic. Biol. Med. 79, 197-205. https://doi.org/10.1016/j. freeradbiomed.2014.12.008.
- 35. Jung, Y.D., Park, S.K., Kang, D., Hwang, S., Kang, M.H., Hong, S.W., Moon, J.H., Shin, J.S., Jin, D.H., You, D., et al. (2020). Epigenetic regulation of miR-29a/miR-30c/DNMT3A axis controls SOD2 and mitochondrial oxidative stress in human mesenchymal stem cells. Redox Biol. 37, 101716. https://doi.org/10.1016/j.redox.2020.101716.
- 36. Roman, J., Zhu, J., Ritzenthaler, J.D., and Zelko, I.N. (2017). Epigenetic regulation of EC-SOD expression in aging lung fibroblasts: role of histone acetylation. Free Radic. Biol. Med. 112, 212-223. https://doi.org/10. 1016/j.freeradbiomed.2017.07.028.
- 37. Yang, J., Li, J., Suzuki, K., Liu, X., Wu, J., Zhang, W., Ren, R., Zhang, W., Chan, P., Izpisua Belmonte, J.C., et al. (2017). Genetic enhancement in cultured human adult stem cells conferred by a single nucleotide recoding. Cell Res. 27, 1178-1181. https://doi.org/10.1038/cr.2017.86.
- 38. Thiruvengadam, M., Venkidasamy, B., Subramanian, U., Samynathan, R., Ali Shariati, M., Rebezov, M., Girish, S., Thangavel, S., Dhanapal, A.R., Fedoseeva, N., et al. (2021). Bioactive compounds in oxidative stress-mediated diseases: targeting the NRF2/ARE signaling pathway and epigenetic regulation. Antioxidants (Basel) 10. https://doi.org/10. 3390/antiox10121859.

- 39. Pan, H., Guan, D., Liu, X., Li, J., Wang, L., Wu, J., Zhou, J., Zhang, W., Ren, R., Zhang, W., et al. (2016). SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res. 26, 190-205. https://doi.org/10.1038/cr.2016.4.
- 40. Diao, Z., Ji, Q., Wu, Z., Zhang, W., Cai, Y., Wang, Z., Hu, J., Liu, Z., Wang, Q., Bi, S., et al. (2021). SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res. 49, 4203-4219. https://doi.org/10. 1093/nar/gkab161.
- 41. Bi, S., Liu, Z., Wu, Z., Wang, Z., Liu, X., Wang, S., Ren, J., Yao, Y., Zhang, W., Song, M., et al. (2020). SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein Cell 11, 483-504. https://doi.org/10. 1007/s13238-020-00728-4.
- 42. Gu, X., Sun, J., Li, S., Wu, X., and Li, L. (2013). Oxidative stress induces DNA demethylation and histone acetylation in SH-SY5Y cells: potential epigenetic mechanisms in gene transcription in Aß production. Neurobiol. Aging 34, 1069-1079. https://doi.org/10.1016/j.neurobiolaging. 2012.10.013.
- 43. Orioli, D., and Dellambra, E. (2018). Epigenetic regulation of skin cells in natural aging and premature aging diseases. Cells 7. https://doi.org/10.
- 44. Yi, Y., Xie, H., Xiao, X., Wang, B., Du, R., Liu, Y., Li, Z., Wang, J., Sun, L., Deng, Z., et al. (2018). Ultraviolet A irradiation induces senescence in human dermal fibroblasts by down-regulating DNMT1 via ZEB1. Aging (Albany, NY) 10, 212-228. https://doi.org/10.18632/aging.101383
- 45. Chen, Q., Tang, L., Xin, G., Li, S., Ma, L., Xu, Y., Zhuang, M., Xiong, Q., Wei, Z., Xing, Z., et al. (2019). Oxidative stress mediated by lipid metabolism contributes to high glucose-induced senescence in retinal pigment epithelium. Free Radic. Biol. Med. 130, 48-58. https://doi.org/ 10.1016/j.freeradbiomed.2018.10.419.
- 46. Safi, S.Z., Qvist, R., Yan, G.O., and Ismail, I.S. (2014). Differential expression and role of hyperglycemia induced oxidative stress in epigenetic regulation of β 1, β 2 and β 3-adrenergic receptors in retinal endothelial cells. BMC Med. Genomics 7, 29. https://doi.org/10.1186/1755-8794-
- 47. Polsky, L.R., Rentscher, K.E., and Carroll, J.E. (2022). Stress-induced biological aging: a review and guide for research priorities. Brain Behav. Immun. 104, 97-109. https://doi.org/10.1016/j.bbi.2022.05.016.
- 48. Zannas, A.S. (2019). Epigenetics as a key link between psychosocial stress and aging: concepts, evidence, mechanisms. Dialogues Clin. Neurosci. 21, 389–396. https://doi.org/10.31887/DCNS.2019.21.4/ azannas.
- 49. Li, Q., Li, X., Tang, H., Jiang, B., Dou, Y., Gorospe, M., and Wang, W. (2017). NSUN2-mediated m5C methylation and METTL3/METTL14mediated m6A methylation cooperatively enhance p21 translation. J. Cell. Biochem. 118, 2587-2598. https://doi.org/10.1002/jcb.25957
- 50. Peng, S., Zhao, S., Yan, F., Cheng, J., Huang, L., Chen, H., Liu, Q., Ji, X., and Yuan, Z. (2015). HDAC2 selectively regulates FOXO3a-mediated gene transcription during oxidative stress-induced neuronal cell death. J. Neurosci. 35, 1250–1259. https://doi.org/10.1523/JNEUROSCI. 2444-14.2015.
- 51. Aitbaev, K.A., Murkamilov, I.T., and Fomin, V.V. (2019). Molecular mechanisms of aging: the role of oxidative stress and epigenetic modifications. Adv. Gerontol. 32, 20-28.
- 52. Schroeder, E.A., Raimundo, N., and Shadel, G.S. (2013). Epigenetic silencing mediates mitochondria stress-induced longevity. Cell Metab. 17, 954-964. https://doi.org/10.1016/j.cmet.2013.04.003
- 53. Bazopoulou, D., Knoefler, D., Zheng, Y., Ulrich, K., Oleson, B.J., Xie, L., Kim, M., Kaufmann, A., Lee, Y.T., Dou, Y., et al. (2019). Developmental ROS individualizes organismal stress resistance and lifespan. Nature 576, 301-305. https://doi.org/10.1038/s41586-019-1814-y
- 54. Berti, M., Cortez, D., and Lopes, M. (2020). The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat. Rev. Mol. Cell Biol. 21, 633-651. https://doi.org/10.1038/s41580-020-0257-5.

- 55. Schumacher, B., Pothof, J., Vijg, J., and Hoeijmakers, J.H.J. (2021). The central role of DNA damage in the ageing process. Nature 592, 695-703. https://doi.org/10.1038/s41586-021-03307-7
- 56. Soto-Palma, C., Niedernhofer, L.J., Faulk, C.D., and Dong, X. (2022). Epigenetics, DNA damage, and aging. J. Clin. Invest. 132. https://doi.org/ 10.1172/JCI158446.
- 57. López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153, 1194–1217. https://doi.org/10. 1016/j.cell.2013.05.039.
- 58. Zhang, W., Li, J., Suzuki, K., Qu, J., Wang, P., Zhou, J., Liu, X., Ren, R., Xu, X., Ocampo, A., et al. (2015). Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348, 1160-1163. https://doi.org/10.1126/science.
- 59. Wu, Z., Zhang, W., Song, M., Wang, W., Wei, G., Li, W., Lei, J., Huang, Y., Sang, Y., Chan, P., et al. (2018). Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome. Protein Cell 9, 333-350. https://doi.org/10.1007/s13238-018-0517-8.
- 60. McCord, R.P., Nazario-Toole, A., Zhang, H., Chines, P.S., Zhan, Y., Erdos, M.R., Collins, F.S., Dekker, J., and Cao, K. (2013). Correlated alterations in genome organization, histone methylation, and DNA-lamin A/C interactions in Hutchinson-Gilford progeria syndrome. Genome Res. 23, 260-269. https://doi.org/10.1101/gr.138032.112.
- 61. Liu, Z., Ji, Q., Ren, J., Yan, P., Wu, Z., Wang, S., Sun, L., Wang, Z., Li, J., Sun, G., et al. (2022). Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging. Dev. Cell 57, 1347-1368.e12. https://doi.org/10.1016/j.devcel.2022.05.004.
- 62. Wu, Z., Shi, Y., Lu, M., Song, M., Yu, Z., Wang, J., Wang, S., Ren, J., Yang, Y.G., Liu, G.H., et al. (2020). METTL3 counteracts premature aging via m6A-dependent stabilization of MIS12 mRNA. Nucleic Acids Res. 48, 11083-11096, https://doi.org/10.1093/nar/gkaa816.
- 63. Fu, L., Xu, X., Ren, R., Wu, J., Zhang, W., Yang, J., Ren, X., Wang, S., Zhao, Y., Sun, L., et al. (2016). Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs. Protein Cell 7, 210-221. https://doi.org/10.1007/s13238-016-0244-y.
- 64. Wang, S., Min, Z., Ji, Q., Geng, L., Su, Y., Liu, Z., Hu, H., Wang, L., Zhang, W., Suzuiki, K., et al. (2020). Rescue of premature aging defects in Cockayne syndrome stem cells by CRISPR/Cas9-mediated gene correction. Protein Cell 11, 1-22. https://doi.org/10.1007/s13238-019-0623-2.
- 65. Yang, J.H., Hayano, M., Griffin, P.T., Amorim, J.A., Bonkowski, M.S., Apostolides, J.K., Salfati, E.L., Blanchette, M., Munding, E.M., Bhakta, M., et al. (2023). Loss of epigenetic information as a cause of mammalian aging. Cell 186, 305-326.e27. https://doi.org/10.1016/j.cell.2022. 12.027.
- 66. Jacob, K.D., Noren Hooten, N., Trzeciak, A.R., and Evans, M.K. (2013). Markers of oxidant stress that are clinically relevant in aging and agerelated disease. Mech. Ageing Dev. 134, 139-157. https://doi.org/10. 1016/i.mad.2013.02.008.
- 67. Hahm, J.Y., Park, J., Jang, E.S., and Chi, S.W. (2022). 8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification. Exp. Mol. Med. 54, 1626-1642. https://doi.org/10.1038/s12276-022
- 68. MacArthur, I.C., and Dawlaty, M.M. (2021). TET enzymes and 5-hydroxymethylcytosine in neural progenitor cell biology and neurodevelopment. Front. Cell Dev. Biol. 9, 645335. https://doi.org/10.3389/ fcell.2021.645335.
- 69. Kafer, G.R., Li, X., Horii, T., Suetake, I., Tajima, S., Hatada, I., and Carlton, P.M. (2016). 5-Hydroxymethylcytosine marks sites of DNA damage and promotes genome stability. Cell Rep. 14, 1283-1292. https://doi.org/ 10.1016/j.celrep.2016.01.035.
- 70. Flach, J., Bakker, S.T., Mohrin, M., Conroy, P.C., Pietras, E.M., Reynaud, D., Alvarez, S., Diolaiti, M.E., Ugarte, F., Forsberg, E.C., et al. (2014). Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 512, 198-202. https://doi.org/10.1038/ nature13619.

- 71. Blackburn, E.H., Epel, E.S., and Lin, J. (2015). Human telomere biology: a contributory and interactive factor in aging, disease risks, and protection. Science 350, 1193-1198. https://doi.org/10.1126/science.aab3389.
- 72. Rossiello, F., Jurk, D., Passos, J.F., and d'Adda di Fagagna, F. (2022). Telomere dysfunction in ageing and age-related diseases. Nat. Cell Biol. 24, 135-147. https://doi.org/10.1038/s41556-022-00842-x.
- 73. Diao, D., Wang, H., Li, T., Shi, Z., Jin, X., Sperka, T., Zhu, X., Zhang, M., Yang, F., Cong, Y., et al. (2018). Telomeric epigenetic response mediated by Gadd45a regulates stem cell aging and lifespan. EMBO Rep. 19. https://doi.org/10.15252/embr.201745494.
- 74. Dong, Y., Huang, Y., Gutin, B., Raed, A., Dong, Y., and Zhu, H. (2017). Associations between global DNA methylation and telomere length in healthy adolescents. Sci. Rep. 7, 4210. https://doi.org/10.1038/ s41598-017-04493-z.
- 75. Tang, H., Wang, H., Cheng, X., Fan, X., Yang, F., Zhang, M., Chen, Y., Tian, Y., Liu, C., Shao, D., et al. (2018). HuR regulates telomerase activity through TERC methylation. Nat. Commun. 9, 2213. https://doi.org/10. 1038/s41467-018-04617-7
- 76. Chen, L., Zhang, C., Ma, W., Huang, J., Zhao, Y., and Liu, H. (2022). METTL3-mediated m6A modification stabilizes TERRA and maintains telomere stability. Nucleic Acids Res. 50, 11619-11634. https://doi.org/ 10.1093/nar/qkac1027.
- 77. Blasco, M.A. (2007). The epigenetic regulation of mammalian telomeres. Nat. Rev. Genet. 8, 299-309. https://doi.org/10.1038/nrg2047.
- 78. Varshney, D., Spiegel, J., Zyner, K., Tannahill, D., and Balasubramanian, S. (2020). The regulation and functions of DNA and RNA G-quadruplexes. Nat. Rev. Mol. Cell Biol. 21, 459-474. https://doi.org/10.1038/s41580-
- 79. Zhao, Y., Simon, M., Seluanov, A., and Gorbunova, V. (2023). DNA damage and repair in age-related inflammation. Nat. Rev. Immunol. 23, 75-89. https://doi.org/10.1038/s41577-022-00751-y.
- 80. Zyner, K.G., Simeone, A., Flynn, S.M., Doyle, C., Marsico, G., Adhikari, S., Portella, G., Tannahill, D., and Balasubramanian, S. (2022). G-quadruplex DNA structures in human stem cells and differentiation. Nat. Commun. 13, 142. https://doi.org/10.1038/s41467-021-27719-1.
- 81. Hanna, R., Flamier, A., Barabino, A., and Bernier, G. (2021). G-quadruplexes originating from evolutionary conserved L1 elements interfere with neuronal gene expression in Alzheimer's disease. Nat. Commun. 12, 1828. https://doi.org/10.1038/s41467-021-22129-9.
- 82. Yan, P., Liu, Z., Song, M., Wu, Z., Xu, W., Li, K., Ji, Q., Wang, S., Liu, X., Yan, K., et al. (2020). Genome-wide R-loop landscapes during cell differentiation and reprogramming. Cell Rep. 32, 107870. https://doi.org/10. 1016/j.celrep.2020.107870.
- 83. Marabitti, V., Lillo, G., Malacaria, E., Palermo, V., Sanchez, M., Pichierri, P., and Franchitto, A. (2019). ATM pathway activation limits R-loopassociated genomic instability in Werner syndrome cells. Nucleic Acids Res. 47, 3485-3502. https://doi.org/10.1093/nar/gkz025.
- 84. Jauregui-Lozano, J., Escobedo, S., Easton, A., Lanman, N.A., Weake, V.M., and Hall, H. (2022). Proper control of R-loop homeostasis is required for maintenance of gene expression and neuronal function during aging. Aging Cell 21, e13554. https://doi.org/10.1111/acel.13554
- 85. Carelli, V., Hirano, M., Enríquez, J.A., and Chinnery, P.F. (2022). Implications of mitochondrial DNA mutations in human induced pluripotent stem cells. Nat. Rev. Genet. 23, 69-70. https://doi.org/10.1038/s41576-021-00430-z.
- 86. Guo, X., Xu, W., Zhang, W., Pan, C., Thalacker-Mercer, A.E., Zheng, H., and Gu, Z. (2023). High-frequency and functional mitochondrial DNA mutations at the single-cell level. Proc. Natl. Acad. Sci. USA 120, e2201518120. https://doi.org/10.1073/pnas.2201518120.
- 87. Vandiver, A.R., Hoang, A.N., Herbst, A., Lee, C.C., Aiken, J.M., McKenzie, D., Teitell, M.A., Timp, W., and Wanagat, J. (2023). Nanopore sequencing identifies a higher frequency and expanded spectrum of mitochondrial DNA deletion mutations in human aging. Aging Cell 22, e13842. https://doi.org/10.1111/acel.13842.

- 88. Smith, A.L., Whitehall, J.C., Bradshaw, C., Gay, D., Robertson, F., Blain, A.P., Hudson, G., Pyle, A., Houghton, D., Hunt, M., et al. (2020). Ageassociated mitochondrial DNA mutations cause metabolic remodelling that contributes to accelerated intestinal tumorigenesis. Nat. Cancer 1, 976-989. https://doi.org/10.1038/s43018-020-00112-5.
- 89. Stimpfel, M., Jancar, N., and Virant-Klun, I. (2018). New challenge: mitochondrial epigenetics? Stem Cell Rev. Rep. 14, 13-26. https://doi.org/ 10.1007/s12015-017-9771-z.
- 90. Amorim, J.A., Coppotelli, G., Rolo, A.P., Palmeira, C.M., Ross, J.M., and Sinclair, D.A. (2022). Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat. Rev. Endocrinol. 18, 243-258. https://doi. org/10.1038/s41574-021-00626-7.
- 91. Sandalova, E., Goh, J., Lim, Z.X., Lim, Z.M., Barardo, D., Dorajoo, R., Kennedy, B.K., and Maier, A.B. (2023). Alpha-ketoglutarate supplementation and BiologicaL agE in middle-aged adults (ABLE)-intervention study protocol. GeroScience. https://doi.org/10.1007/s11357-023-00813-6
- 92. Wang, Y., Deng, P., Liu, Y., Wu, Y., Chen, Y., Guo, Y., Zhang, S., Zheng, X., Zhou, L., Liu, W., et al. (2020). Alpha-ketoglutarate ameliorates agerelated osteoporosis via regulating histone methylations. Nat. Commun. 11, 5596. https://doi.org/10.1038/s41467-020-19360-1.
- 93. Fries, G.R., Bauer, I.E., Scaini, G., Wu, M.J., Kazimi, I.F., Valvassori, S.S., Zunta-Soares, G., Walss-Bass, C., Soares, J.C., and Quevedo, J. (2017). Accelerated epigenetic aging and mitochondrial DNA copy number in bipolar disorder. Transl. Psychiatry 7, 1283. https://doi.org/10.1038/s41398-017-0048-8.
- 94. Dolcini, J., Wu, H., Nwanaji-Enwerem, J.C., Kiomourtozlogu, M.A., Cayir, A., Sanchez-Guerra, M., Vokonas, P., Schwarz, J., and Baccarelli, A.A. (2020). Mitochondria and aging in older individuals: an analysis of DNA methylation age metrics, leukocyte telomere length, and mitochondrial DNA copy number in the VA normative aging study. Aging 12, 2070-2083. https://doi.org/10.18632/aging.102722.
- 95. Papathanasiou, S., Mynhier, N.A., Liu, S., Brunette, G., Stokasimov, E., Jacob, E., Li, L., Comenho, C., van Steensel, B., Buenrostro, J.D., et al. (2023). Heritable transcriptional defects from aberrations of nuclear architecture. Nature 619, 184-192. https://doi.org/10.1038/s41586-023-
- 96. Agustinus, A.S., Al-Rawi, D., Dameracharla, B., Raviram, R., Jones, B.S.C.L., Stransky, S., Scipioni, L., Luebeck, J., Di Bona, M., Norkunaite, D., et al. (2023). Epigenetic dysregulation from chromosomal transit in micronuclei. Nature 619, 176-183. https://doi.org/10.1038/s41586-
- 97. Miller, K.N., Victorelli, S.G., Salmonowicz, H., Dasgupta, N., Liu, T., Passos, J.F., and Adams, P.D. (2021). Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell 184, 5506-5526. https://doi.org/10.
- 98. de Oliveira, N.F.P., de Souza, B.F., and de Castro Coêlho, M. (2020). UV radiation and its relation to DNA methylation in epidermal cells: a review. Epigenomes 4. https://doi.org/10.3390/epigenomes4040023.
- 99. Xiang, Y., Laurent, B., Hsu, C.H., Nachtergaele, S., Lu, Z., Sheng, W., Xu, C., Chen, H., Ouyang, J., Wang, S., et al. (2017). RNA m⁶A methylation regulates the ultraviolet-induced DNA damage response. Nature 543, 573-576. https://doi.org/10.1038/nature21671.
- 100. Wu, Z., Lu, M., Liu, D., Shi, Y., Ren, J., Wang, S., Jing, Y., Zhang, S., Zhao, Q., Li, H., et al. (2023). m6A epitranscriptomic regulation of tissue homeostasis during primate aging. Nat. Aging 3, 705-721. https://doi. org/10.1038/s43587-023-00393-2.
- $101.\ Yu,Y.,Zhang,X.,Liu,F.,Zhu,P.,Zhang,L.,Peng,Y.,Yan,X.,Li,Y.,Hua,$ P., Liu, C., et al. (2021). A stress-induced miR-31-CLOCK-ERK pathway is a key driver and therapeutic target for skin aging. Nat. Aging 1, 795-809. https://doi.org/10.1038/s43587-021-00094-8.
- 102. Zhang, B., Long, Q., Wu, S., Xu, Q., Song, S., Han, L., Qian, M., Ren, X., Liu, H., Jiang, J., et al. (2021). KDM4 orchestrates epigenomic remodeling of senescent cells and potentiates the senescence-associated secretory phenotype. Nat. Aging 1, 454-472. https://doi.org/10.1038/s43587-021-00063-1.

- 103. Di Micco, R., Sulli, G., Dobreva, M., Liontos, M., Botrugno, O.A., Gargiulo, G., dal Zuffo, R., Matti, V., d'Ario, G., Montani, E., et al. (2011). Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nat. Cell Biol. 13, 292-302. https://doi.org/10.1038/ncb2170.
- 104. Sati, S., Bonev, B., Szabo, Q., Jost, D., Bensadoun, P., Serra, F., Loubiere, V., Papadopoulos, G.L., Rivera-Mulia, J.C., Fritsch, L., et al. (2020). 4D genome rewiring during oncogene-induced and replicative senescence. Mol. Cell 78, 522–538.e9. https://doi.org/10.1016/j.molcel.2020.03.007.
- Tomimatsu, K., Bihary, D., Olan, I., Parry, A.J., Schoenfelder, S., Chan, A.S.L., Slater, G.S.C., Ito, Y., Rugg-Gunn, P.J., Kirschner, K., et al. (2022). Locus-specific induction of gene expression from heterochromatin loci during cellular senescence. Nat. Aging 2, 31-45. https://doi. org/10.1038/s43587-021-00147-y.
- 106. Martins de Carvalho, L., Wiers, C.E., Manza, P., Sun, H., Schwandt, M., Wang, G.J., Grassi-Oliveira, R., Godard, A.L.B., and Volkow, N.D. (2019). Effect of alcohol use disorder on cellular aging. Psychopharmacol. (Berl.) 236, 3245-3255. https://doi.org/10.1007/s00213-019-05281-5
- 107. Jung, J., McCartney, D.L., Wagner, J., Rosoff, D.B., Schwandt, M., Sun, H., Wiers, C.E., de Carvalho, L.M., Volkow, N.D., Walker, R.M., et al. (2022). Alcohol use disorder is associated with DNA methylation-based shortening of telomere length and regulated by TESPA1: implications for aging. Mol. Psychiatry 27, 3875-3884. https://doi.org/10.1038/ s41380-022-01624-5.
- 108. Garaycoechea, J.I., Crossan, G.P., Langevin, F., Mulderrig, L., Louzada, S., Yang, F., Guilbaud, G., Park, N., Roerink, S., Nik-Zainal, S., et al. (2018). Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells. Nature 553, 171-177. https://doi.org/10.1038/ nature25154.
- 109. Cardenas, A., Ecker, S., Fadadu, R.P., Huen, K., Orozco, A., McEwen, L.M., Engelbrecht, H.R., Gladish, N., Kobor, M.S., Rosero-Bixby, L., et al. (2022). Epigenome-wide association study and epigenetic age acceleration associated with cigarette smoking among Costa Rican adults. Sci. Rep. 12, 4277. https://doi.org/10.1038/s41598-022-08160-w.
- 110. Alexandrov, L.B., Ju, Y.S., Haase, K., Van Loo, P., Martincorena, I., Nik-Zainal, S., Totoki, Y., Fujimoto, A., Nakagawa, H., Shibata, T., et al. (2016). Mutational signatures associated with tobacco smoking in human cancer. Science 354, 618-622. https://doi.org/10.1126/science.
- 111. Yoshida, K., Gowers, K.H.C., Lee-Six, H., Chandrasekharan, D.P., Coorens, T., Maughan, E.F., Beal, K., Menzies, A., Millar, F.R., Anderson, E., et al. (2020). Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266-272. https://doi.org/10.1038/s41586-
- 112. Cheung, V., Yuen, V.M., Wong, G.T.C., and Choi, S.W. (2019). The effect of sleep deprivation and disruption on DNA damage and health of doctors. Anaesthesia 74, 434-440. https://doi.org/10.1111/anae.14533.
- 113. Gaine, M.E., Chatterjee, S., and Abel, T. (2018). Sleep deprivation and the epigenome. Front. Neural Circuits 12, 14. https://doi.org/10.3389/fncir.
- 114. Carroll, J.E., Cole, S.W., Seeman, T.E., Breen, E.C., Witarama, T., Arevalo, J.M.G., Ma, J., and Irwin, M.R. (2016). Partial sleep deprivation activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in aged adult humans. Brain Behav. Immun. 51, 223-229. https://doi.org/10.1016/j.bbi.2015.08.024.
- 115. Carroll, J.E., and Prather, A.A. (2021). Sleep and biological aging: A short review. Curr. Opin. Endocr. Metab. Res. 18, 159-164. https://doi.org/10. 1016/j.coemr.2021.03.021.
- 116. Li, X., Li, C., Zhang, W., Wang, Y., Qian, P., and Huang, H. (2023). Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct. Target. Ther. 8, 239. https://doi.org/10.1038/s41392-023-
- 117. Bogeska, R., Mikecin, A.M., Kaschutnig, P., Fawaz, M., Büchler-Schäff, M., Le, D., Ganuza, M., Vollmer, A., Paffenholz, S.V., Asada, N., et al. (2022). Inflammatory exposure drives long-lived impairment of

- hematopoietic stem cell self-renewal activity and accelerated aging. Cell Stem Cell 29, 1273-1284.e8. https://doi.org/10.1016/j.stem.2022.
- 118. Franceschi, C., Garagnani, P., Parini, P., Giuliani, C., and Santoro, A. (2018). Inflammaging: a new immune-metabolic viewpoint for agerelated diseases. Nat. Rev. Endocrinol. 14, 576-590. https://doi.org/10. 1038/s41574-018-0059-4.
- 119. Moiseeva, V., Cisneros, A., Sica, V., Deryagin, O., Lai, Y., Jung, S., Andrés, E., An, J., Segalés, J., Ortet, L., et al. (2023). Senescence atlas reveals an aged-like inflamed niche that blunts muscle regeneration. Nature 613, 169-178. https://doi.org/10.1038/s41586-022
- 120. Sayed, N., Huang, Y., Nguyen, K., Krejciova-Rajaniemi, Z., Grawe, A.P., Gao, T., Tibshirani, R., Hastie, T., Alpert, A., Cui, L., et al. (2021). An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat. Aging 1, 598-615. https://doi.org/10.1038/s43587-021-00082-y.
- 121. Bick, A.G., Pirruccello, J.P., Griffin, G.K., Gupta, N., Gabriel, S., Saleheen, D., Libby, P., Kathiresan, S., and Natarajan, P. (2020). Genetic interleukin 6 signaling deficiency attenuates cardiovascular risk in clonal hematopoiesis. Circulation 141, 124-131. https://doi.org/10.1161/CIR-CULATIONAHA.119.044362.
- 122. Liao, M., Chen, R., Yang, Y., He, H., Xu, L., Jiang, Y., Guo, Z., He, W., Jiang, H., and Wang, J. (2022). Aging-elevated inflammation promotes DNMT3A R878H-driven clonal hematopoiesis. Acta Pharm. Sin. B 12, 678-691. https://doi.org/10.1016/j.apsb.2021.09.015.
- 123. Gorbunova, V., Seluanov, A., Mita, P., McKerrow, W., Fenyö, D., Boeke, J.D., Linker, S.B., Gage, F.H., Kreiling, J.A., Petrashen, A.P., et al. (2021). The role of retrotransposable elements in ageing and age-associated diseases. Nature 596, 43-53. https://doi.org/10.1038/s41586-021-03542-y.
- 124. Liang, C., Liu, Z., Song, M., Li, W., Wu, Z., Wang, Z., Wang, Q., Wang, S. Yan, K., Sun, L., et al. (2021). Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Res. 31, 187-205. https://doi.org/10.1038/s41422-020-0385-7.
- 125. Liang, C., Ke, Q., Liu, Z., Ren, J., Zhang, W., Hu, J., Wang, Z., Chen, H., Xia, K., Lai, X., et al. (2022). BMAL1 moonlighting as a gatekeeper for LINE1 repression and cellular senescence in primates. Nucleic Acids Res. 50, 3323-3347. https://doi.org/10.1093/nar/gkac146.
- 126. De Cecco, M., Ito, T., Petrashen, A.P., Elias, A.E., Skvir, N.J., Criscione, S.W., Caligiana, A., Brocculi, G., Adney, E.M., Boeke, J.D., et al. (2019). L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78. https://doi.org/10.1038/s41586-018-0784-9.
- 127. Simon, M., Van Meter, M., Ablaeva, J., Ke, Z., Gonzalez, R.S., Taguchi, T., De Cecco, M., Leonova, K.I., Kogan, V., Helfand, S.L., et al. (2019). LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab. 29, 871-885.e5. https://doi.org/10.1016/j. cmet.2019.02.014.
- 128. Liu, X., Liu, Z., Wu, Z., Ren, J., Fan, Y., Sun, L., Cao, G., Niu, Y., Zhang, B., Ji, Q., et al. (2023). Resurrection of endogenous retroviruses during aging reinforces senescence. Cell 186, 287-304.e26. https://doi.org/10.1016/j.
- 129. Zhang, H., Li, J., Yu, Y., Ren, J., Liu, Q., Bao, Z., Sun, S., Liu, X., Ma, S., Liu, Z., et al. (2023). Nuclear lamina erosion-induced resurrection of endogenous retroviruses underlies neuronal aging. Cell Rep. 42, 112593. https://doi.org/10.1016/j.celrep.2023.112593
- 130. Chelmicki, T., Roger, E., Teissandier, A., Dura, M., Bonneville, L., Rucli, S., Dossin, F., Fouassier, C., Lameiras, S., and Bourc'his, D. (2021). m⁶A RNA methylation regulates the fate of endogenous retroviruses. Nature 591, 312-316. https://doi.org/10.1038/s41586-020-03135-1.
- 131. Wei, J., Yu, X., Yang, L., Liu, X., Gao, B., Huang, B., Dou, X., Liu, J., Zou, Z., Cui, X.L., et al. (2022). FTO mediates LINE1 m6A demethylation and chromatin regulation in mESCs and mouse development. Science 376, 968-973. https://doi.org/10.1126/science.abe9582
- 132. Xu, W., Li, J., He, C., Wen, J., Ma, H., Rong, B., Diao, J., Wang, L., Wang, J., Wu, F., et al. (2021). METTL3 regulates heterochromatin in mouse embryonic stem cells. Nature 591, 317-321. https://doi.org/10.1038/ s41586-021-03210-1.

- 133. Gulen, M.F., Samson, N., Keller, A., Schwabenland, M., Liu, C., Glück, S., Thacker, V.V., Favre, L., Mangeat, B., Kroese, L.J., et al. (2023). cGAS-STING drives ageing-related inflammation and neurodegeneration. Nature 620, 374-380. https://doi.org/10.1038/s41586-023-06373-1.
- 134. Miyata, K., Imai, Y., Hori, S., Nishio, M., Loo, T.M., Okada, R., Yang, L., Nakadai, T., Maruyama, R., Fujii, R., et al. (2021). Pericentromeric non-coding RNA changes DNA binding of CTCF and inflammatory gene expression in senescence and cancer. Proc. Natl. Acad. Sci. USA 118. https://doi.org/10.1073/pnas.2025647118.
- 135. Guan, Y., Zhang, C., Lyu, G., Huang, X., Zhang, X., Zhuang, T., Jia, L., Zhang, L., Zhang, C., Li, C., et al. (2020). Senescence-activated enhancer landscape orchestrates the senescence-associated secretory phenotype in murine fibroblasts. Nucleic Acids Res. 48, 10909-10923. https://doi.org/10.1093/nar/gkaa858.
- 136. Liu, P., Li, F., Lin, J., Fukumoto, T., Nacarelli, T., Hao, X., Kossenkov, A.V., Simon, M.C., and Zhang, R. (2021). m⁶A-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype. Nat. Cell Biol. 23, 355-365. https://doi.org/10.
- 137. Schmitt, C.A., Tchkonia, T., Niedernhofer, L.J., Robbins, P.D., Kirkland, J.L., and Lee, S. (2023). COVID-19 and cellular senescence. Nat. Rev. Immunol. 23, 251-263. https://doi.org/10.1038/s41577-022-00785-2
- 138. Bartleson, J.M., Radenkovic, D., Covarrubias, A.J., Furman, D., Winer, D.A., and Verdin, E. (2021). SARS-CoV-2, COVID-19 and the ageing immune system. Nat. Aging 1, 769-782. https://doi.org/10.1038/s435
- 139. Lee, S., Yu, Y., Trimpert, J., Benthani, F., Mairhofer, M., Richter-Pechanska, P., Wyler, E., Belenki, D., Kaltenbrunner, S., Pammer, M., et al. (2021). Virus-induced senescence is a driver and therapeutic target in COVID-19. Nature 599, 283-289. https://doi.org/10.1038/s41586-021-
- 140. Meyer, K., Patra, T., Vijayamahantesh, and Ray, R. (2021). SARS-CoV-2 Spike protein induces paracrine senescence and leukocyte adhesion in endothelial cells. J. Virol. 95, e0079421. https://doi.org/10.1128/JVI.
- 141. Wang, S., Yao, X., Ma, S., Ping, Y., Fan, Y., Sun, S., He, Z., Shi, Y., Sun, L., Xiao, S., et al. (2021). A single-cell transcriptomic landscape of the lungs of patients with COVID-19. Nat. Cell Biol. 23, 1314-1328. https:// doi.org/10.1038/s41556-021-00796-6.
- 142. Kee, J., Thudium, S., Renner, D.M., Glastad, K., Palozola, K., Zhang, Z., Li, Y., Lan, Y., Cesare, J., Poleshko, A., et al. (2022). SARS-CoV-2 disrupts host epigenetic regulation via histone mimicry. Nature 610, 381-388. https://doi.org/10.1038/s41586-022-05282-z.
- 143. Ho, J.S.Y., Mok, B.W., Campisi, L., Jordan, T., Yildiz, S., Parameswaran, S., Wayman, J.A., Gaudreault, N.N., Meekins, D.A., Indran, S.V., et al. (2021). Top1 inhibition therapy protects against SARS-CoV-2-induced lethal inflammation. Cell 184, 2618-2632.e17. https://doi.org/10.1016/j. cell.2021.03.051.
- 144. Zazhytska, M., Kodra, A., Hoagland, D.A., Frere, J., Fullard, J.F., Shayya, H., McArthur, N.G., Moeller, R., Uhl, S., Omer, A.D., et al. (2022). Noncell-autonomous disruption of nuclear architecture as a potential cause of COVID-19-induced anosmia. Cell 185, 1052-1064.e12. https://doi. org/10.1016/j.cell.2022.01.024.
- 145. Gioia, U., Tavella, S., Martínez-Orellana, P., Cicio, G., Colliva, A., Ceccon, M., Cabrini, M., Henriques, A.C., Fumagalli, V., Paldino, A., et al. (2023). SARS-CoV-2 infection induces DNA damage, through CHK1 degradation and impaired 53BP1 recruitment, and cellular senescence. Nat. Cell Biol. 25, 550-564. https://doi.org/10.1038/s41556-023-01096-x.
- 146. Ma, S., Sun, S., Li, J., Fan, Y., Qu, J., Sun, L., Wang, S., Zhang, Y., Yang, S., Liu, Z., et al. (2020). Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Res. 31, 415-432. https://doi.org/10.1038/ s41422-020-00412-6.
- 147. Zheng, Y., Liu, X., Le, W., Xie, L., Li, H., Wen, W., Wang, S., Ma, S., Huang, Z., Ye, J., et al. (2020). A human circulating immune cell landscape in aging and COVID-19. Protein Cell 11, 740-770. https://doi. org/10.1007/s13238-020-00762-2.

- 148. Camell, C.D., Yousefzadeh, M.J., Zhu, Y., Prata, L.G.P.L., Huggins, M.A., Pierson, M., Zhang, L., O'Kelly, R.D., Pirtskhalava, T., Xun, P., et al. (2021). Senolytics reduce coronavirus-related mortality in old mice. Science 373. https://doi.org/10.1126/science.abe4832.
- 149. Chen, M., and Lacey, R.E. (2018). Adverse childhood experiences and adult inflammation: findings from the 1958 British birth cohort. Brain Behav. Immun. 69, 582-590. https://doi.org/10.1016/j.bbi.2018.02.007.
- 150. Kim, K., Yaffe, K., Rehkopf, D.H., Zheng, Y., Nannini, D.R., Perak, A.M., Nagata, J.M., Miller, G.E., Zhang, K., Lloyd-Jones, D.M., et al. (2023). Association of adverse childhood experiences with accelerated epigenetic aging in midlife. JAMA Netw. Open 6, e2317987. https://doi.org/10.1001/ amanetworkopen.2023.17987
- 151. Ochi, S., and Dwivedi, Y. (2023). Dissecting early life stress-induced adolescent depression through epigenomic approach. Mol. Psychiatry 28, 141-153. https://doi.org/10.1038/s41380-022-01907-x.
- Boström, A.D.E., Andersson, P., Jamshidi, E., Wilczek, A., Nilsonne, Å., Rask-Andersen, M., Åsberg, M., and Jokinen, J. (2023). Accelerated epigenetic aging in women with emotionally unstable personality disorder and a history of suicide attempts. Transl. Psychiatry 13, 66. https:// doi.org/10.1038/s41398-023-02369-7.
- 153. Carroll, J.E., Ross, K.M., Horvath, S., Okun, M., Hobel, C., Rentscher, K.E., Coussons-Read, M., and Schetter, C.D. (2021). Postpartum sleep loss and accelerated epigenetic aging. Sleep Health 7, 362-367. https://doi.org/10.1016/j.sleh.2021.02.002.
- 154. Palmer, A.K., and Jensen, M.D. (2022). Metabolic changes in aging humans: current evidence and therapeutic strategies. J. Clin. Invest. 132. https://doi.org/10.1172/JCI158451.
- 155. Finkel, T. (2015). The metabolic regulation of aging. Nat. Med. 21, 1416-1423. https://doi.org/10.1038/nm.3998.
- 156. Wiley, C.D., and Campisi, J. (2021). The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat. Metab. 3, 1290-1301. https://doi.org/10.1038/s42255-021-00483-8.
- 157. Liu, Q., Zhu, F., Liu, X., Lu, Y., Yao, K., Tian, N., Tong, L., Figge, D.A., Wang, X., Han, Y., et al. (2022). Non-oxidative pentose phosphate pathway controls regulatory T cell function by integrating metabolism and epigenetics. Nat. Metab. 4, 559-574. https://doi.org/10.1038/ s42255-022-00575-z.
- 158. Raynor, J., Lages, C.S., Shehata, H., Hildeman, D.A., and Chougnet, C.A. (2012). Homeostasis and function of regulatory T cells in aging. Curr. Opin. Immunol. 24, 482-487. https://doi.org/10.1016/j.coi.2012.04.005.
- 159. Yucel, N., Wang, Y.X., Mai, T., Porpiglia, E., Lund, P.J., Markov, G., Garcia, B.A., Bendall, S.C., Angelo, M., and Blau, H.M. (2019). Glucose metabolism drives histone acetylation landscape transitions that dictate muscle stem cell function. Cell Rep. 27, 3939-3955.e6. https://doi.org/10. 1016/j.celrep.2019.05.092.
- Florian, M.C., Dörr, K., Niebel, A., Daria, D., Schrezenmeier, H., Rojewski, M., Filippi, M.D., Hasenberg, A., Gunzer, M., Scharffetter-Kochanek, K., et al. (2012). Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 10, 520-530. https://doi.org/10.1016/j.stem. 2012.04.007.
- 161. Li, X., Wang, J., Wang, L., Gao, Y., Feng, G., Li, G., Zou, J., Yu, M., Li, Y.F., Liu, C., et al. (2022). Lipid metabolism dysfunction induced by age-dependent DNA methylation accelerates aging. Signal Transduct. Target. Ther. 7, 162. https://doi.org/10.1038/s41392-022-00964-6.
- 162. Zou, F., Qiu, Y., Huang, Y., Zou, H., Cheng, X., Niu, Q., Luo, A., and Sun, J. (2021). Effects of short-chain fatty acids in inhibiting HDAC and activating p38 MAPK are critical for promoting B10 cell generation and function. Cell Death Dis. 12, 582. https://doi.org/10.1038/s41419-021-
- 163. Fellows, R., Denizot, J., Stellato, C., Cuomo, A., Jain, P., Stoyanova, E., Balázsi, S., Hajnády, Z., Liebert, A., Kazakevych, J., et al. (2018). Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nat. Commun. 9, 105. https://doi. org/10.1038/s41467-017-02651-5.

- 164. Claussnitzer, M., Dankel, S.N., Kim, K.H., Quon, G., Meuleman, W., Haugen, C., Glunk, V., Sousa, I.S., Beaudry, J.L., Puviindran, V., et al. (2015). FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373, 895–907. https://doi.org/10.1056/NEJMoa1502214.
- 165. Fischer, J., Koch, L., Emmerling, C., Vierkotten, J., Peters, T., Brüning, J.C., and Rüther, U. (2009). Inactivation of the FTO gene protects from obesity. Nature 458, 894-898. https://doi.org/10.1038/nature07848.
- 166. Zhang, S., Wu, Z., Shi, Y., Wang, S., Ren, J., Yu, Z., Huang, D., Yan, K., He, Y., Liu, X., et al. (2022). FTO stabilizes MIS12 and counteracts senescence. Protein Cell 13, 954-960. https://doi.org/10.1007/s13238-022-
- 167. Wu, Y., Tang, L., Huang, H., Yu, Q., Hu, B., Wang, G., Ge, F., Yin, T., Li, S., and Yu, X. (2023). Phosphoglycerate dehydrogenase activates PKM2 to phosphorylate histone H3T11 and attenuate cellular senescence. Nat. Commun. 14, 1323. https://doi.org/10.1038/s41467-023-37094-8.
- 168. Richardson, N.E., Konon, E.N., Schuster, H.S., Mitchell, A.T., Boyle, C., Rodgers, A.C., Finke, M., Haider, L.R., Yu, D., Flores, V., et al. (2021). Lifelong restriction of dietary branched-chain amino acids has sex-specific benefits for frailty and lifespan in mice. Nat. Aging 1, 73-86. https://doi.org/10.1038/s43587-020-00006-2.
- 169. Weaver, K.J., Holt, R.A., Henry, E., Lyu, Y., and Pletcher, S.D. (2023). Effects of hunger on neuronal histone modifications slow aging in Drosophila. Science 380, 625-632. https://doi.org/10.1126/science.
- 170. Agbu, P., and Carthew, R.W. (2021). MicroRNA-mediated regulation of glucose and lipid metabolism. Nat. Rev. Mol. Cell Biol. 22, 425-438. https://doi.org/10.1038/s41580-021-00354-w.
- 171. Victoria, B., Nunez Lopez, Y.O., and Masternak, M.M. (2017). MicroRNAs and the metabolic hallmarks of aging. Mol. Cell. Endocrinol. 455, 131–147. https://doi.org/10.1016/j.mce.2016.12.021.
- 172. Ding, C., Yu, Z., Sefik, E., Zhou, J., Kaffe, E., Wang, G., Li, B., Flavell, R.A., Hu, W., Ye, Y., et al. (2023). A Treg-specific long noncoding RNA maintains immune-metabolic homeostasis in aging liver. Nat. Aging 3, 813-828. https://doi.org/10.1038/s43587-023-00428-8.
- 173. Wang, J., Hodes, G.E., Zhang, H., Zhang, S., Zhao, W., Golden, S.A., Bi, W., Menard, C., Kana, V., Leboeuf, M., et al. (2018). Epigenetic modulation of inflammation and synaptic plasticity promotes resilience against stress in mice. Nat. Commun. 9, 477. https://doi.org/10.1038/s41467 017-02794-5.
- 174. Yu, W., Wang, Z., Zhang, K., Chi, Z., Xu, T., Jiang, D., Chen, S., Li, W., Yang, X., Zhang, X., et al. (2019). One-carbon metabolism supports S-adenosylmethionine and histone methylation to drive inflammatory macrophages. Mol. Cell 75, 1147-1160.e5. https://doi.org/10.1016/j. molcel.2019.06.039.
- 175. Hayashi, Y., Kashio, S., Murotomi, K., Hino, S., Kang, W., Miyado, K., Nakao, M., Miura, M., Kobayashi, S., and Namihira, M. (2022). Biosynthesis of S-adenosyl-methionine enhances aging-related defects in Drosophila oogenesis. Sci. Rep. 12, 5593. https://doi.org/10.1038/s41598-022-
- 176. Dai, Z., Ramesh, V., and Locasale, J.W. (2020). The evolving metabolic landscape of chromatin biology and epigenetics. Nat. Rev. Genet. 21, 737-753. https://doi.org/10.1038/s41576-020-0270-8.
- 177. Ma, X.R., Zhu, X., Xiao, Y., Gu, H.M., Zheng, S.S., Li, L., Wang, F., Dong, Z.J., Wang, D.X., Wu, Y., et al. (2022). Restoring nuclear entry of Sirtuin 2 in oligodendrocyte progenitor cells promotes remyelination during ageing. Nat. Commun. 13, 1225. https://doi.org/10.1038/s41467-022-28844-1
- 178. Zhang, Y., Wang, X., Li, X.K., Lv, S.J., Wang, H.P., Liu, Y., Zhou, J., Gong, H., Chen, X.F., Ren, S.C., et al. (2023). Sirtuin 2 deficiency aggravates ageing-induced vascular remodelling in humans and mice. Eur. Heart J. 44, 2746-2759. https://doi.org/10.1093/eurheartj/ehad381.
- 179. Chen, W., Yu, X., Wu, Y., Tang, J., Yu, Q., Lv, X., Zha, Z., Hu, B., Li, X., Chen, J., et al. (2021). The SESAME complex regulates cell senescence through the generation of acetyl-CoA. Nat. Metab. 3, 983-1000. https:// doi.org/10.1038/s42255-021-00412-9.

- 180. Zhu, D., Wu, X., Zhou, J., Li, X., Huang, X., Li, J., Wu, J., Bian, Q., Wang, Y., and Tian, Y. (2020). NuRD mediates mitochondrial stress-induced longevity via chromatin remodeling in response to acetyl-CoA level. Sci. Adv. 6, eabb2529. https://doi.org/10.1126/sciadv.abb2529.
- 181. Santra, M., Dill, K.A., and de Graff, A.M.R. (2019). Proteostasis collapse is a driver of cell aging and death. Proc. Natl. Acad. Sci. USA 116, 22173-22178. https://doi.org/10.1073/pnas.1906592116.
- 182. Hipp, M.S., Kasturi, P., and Hartl, F.U. (2019). The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20, 421-435. https:// doi.org/10.1038/s41580-019-0101-y.
- 183. Stein, K.C., Morales-Polanco, F., van der Lienden, J., Rainbolt, T.K., and Frydman, J. (2022). Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis. Nature 601, 637-642. https://doi.org/10.1038/ s41586-021-04295-4
- 184. Shcherbakov, D., Nigri, M., Akbergenov, R., Brilkova, M., Mantovani, M., Petit, P.I., Grimm, A., Karol, A.A., Teo, Y., Sanchón, A.C., et al. (2022). Premature aging in mice with error-prone protein synthesis. Sci. Adv. 8, eabl9051. https://doi.org/10.1126/sciadv.abl9051.
- 185. Chen, B., Jiang, W., Huang, Y., Zhang, J., Yu, P., Wu, L., and Peng, H. (2022). N⁷-methylguanosine tRNA modification promotes tumorigenesis and chemoresistance through WNT/β-catenin pathway in nasopharyngeal carcinoma. Oncogene 41, 2239-2253. https://doi.org/10.1038/
- 186. Arango, D., Sturgill, D., Yang, R., Kanai, T., Bauer, P., Roy, J., Wang, Z., Hosogane, M., Schiffers, S., and Oberdoerffer, S. (2022). Direct epitranscriptomic regulation of mammalian translation initiation through N4acetylcytidine. Mol. Cell 82, 2797-2814.e11. https://doi.org/10.1016/j. molcel.2022.05.016.
- 187. Li, D., Yang, J., Huang, X., Zhou, H., and Wang, J. (2022). eIF4A2 targets developmental potency and histone H3.3 transcripts for translational control of stem cell pluripotency. Sci. Adv. 8, eabm0478. https://doi. org/10.1126/sciadv.abm0478.
- 188. Liu, S., Hausmann, S., Carlson, S.M., Fuentes, M.E., Francis, J.W., Pillai, R., Lofgren, S.M., Hulea, L., Tandoc, K., Lu, J., et al. (2019). METTL13 methylation of eEF1A increases translational output to promote tumorigenesis. Cell 176, 491-504.e21. https://doi.org/10.1016/j.cell.2018. 11.038.
- 189. Nativio, R., Lan, Y., Donahue, G., Sidoli, S., Berson, A., Srinivasan, A.R., Shcherbakova, O., Amlie-Wolf, A., Nie, J., Cui, X., et al. (2020). An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer's disease. Nat. Genet. 52, 1024-1035. https://doi.org/10. 1038/s41588-020-0696-0.
- 190. Arakhamia, T., Lee, C.E., Carlomagno, Y., Duong, D.M., Kundinger, S.R., Wang, K., Williams, D., DeTure, M., Dickson, D.W., Cook, C.N., et al. (2020). Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell 180, 633-644.e12. https://doi.org/10.1016/j.
- 191. Therriault, J., Vermeiren, M., Servaes, S., Tissot, C., Ashton, N.J., Benedet, A.L., Karikari, T.K., Lantero-Rodriguez, J., Brum, W.S., Lussier, F.Z. et al. (2023). Association of phosphorylated Tau biomarkers with amyloid positron emission tomography vs Tau positron emission tomography. JAMA Neurol. 80, 188-199. https://doi.org/10.1001/jamaneurol. 2022,4485.
- 192. Wei, Z., Zeng, K., Hu, J., Li, X., Huang, F., Zhang, B., Wang, J.Z., Liu, R., Li, H.L., and Wang, X. (2022). USP10 deubiquitinates Tau, mediating its aggregation. Cell Death Dis. 13, 726. https://doi.org/10.1038/s41419-022-05170-4.
- 193. Koyuncu, S., Loureiro, R., Lee, H.J., Wagle, P., Krueger, M., and Vilchez, D. (2021). Rewiring of the ubiquitinated proteome determines ageing in C. elegans. Nature 596, 285-290. https://doi.org/10.1038/s41586-021-03781-z.
- 194. Zhao, H., Ji, Q., Wu, Z., Wang, S., Ren, J., Yan, K., Wang, Z., Hu, J., Chu, Q., Hu, H., et al. (2022). Destabilizing heterochromatin by APOE mediates senescence. Nat. Aging 2, 303-316. https://doi.org/10.1038/s43587-022-00186-z.

- 195. Keil, G., Cummings, E., and de Magalhães, J.P. (2015). Being cool: how body temperature influences ageing and longevity. Biogerontology 16, 383-397. https://doi.org/10.1007/s10522-015-9571-2.
- 196. Kenney, W.L., and Hodgson, J.L. (1987). Heat tolerance, thermoregulation and ageing. Sports Med. 4, 446-456. https://doi.org/10.2165/ 00007256-198704060-00004
- 197. Akerfelt, M., Morimoto, R.I., and Sistonen, L. (2010). Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11, 545-555. https://doi.org/10.1038/nrm2938.
- 198. Landis, G., Shen, J., and Tower, J. (2012). Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster. Aging (Albany, NY) 4, 768-789. https://doi.org/10.18632/aging.100499.
- 199. Wang, S., Cheng, F., Ji, Q., Song, M., Wu, Z., Zhang, Y., Ji, Z., Feng, H., Belmonte, J.C.I., Zhou, Q., et al. (2022). Hyperthermia differentially affects specific human stem cells and their differentiated derivatives. Protein Cell 13, 615-622. https://doi.org/10.1007/s13238-021-00887-y.
- 200. Zhao, Z., Cao, J., Niu, C., Bao, M., Xu, J., Huo, D., Liao, S., Liu, W., and Speakman, J.R. (2022). Body temperature is a more important modulator of lifespan than metabolic rate in two small mammals. Nat. Metab. 4, 320-326. https://doi.org/10.1038/s42255-022-00545-5.
- 201. Lee, H.J., Alirzayeva, H., Koyuncu, S., Rueber, A., Noormohammadi, A., and Vilchez, D. (2023). Cold temperature extends longevity and prevents disease-related protein aggregation through PA28 γ -induced proteasomes. Nat. Aging 3, 546–566. https://doi.org/10.1038/s43587-023-
- 202. Westerheide, S.D., Anckar, J., Stevens, S.M., Jr., Sistonen, L., and Morimoto, R.I. (2009). Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323, 1063-1066. https://doi.org/10. 1126/science.1165946.
- 203. Anckar, J., and Sistonen, L. (2011). Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu. Rev. Biochem. 80, 1089-1115. https://doi.org/10.1146/annurev-biochem-060809-095203.
- 204. Trivedi, R., and Jurivich, D.A. (2020). A molecular perspective on agedependent changes to the heat shock axis. Exp. Gerontol. 137, 110969. https://doi.org/10.1016/j.exger.2020.110969.
- 205. Wan, Q.L., Meng, X., Dai, W., Luo, Z., Wang, C., Fu, X., Yang, J., Ye, Q., and Zhou, Q. (2021). N⁶-methyldeoxyadenine and histone methylation mediate transgenerational survival advantages induced by hormetic heat stress. Sci. Adv. 7. https://doi.org/10.1126/sciadv.abc3026.
- 206. Zhou, L., He, B., Deng, J., Pang, S., and Tang, H. (2019). Histone acetylation promotes long-lasting defense responses and longevity following early life heat stress. PLoS Genet. 15, e1008122. https://doi.org/10. 1371/journal.pgen.1008122.
- 207. Green, C.L., Lamming, D.W., and Fontana, L. (2022). Molecular mechanisms of dietary restriction promoting health and longevity. Nat. Rev. Mol. Cell Biol. 23, 56-73. https://doi.org/10.1038/s41580-021-00411-4.
- 208. Acosta-Rodríguez, V., Rijo-Ferreira, F., Izumo, M., Xu, P., Wight-Carter, M., Green, C.B., and Takahashi, J.S. (2022). Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science 376, 1192-1202. https://doi.org/10.1126/science.abk0297.
- 209. Ma, S., Sun, S., Geng, L., Song, M., Wang, W., Ye, Y., Ji, Q., Zou, Z., Wang, S., He, X., et al. (2020). Caloric restriction reprograms the single-cell transcriptional landscape of Rattus norvegicus aging. Cell 180, 984-1001.e22. https://doi.org/10.1016/j.cell.2020.02.008.
- 210. Spadaro, O., Youm, Y., Shchukina, I., Ryu, S., Sidorov, S., Ravussin, A., Nguyen, K., Aladyeva, E., Predeus, A.N., Smith, S.R., et al. (2022). Caloric restriction in humans reveals immunometabolic regulators of health span. Science 375, 671-677. https://doi.org/10.1126/science.abg7292.
- 211. Li, Y., Daniel, M., and Tollefsbol, T.O. (2011). Epigenetic regulation of caloric restriction in aging. BMC Med. 9, 98. https://doi.org/10.1186/ 1741-7015-9-98.

- 212. Maegawa, S., Lu, Y., Tahara, T., Lee, J.T., Madzo, J., Liang, S., Jelinek, J., Colman, R.J., and Issa, J.J. (2017). Caloric restriction delays agerelated methylation drift. Nat. Commun. 8, 539. https://doi.org/10. 1038/s41467-017-00607-3
- 213. Waziry, R., Ryan, C.P., Corcoran, D.L., Huffman, K.M., Kobor, M.S., Kothari, M., Graf, G.H., Kraus, V.B., Kraus, W.E., Lin, D.T.S., et al. (2023). Effect of long-term caloric restriction on DNA methylation measures of biological aging in healthy adults from the CALERIE trial. Nat. Aging 3, 248-257. https://doi.org/10.1038/s43587-022-00357-y.
- 214. Sun, S., Ma, S., Cai, Y., Wang, S., Ren, J., Yang, Y., Ping, J., Wang, X., Zhang, Y., Yan, H., et al. (2023). A single-cell transcriptomic atlas of exercise-induced anti-inflammatory and geroprotective effects across the body. Innovation (Camb) 4, 100380. https://doi.org/10.1016/j.xinn.
- 215. Campos, J.C., Marchesi Bozi, L.H., Krum, B., Grassmann Bechara, L.R., Ferreira, N.D., Arini, G.S., Albuquerque, R.P., Traa, A., Ogawa, T., van der Bliek, A.M., et al. (2023). Exercise preserves physical fitness during aging through AMPK and mitochondrial dynamics. Proc. Natl. Acad. Sci. USA 120, e2204750120. https://doi.org/10.1073/pnas.2204750120.
- 216. Murach, K.A., Dimet-Wiley, A.L., Wen, Y., Brightwell, C.R., Latham, C.M., Dungan, C.M., Fry, C.S., and Watowich, S.J. (2022). Late-life exercise mitigates skeletal muscle epigenetic aging. Aging Cell 21, e13527. https://doi.org/10.1111/acel.13527.
- 217. Elsner, V.R., Lovatel, G.A., Moysés, F., Bertoldi, K., Spindler, C., Cechinel, L.R., Muotri, A.R., and Siqueira, I.R. (2013). Exercise induces agedependent changes on epigenetic parameters in rat hippocampus: a preliminary study. Exp. Gerontol. 48, 136-139. https://doi.org/10.1016/ .exger.2012.11.011.
- 218. Okazaki, S., Numata, S., Otsuka, I., Horai, T., Kinoshita, M., Sora, I., Ohmori, T., and Hishimoto, A. (2020). Decelerated epigenetic aging associated with mood stabilizers in the blood of patients with bipolar disorder. Transl. Psychiatry 10, 129. https://doi.org/10.1038/s41398-020-0813-y.
- 219. Fitzgerald, K.N., Hodges, R., Hanes, D., Stack, E., Cheishvili, D., Szyf, M., Henkel, J., Twedt, M.W., Giannopoulou, D., Herdell, J., et al. (2021). Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial. Aging 13, 9419-9432. https://doi.org/10. 18632/aging.202913.
- 220. Carskadon, M.A., Chappell, K.R., Barker, D.H., Hart, A.C., Dwyer, K., Gredvig-Ardito, C., Starr, C., and McGeary, J.E. (2019). A pilot prospective study of sleep patterns and DNA methylation-characterized epigenetic aging in young adults. BMC Res. Notes 12, 583. https://doi.org/
- 221. Wu, X., Huang, Q., Javed, R., Zhong, J., Gao, H., and Liang, H. (2019). Effect of tobacco smoking on the epigenetic age of human respiratory organs. Clin. Epigenetics 11, 183. https://doi.org/10.1186/s13148-019-0777-z.
- 222. Cabreiro, F., Au, C., Leung, K.Y., Vergara-Irigaray, N., Cochemé, H.M., Noori, T., Weinkove, D., Schuster, E., Greene, N.D., and Gems, D. (2013). Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153, 228-239. https://doi.org/10.1016/
- 223. Neumann, B., Baror, R., Zhao, C., Segel, M., Dietmann, S., Rawji, K.S., Foerster, S., McClain, C.R., Chalut, K., van Wijngaarden, P., et al. (2019). Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell 25, 473-485.e8. https://doi.org/10. 1016/j.stem.2019.08.015.
- 224. Geng, L., Zhang, B., Liu, H., Wang, S., Cai, Y., Yang, K., Zou, Z., Jiang, X., Liu, Z., Li, W., et al. (2023). A comparative study of metformin and nicotinamide riboside in alleviating tissue aging in rats. Life Med. 2. https:// doi.org/10.1093/lifemedi/lnac045.
- 225. Kulkarni, A.S., Gubbi, S., and Barzilai, N. (2020). Benefits of metformin in attenuating the hallmarks of aging. Cell Metab. 32, 15-30. https://doi.org/ 10.1016/j.cmet.2020.04.001.
- 226. Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., Prabhu, V.V., Allard, J.S., Lopez-Lluch, G., Lewis, K., et al. (2006). Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337-342. https://doi.org/10.1038/nature05354.

- 227. Liu, B., Ghosh, S., Yang, X., Zheng, H., Liu, X., Wang, Z., Jin, G., Zheng, B., Kennedy, B.K., Suh, Y., et al. (2012). Resveratrol rescues SIRT1dependent adult stem cell decline and alleviates progeroid features in laminopathy-based progeria. Cell Metab. 16, 738-750. https://doi.org/ 10.1016/j.cmet.2012.11.007
- 228. Pearson, K.J., Baur, J.A., Lewis, K.N., Peshkin, L., Price, N.L., Labinskyy, N., Swindell, W.R., Kamara, D., Minor, R.K., Perez, E., et al. (2008). Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 8, 157-168. https://doi.org/10.1016/j.cmet.2008.06.011.
- 229. Gou, M., Li, J., Yi, L., Li, H., Ye, X., Wang, H., Liu, L., Sun, B., Zhang, S., Zhu, Z., et al. (2023). Reprogramming of ovarian aging epigenome by resveratrol. PNAS Nexus 2, pgac310. https://doi.org/10.1093/pnasnexus/ pgac310.
- 230. Fernandes, G.F.S., Silva, G.D.B., Pavan, A.R., Chiba, D.E., Chin, C.M., and Dos Santos, J.L. (2017). Epigenetic regulatory mechanisms induced by resveratrol. Nutrients 9. https://doi.org/10.3390/nu9111201.
- 231. Covarrubias, A.J., Perrone, R., Grozio, A., and Verdin, E. (2021). NAD+ metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol. 22, 119-141. https://doi.org/10.1038/s41580-020-00313-x.
- 232. Li, Y., Zhang, W., Chang, L., Han, Y., Sun, L., Gong, X., Tang, H., Liu, Z., Deng, H., Ye, Y., et al. (2016). Vitamin C alleviates aging defects in a stem cell model for Werner syndrome. Protein Cell 7, 478-488. https://doi.org/
- 233. Strong, R., Miller, R.A., Bogue, M., Fernandez, E., Javors, M.A., Libert, S., Marinez, P.A., Murphy, M.P., Musi, N., Nelson, J.F., et al. (2020). Rapamycin-mediated mouse lifespan extension: late-life dosage regimes with sex-specific effects. Aging Cell 19, e13269. https://doi.org/10. 1111/acel.13269.
- 234. Huang, X.B., Mu, X.H., Wan, Q.L., He, X.M., Wu, G.S., and Luo, H.R. (2017). Aspirin increases metabolism through germline signalling to extend the lifespan of Caenorhabditis elegans. PLoS One 12, e0184027. https://doi.org/10.1371/journal.pone.0184027.
- 235. Liu, Z., Li, W., Geng, L., Sun, L., Wang, Q., Yu, Y., Yan, P., Liang, C., Ren, J., Song, M., et al. (2022). Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor. Cell Discov. 8, 6. https://doi.org/10.1038/s41421-021-00361-3.
- 236. Singh, P., Gollapalli, K., Mangiola, S., Schranner, D., Yusuf, M.A., Chamoli, M., Shi, S.L., Lopes Bastos, B., Nair, T., Riermeier, A., et al. (2023). Taurine deficiency as a driver of aging. Science 380, eabn9257. https://doi.org/10.1126/science.abn9257
- 237. Geng, L., Liu, Z., Wang, S., Sun, S., Ma, S., Liu, X., Chan, P., Sun, L., Song, M., Zhang, W., et al. (2019). Low-dose quercetin positively regulates mouse healthspan. Protein Cell 10, 770-775. https://doi.org/10. 1007/s13238-019-0646-8.
- 238. Li, W., Zou, Z., Cai, Y., Yang, K., Wang, S., Liu, Z., Geng, L., Chu, Q., Ji, Z., Chan, P., et al. (2022). Low-dose chloroquine treatment extends the lifespan of aged rats. Protein Cell 13, 454-461. https://doi.org/10.1007/ s13238-021-00903-1.
- 239. Shan, H., Geng, L., Jiang, X., Song, M., Wang, J., Liu, Z., Zhuo, X., Wu, Z., Hu, J., Ji, Z., et al. (2022). Large-scale chemical screen identifies gallic acid as a geroprotector for human stem cells. Protein Cell 13, 532-539. https://doi.org/10.1007/s13238-021-00872-5.
- 240. Zhang, W., Yang, J., Chen, Y., Xue, R., Mao, Z., Lu, W., and Jiang, Y. (2021). Lycorine hydrochloride suppresses stress-induced premature cellular senescence by stabilizing the genome of human cells. Aging Cell 20, e13307. https://doi.org/10.1111/acel.13307.
- 241. Kubben, N., Zhang, W., Wang, L., Voss, T.C., Yang, J., Qu, J., Liu, G.H., and Misteli, T. (2016). Repression of the antioxidant NRF2 pathway in premature aging. Cell 165, 1361-1374. https://doi.org/10.1016/j.cell. 2016.05.017
- 242. Chaib, S., Tchkonia, T., and Kirkland, J.L. (2022). Cellular senescence and senolytics: the path to the clinic. Nat. Med. 28, 1556-1568. https:// doi.org/10.1038/s41591-022-01923-y.

- 243. Novais, E.J., Tran, V.A., Johnston, S.N., Darris, K.R., Roupas, A.J., Sessions, G.A., Shapiro, I.M., Diekman, B.O., and Risbud, M.V. (2021). Longterm treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat. Commun. 12, 5213. https://doi.org/10.1038/s41467-021-25453-2.
- 244. Zhang, P., Kishimoto, Y., Grammatikakis, I., Gottimukkala, K., Cutler, R.G., Zhang, S., Abdelmohsen, K., Bohr, V.A., Misra Sen, J., Gorospe, M., et al. (2019). Senolytic therapy alleviates $A\beta$ -associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nat. Neurosci. 22, 719–728. https://doi.org/10.1038/ s41593-019-0372-9.
- 245. Dungan, C.M., Murach, K.A., Zdunek, C.J., Tang, Z.J., Nolt, G.L., Brightwell, C.R., Hettinger, Z., Englund, D.A., Liu, Z., Fry, C.S., et al. (2022). Deletion of SA β-gal+ cells using senolytics improves muscle regeneration in old mice. Aging Cell 21, e13528. https://doi.org/10.1111/
- 246. Krzystyniak, A., Wesierska, M., Petrazzo, G., Gadecka, A., Dudkowska, M., Bielak-Zmijewska, A., Mosieniak, G., Figiel, I., Wlodarczyk, J., and Sikora, E. (2022). Combination of dasatinib and quercetin improves cognitive abilities in aged male Wistar rats, alleviates inflammation and changes hippocampal synaptic plasticity and histone H3 methylation profile. Aging 14, 572-595. https://doi.org/10.18632/aging.203835.
- 247. Spinelli, R., Florese, P., Parrillo, L., Zatterale, F., Longo, M., D'esposito, V., Desiderio, A., Nerstedt, A., Gustafson, B., Formisano, P., et al. (2022). ZMAT3 hypomethylation contributes to early senescence of preadipocytes from healthy first-degree relatives of type 2 diabetics. Aging Cell 21, e13557. https://doi.org/10.1111/acel.13557
- 248. Chang, J., Wang, Y., Shao, L., Laberge, R.M., Demaria, M., Campisi, J., Janakiraman, K., Sharpless, N.E., Ding, S., Feng, W., et al. (2016). Clearance of senescent cells by ABT263 rejuvenates aged hematopoletic stem cells in mice. Nat. Med. 22, 78-83. https://doi.org/10.1038/ nm.4010.
- 249. Delval, L., Hantute-Ghesquier, A., Sencio, V., Flaman, J.M., Robil, C., Angulo, F.S., Lipskaia, L., Çobanoğlu, O., Lacoste, A.S., Machelart, A., et al. (2023). Removal of senescent cells reduces the viral load and attenuates pulmonary and systemic inflammation in SARS-CoV-2-infected, aged hamsters. Nat. Aging 3, 829-845. https://doi.org/10.1038/s43587-00442-w.
- 250. Zhu, Y., Tchkonia, T., Fuhrmann-Stroissnigg, H., Dai, H.M., Ling, Y.Y., Stout, M.B., Pirtskhalava, T., Giorgadze, N., Johnson, K.O., Giles, C.B., et al. (2016). Identification of a novel senolytic agent, navitoclax, targeting the BcI-2 family of anti-apoptotic factors. Aging Cell 15, 428-435. https:// doi.org/10.1111/acel.12445.
- 251. Zhu, Y., Doornebal, E.J., Pirtskhalava, T., Giorgadze, N., Wentworth, M., Fuhrmann-Stroissnigg, H., Niedernhofer, L.J., Robbins, P.D., Tchkonia, T., and Kirkland, J.L. (2017). New agents that target senescent cells: the flavone, fisetin, and the BCL-X(L) inhibitors, A1331852 and A1155463. Aging 9, 955-963. https://doi.org/10.18632/aging.101202.
- 252. Wong, F., Omori, S., Donghia, N.M., Zheng, E.J., and Collins, J.J. (2023). Discovering small-molecule senolytics with deep neural networks. Nat. Aging 3, 734-750. https://doi.org/10.1038/s43587-023-00415-z.
- 253. Fuhrmann-Stroissnigg, H., Ling, Y.Y., Zhao, J., McGowan, S.J., Zhu, Y., Brooks, R.W., Grassi, D., Gregg, S.Q., Stripay, J.L., Dorronsoro, A., et al. (2017). Identification of HSP90 inhibitors as a novel class of senolytics. Nat. Commun. 8, 422. https://doi.org/10.1038/s41467-017-00314-z.
- 254. Triana-Martínez, F., Picallos-Rabina, P., Da Silva-Álvarez, S., Pietrocola, F., Llanos, S., Rodilla, V., Soprano, E., Pedrosa, P., Ferreirós, A., Barradas, M., et al. (2019). Identification and characterization of cardiac glycosides as senolytic compounds. Nat. Commun. 10, 4731. https://doi.org/ 10.1038/s41467-019-12888-x.
- 255. Baar, M.P., Brandt, R.M.C., Putavet, D.A., Klein, J.D.D., Derks, K.W.J., Bourgeois, B.R.M., Stryeck, S., Rijksen, Y., van Willigenburg, H., Feijtel, D.A., et al. (2017). Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132-147.e16. https://doi.org/10.1016/j.cell.2017.02.031.
- 256. Deng, L., Ren, R., Liu, Z., Song, M., Li, J., Wu, Z., Ren, X., Fu, L., Li, W., Zhang, W., et al. (2019). Stabilizing heterochromatin by DGCR8 alleviates

- senescence and osteoarthritis. Nat. Commun. 10, 3329. https://doi.org/ 10.1038/s41467-019-10831-8.
- 257. Ren, X., Hu, B., Song, M., Ding, Z., Dang, Y., Liu, Z., Zhang, W., Ji, Q., Ren, R., Ding, J., et al. (2019). Maintenance of nucleolar homeostasis by CBX4 alleviates senescence and osteoarthritis. Cell Rep. 26, 3643-3656.e7. https://doi.org/10.1016/j.celrep.2019.02.088.
- 258. Jing, Y., Jiang, X., Ji, Q., Wu, Z., Wang, W., Liu, Z., Guillen-Garcia, P., Esteban, C.R., Reddy, P., Horvath, S., et al. (2023). Genome-wide CRISPR activation screening in senescent cells reveals SOX5 as a driver and therapeutic target of rejuvenation. Cell Stem Cell 30, 1452-1471.e10. https:// doi.ora/10.1016/i.stem.2023.09.007
- 259. Fu, L., Hu, Y., Song, M., Liu, Z., Zhang, W., Yu, F.X., Wu, J., Wang, S., Izpisua Belmonte, J.C., Chan, P., et al. (2019). Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biol. 17, e3000201. https://doi.org/10.1371/journal.pbio.3000201.
- 260. Ye, Y., Yang, K., Liu, H., Yu, Y., Song, M., Huang, D., Lei, J., Zhang, Y., Liu, Z., Chu, Q., et al. (2023). SIRT2 counteracts primate cardiac aging via deacetylation of STAT3 that silences CDKN2B. Nat. Aging 3, 1269-1287. https://doi.org/10.1038/s43587-023-00486-y.
- 261. Grunewald, M., Kumar, S., Sharife, H., Volinsky, E., Gileles-Hillel, A., Licht, T., Permyakova, A., Hinden, L., Azar, S., Friedmann, Y., et al. (2021). Counteracting age-related VEGF signaling insufficiency promotes healthy aging and extends life span. Science 373. https://doi.org/10.
- 262. Wang, W., Zheng, Y., Sun, S., Li, W., Song, M., Ji, Q., Wu, Z., Liu, Z., Fan, Y., Liu, F., et al. (2021). A genome-wide CRISPR-based screen identifies KAT7 as a driver of cellular senescence. Sci. Transl. Med. 13. https://doi. org/10.1126/scitranslmed.abd2655.
- 263. Erdos, M.R., Cabral, W.A., Tavarez, U.L., Cao, K., Gvozdenovic-Jeremic, J., Narisu, N., Zerfas, P.M., Crumley, S., Boku, Y., Hanson, G., et al. (2021). A targeted antisense therapeutic approach for Hutchinson-Gilford progeria syndrome. Nat. Med. 27, 536-545. https://doi.org/10. 1038/s41591-021-01274-0.
- 264. Kerepesi, C., Meer, M.V., Ablaeva, J., Amoroso, V.G., Lee, S.G., Zhang, B., Gerashchenko, M.V., Trapp, A., Yim, S.H., Lu, A.T., et al. (2022). Epigenetic aging of the demographically non-aging naked mole-rat. Nat. Commun. 13, 355. https://doi.org/10.1038/s41467-022-27959-9.
- 265. Horvath, S., Haghani, A., Macoretta, N., Ablaeva, J., Zoller, J.A., Li, C.Z., Zhang, J., Takasugi, M., Zhao, Y., Rydkina, E., et al. (2022). DNA methylation clocks tick in naked mole rats but queens age more slowly than nonbreeders. Nat. Aging 2, 46-59. https://doi.org/10.1038/s43587-021-00152-1.
- 266. Buffenstein, R., and Ruby, J.G. (2021). Opportunities for new insight into aging from the naked mole-rat and other non-traditional models. Nat. Aging 1, 3-4. https://doi.org/10.1038/s43587-020-00012-4.
- 267. Deuker, M.M., Lewis, K.N., Ingaramo, M., Kimmel, J., Buffenstein, R., and Settleman, J. (2020). Unprovoked stabilization and nuclear accumulation of the naked mole-rat p53 protein. Sci. Rep. 10, 6966. https://doi. org/10.1038/s41598-020-64009-0.
- 268. Tan, L., Ke, Z., Tombline, G., Macoretta, N., Hayes, K., Tian, X., Lv, R., Ablaeva, J., Gilbert, M., Bhanu, N.V., et al. (2017). Naked mole rat cells have a stable epigenome that resists iPSC reprogramming. Stem Cell Rep. 9, 1721-1734. https://doi.org/10.1016/j.stemcr.2017.10.001.
- 269. Zhang, Z., Tian, X., Lu, J.Y., Boit, K., Ablaeva, J., Zakusilo, F.T., Emmrich, S., Firsanov, D., Rydkina, E., Biashad, S.A., et al. (2023). Increased hyaluronan by naked mole-rat Has2 improves healthspan in mice. Nature 621, 196-205. https://doi.org/10.1038/s41586-023-06463-0.
- 270. Yang, Z., Gong, M., Jian, T., Li, J., Yang, C., Ma, Q., Deng, P., Wang, Y. Huang, M., Wang, H., et al. (2022). Engrafted glial progenitor cells yield long-term integration and sensory improvement in aged mice. Stem Cell Res. Ther. 13, 285. https://doi.org/10.1186/s13287-022-02959-0.
- 271. Yan, P., Li, Q., Wang, L., Lu, P., Suzuki, K., Liu, Z., Lei, J., Li, W., He, X., Wang, S., et al. (2019). FOXO3-engineered human ESC-derived vascular cells promote vascular protection and regeneration. Cell Stem Cell 24, 447-461.e8. https://doi.org/10.1016/j.stem.2018.12.002.

- 272. Lei, J., Wang, S., Kang, W., Chu, Q., Liu, Z., Sun, L., Ji, Y., Esteban, C.R., Yao, Y., Belmonte, J.C.I., et al. (2021). FOXO3-engineered human mesenchymal progenitor cells efficiently promote cardiac repair after myocardial infarction. Protein Cell 12, 145–151. https://doi.org/10. 1007/s13238-020-00779-7.
- 273. Cai, Y., Ji, Z., Wang, S., Zhang, W., Qu, J., Belmonte, J.C.I., and Liu, G.-H. (2022). Genetic enhancement: an avenue to combat aging-related diseases. Life Med. 1, 307-318, https://doi.org/10.1093/lifemedi/lnac054.
- 274. Fraile, M., Eiro, N., Costa, L.A., Martín, A., and Vizoso, F.J. (2022). Aging and mesenchymal stem cells: basic concepts, challenges and strategies. Biology (Basel) 11. https://doi.org/10.3390/biology11111678.
- $275. \ \ Zhang, Z., Lin, H., Shi, M., Xu, R., Fu, J., Lv, J., Chen, L., Lv, S., Li, Y., Yu,$ S., et al. (2012). Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients. J. Gastroenterol. Hepatol. 27 (Suppl 2), 112–120. https://doi.org/10. 1111/j.1440-1746.2011.07024.x.
- 276. Yubo, M., Yanyan, L., Li, L., Tao, S., Bo, L., and Lin, C. (2017). Clinical efficacy and safety of mesenchymal stem cell transplantation for osteoarthritis treatment: a meta-analysis. PLoS One 12, e0175449. https://doi. org/10.1371/journal.pone.0175449.
- 277. Lei, J., Jiang, X., Li, W., Ren, J., Wang, D., Ji, Z., Wu, Z., Cheng, F., Cai, Y., Yu, Z.R., et al. (2022). Exosomes from antler stem cells alleviate mesenchymal stem cell senescence and osteoarthritis. Protein Cell 13, 220-226. https://doi.org/10.1007/s13238-021-00860-9.
- 278. Lei, Q., Gao, F., Liu, T., Ren, W., Chen, L., Cao, Y., Chen, W., Guo, S., Zhang, Q., Chen, W., et al. (2021). Extracellular vesicles deposit PCNA to rejuvenate aged bone marrow-derived mesenchymal stem cells and slow age-related degeneration. Sci. Transl. Med. 13. https://doi.org/10. 1126/scitranslmed.aaz8697
- 279. Sanz-Ros, J., Romero-García, N., Mas-Bargues, C., Monleón, D., Gordevicius, J., Brooke, R.T., Dromant, M., Díaz, A., Derevyanko, A., Guío-Carrión, A., et al. (2022). Small extracellular vesicles from young adiposederived stem cells prevent frailty, improve health span, and decrease epigenetic age in old mice. Sci. Adv. 8, eabq2226. https://doi.org/10.
- 280. Yu, Z., Wen, Y., Jiang, N., Li, Z., Guan, J., Zhang, Y., Deng, C., Zhao, L., Zheng, S.G., Zhu, Y., et al. (2022). TNF-α stimulation enhances the neuroprotective effects of gingival MSCs derived exosomes in retinal ischemia-reperfusion injury via the MEG3/miR-21a-5p axis. Biomaterials 284, 121484. https://doi.org/10.1016/j.biomaterials.2022.121484.
- 281. Ma, S., Wang, S., Ye, Y., Ren, J., Chen, R., Li, W., Li, J., Zhao, L., Zhao, Q., Sun, G., et al. (2022). Heterochronic parabiosis induces stem cell revitalization and systemic rejuvenation across aged tissues. Cell Stem Cell 29, 990-1005.e10. https://doi.org/10.1016/j.stem.2022.04.017.
- 282. Ximerakis, M., Holton, K.M., Giadone, R.M., Ozek, C., Saxena, M., Santiago, S., Adiconis, X., Dionne, D., Nguyen, L., Shah, K.M., et al. (2023). Heterochronic parabiosis reprograms the mouse brain transcriptome by shifting aging signatures in multiple cell types. Nat. Aging 3, 327-345. https://doi.org/10.1038/s43587-023-00373-6.
- 283. Pálovics, R., Keller, A., Schaum, N., Tan, W., Fehlmann, T., Borja, M., Kern, F., Bonanno, L., Calcuttawala, K., Webber, J., et al. (2022). Molecular hallmarks of heterochronic parabiosis at single-cell resolution. Nature 603, 309-314. https://doi.org/10.1038/s41586-022-04461-2.
- 284. Bieri, G., Schroer, A.B., and Villeda, S.A. (2023). Blood-to-brain communication in aging and rejuvenation. Nat. Neurosci. 26, 379-393. https:// doi.org/10.1038/s41593-022-01238-8
- 285. Zhang, B., Lee, D.E., Trapp, A., Tyshkovskiy, A., Lu, A.T., Bareja, A., Kerepesi, C., McKay, L.K., Shindyapina, A.V., Dmitriev, S.E., et al. (2023). Multi-omic rejuvenation and life span extension on exposure to youthful circulation. Nat. Aging 3, 948-964. https://doi.org/10.1038/s43587-023-
- 286. Ocampo, A., Reddy, P., Martinez-Redondo, P., Platero-Luengo, A., Hatanaka, F., Hishida, T., Li, M., Lam, D., Kurita, M., Beyret, E., et al. (2016). In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167, 1719-1733.e12. https://doi.org/10.1016/j.cell.2016.

- 287. Browder, K.C., Reddy, P., Yamamoto, M., Haghani, A., Guillen, I.G., Sahu, S., Wang, C., Luque, Y., Prieto, J., Shi, L., et al. (2022). In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice. Nat. Aging 2, 243-253. https://doi.org/10. 1038/s43587-022-00183-2.
- 288. Lu, Y., Brommer, B., Tian, X., Krishnan, A., Meer, M., Wang, C., Vera, D.L., Zeng, Q., Yu, D., Bonkowski, M.S., et al. (2020). Reprogramming to recover youthful epigenetic information and restore vision. Nature 588, 124-129. https://doi.org/10.1038/s41586-020-2975-4.
- 289. Yang, J.H., Petty, C.A., Dixon-McDougall, T., Lopez, M.V., Tyshkovskiy, A., Maybury-Lewis, S., Tian, X., Ibrahim, N., Chen, Z., Griffin, P.T., et al. (2023). Chemically induced reprogramming to reverse cellular aging. Aging (Albany, NY) 15, 5966-5989. https://doi.org/10.18632/aging.204896.
- 290. Liu, G.H., Barkho, B.Z., Ruiz, S., Diep, D., Qu, J., Yang, S.L., Panopoulos, A.D., Suzuki, K., Kurian, L., Walsh, C., et al. (2011). Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472, 221-225. https://doi.org/10.1038/nature09879.
- 291. Olova, N., Simpson, D.J., Marioni, R.E., and Chandra, T. (2019). Partial reprogramming induces a steady decline in epigenetic age before loss of somatic identity. Aging Cell 18, e12877. https://doi.org/10.1111/ acel.12877.
- 292. Sarkar, T.J., Quarta, M., Mukherjee, S., Colville, A., Paine, P., Doan, L., Tran, C.M., Chu, C.R., Horvath, S., Qi, L.S., et al. (2020). Transient nonintegrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nat. Commun. 11, 1545. https://doi.org/10.1038/s41467-020-15174-3.
- 293. Yan, H., Ren, J., and Liu, G. (2023). Fecal microbiota transplantation: a new strategy to delay aging. hLife. https://doi.org/10.1016/j.hlife.2023.
- 294. Meng, Y., Sun, J., and Zhang, G. (2023). Fecal microbiota transplantation holds the secret to youth. Mech. Ageing Dev. 212, 111823. https://doi. org/10.1016/i.mad.2023.111823.
- 295. Ghosh, T.S., Shanahan, F., and O'Toole, P.W. (2022). The gut microbiome as a modulator of healthy ageing. Nat. Rev. Gastroenterol. Hepatol. 19, 565-584. https://doi.org/10.1038/s41575-022-00605-x
- 296. Woo, V., and Alenghat, T. (2022). Epigenetic regulation by gut microbiota. Gut Microbes 14, 2022407. https://doi.org/10.1080/19490976.2021.
- 297. van der Vossen, E.W.J., Bastos, D., Stols-Gonçalves, D., de Goffau, M.C., Davids, M., Pereira, J.P.B., Li Yim, A.Y.F., Henneman, P., Netea, M.G., de Vos, W.M., et al. (2021). Effects of fecal microbiota transplant on DNA methylation in subjects with metabolic syndrome. Gut Microbes 13, 1993513. https://doi.org/10.1080/19490976.2021.1993513.
- 298. Suda, M., Shimizu, I., Katsuumi, G., Yoshida, Y., Hayashi, Y., Ikegami, R., Matsumoto, N., Yoshida, Y., Mikawa, R., Katayama, A., et al. (2021). Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat. Aging 1, 1117-1126. https://doi.org/10.1038/s43587-021-00151-2.
- 299. Amor, C., Feucht, J., Leibold, J., Ho, Y.J., Zhu, C., Alonso-Curbelo, D., Mansilla-Soto, J., Boyer, J.A., Li, X., Giavridis, T., et al. (2020). Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127-132. https://doi.org/10.1038/s41586-020-2403-9.
- 300. He, X., Memczak, S., Qu, J., Belmonte, J.C.I., and Liu, G.H. (2020). Single-cell omics in ageing: a young and growing field. Nat. Metab. 2, 293-302. https://doi.org/10.1038/s42255-020-0196-7.
- 301. Balasubramanian, P., Mattison, J.A., and Anderson, R.M. (2017). Nutrition, metabolism, and targeting aging in nonhuman primates. Ageing Res. Rev. 39, 29-35. https://doi.org/10.1016/j.arr.2017.02.002.
- 302. Sun, S., Li, J., Wang, S., Li, J., Ren, J., Bao, Z., Sun, L., Ma, X., Zheng, F., Ma, S., et al. (2023). CHIT1-positive microglia drive motor neuron aging in the primate spinal cord. Nature. https://doi.org/10.1038/s41586-023-06783-1.
- 303. Ren, J., Song, M., Zhang, W., Cai, J.P., Cao, F., Cao, Z., Chan, P., Chen, C., Chen, G., Chen, H.Z., et al. (2023). The Aging Biomarker Consortium

represents a new era for aging research in China. Nat. Med. 29, 2162–2165. https://doi.org/10.1038/s41591-023-02444-y.

304. Li, J., Xiong, M., Fu, X.H., Fan, Y., Dong, C., Sun, X., Zheng, F., Wang, S.W., Liu, L., Xu, M., et al. (2023). Determining a multimodal aging clock

in a cohort of Chinese women. Med. https://doi.org/10.1016/j.medj.

305. Chen, C., Ding, S., and Wang, J. (2023). Digital health for aging populations. Nat. Med. 29, 1623-1630. https://doi.org/10.1038/s41591-023-