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SUMMARY

Aging, as a complex process involving multiple cellular andmolecular pathways, is known to be exacerbated
by various stresses. Because responses to these stresses, such as oxidative stress and genotoxic stress, are
known to interplay with the epigenome and thereby contribute to the development of age-related diseases,
investigations into how such epigenetic mechanisms alter gene expression and maintenance of cellular ho-
meostasis is an active research area. In this review, we highlight recent studies investigating the intricate rela-
tionship between stress and aging, including its underlying epigenetic basis; describe different types of
stresses that originate from both internal and external stimuli; and discuss potential interventions aimed at
alleviating stress and restoring epigenetic patterns to combat aging or age-related diseases. Additionally,
we address the challenges currently limiting advancement in this burgeoning field.
INTRODUCTION

Aging involves a gradual decline in physiological functions over

years, and in humans, decades, increasing susceptibility to

various chronic diseases.1–4 Accumulating evidence suggests

that aging is highly variable between individuals and can be

induced by intrinsic and extrinsic stimuli through a combination

of genetic and environmental factors.5,6 Such stimuli, including

oxidants, radiation, heat shock, chronic stress, and more, are

well-known contributors to aging and related diseases7–9 and

known to activate intracellular stress responses, leading to cell

biological changes and physiological adaptations. Because the

cumulative impacts of excessive or persistent stresses exacer-

bate cellular damage, resulting inDNAdamage and inflammation,

such cascading intrinsic stimuli progressively accelerates cellular

senescence and the consequent aging process, thereby height-

ening vulnerability to age-related disorders. Consequently, deci-

phering underlying causal effects and intricate regulatory mecha-

nisms governing stress-accelerated aging becomes imperative in

informing the formulationof innovativeprognosticationsand inter-

ventions to alleviate aging and chronic diseases.10–14

Epigenetics refers to heritable changes in gene expression

that occur without altering the DNA sequence.15–17 Epigenetic
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modifications, such as DNA or RNA methylation, histone modifi-

cations, chromatin remodeling, and non-coding RNAs, are crit-

ical regulators of gene expression and play an essential role in

the aging process.10,12,13 Epigenetic changes can be influenced

by stress and, in turn, affect the stress response, highlighting the

importance of studying the interplay between epigenetics,

stress, and aging. Seminal studies have provided valuable in-

sights into the epigenetic mechanisms linking stress with aging

through the induction of changes in gene expression and cellular

function.18–22 Nevertheless, an in-depth and comprehensive un-

derstanding of recent advances in this area is lacking.

In this review, we will summarize the current advancements in

our knowledge of how various stresses trigger aging and age-

related disorders via epigenetic mechanisms. We will discuss

the interlinked impacts of different types of stresses, considering

both intrinsic and extrinsic stimuli, on aging and related dis-

eases. Furthermore, we will delve into how epigenetic regulation

at multiple layers is involved in stress stimulation and responses.

Additionally, we will review potential interventions aimed at alle-

viating aging and age-related diseases by reducing stress and

restoring epigenetic homeostasis. Lastly, we will address the

challenges in studying the epigenetic interplay between stress

and aging and translating the aging interventions into clinical
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Figure 1. An overview of the interplay
between aging-related stresses and
epigenetic changes
Aging-related stressors, such as chemical re-
agents, radiation, abnormal temperatures (Temp.),
infections, imbalanced nutrients, unhealthy habits
(e.g., smoking and alcohol consumption), sleep
deprivation, mental pressure, and spontaneous
intracellular dysregulation, significantly impact
aging progression and contribute to the develop-
ment of age-related diseases. They act as in-
ducers of oxidative stress, genotoxic stress, in-
flammatory stress, metabolic stress, proteostatic
stress, and thermal stress, which have crosstalk
with each other. Such crosstalk may lead to
diverse cellular damages, including DNA damage,
genetic mutation, telomere shortening, aberrant
transcription, protein aggregation, mitochondrial
dysfunction, and inflammation. These intracellular
dysregulations can further stimulate cascading
responses involving specific epigenetic changes.
Such changes are occurring at distinct layers,
which encompass higher-ordered genomic archi-
tecture, chromatin accessibility, histone modifi-
cations, DNAmethylation, RNAmodifications, and
non-coding RNA expression.
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applications. Although this review cannot cover all forms and

manifestations of stresses associated with aging, we here focus

on typical representatives, including oxidative stress, genotoxic

stress, inflammatory stress, and metabolic stress.

DIFFERENT TYPES OF STRESSES RELATED TO AGING
AND THE UNDERLYING EPIGENETIC REGULATION

Aging-related stresses induced by a range of internal and external

stimuli can shape aging by triggering accumulation of cellular

damages, ultimately contributing to age-related diseases.8,9,23–25

Internal stimuli are predominantly produced by the cell itself,

such as cellular-metabolism-derived reactive oxygen species

(ROS), the deposition of which can contribute to cellular aging.

Conversely, external stimuli, such as chemical reagents, radioac-

tivity, ultraviolet (UV) irradiation, extreme temperatures, infections,

etc., can elicit intrinsic stressors, which synergistically exacerbate

the aging process. Stresses originating from both intrinsic and

extrinsic sources are broadly associated with epigenetic alter-

ations, encompassing dynamics in DNA and RNA methylations,

histone modifications, and non-coding RNA expression. In this

section, we will introduce aging-associated stresses induced by

distinct stimuli, including oxidative stress, genotoxic stress, in-

flammatory stress, metabolic stress, etc. and discuss the epige-

netic basis underlying the contribution of these stresses to aging

(Figure 1).

Oxidative stress
ROS, such as hydrogen peroxide (H2O2), are primarily generated

in the mitochondria as natural by-products of cellular metabolism

but can also be induced in response to environmental factors,

such as radiation and chemicals.26 Accumulation of ROS triggers
the activation of signaling pathways, including the nuclear-factor-

erythroid-2-related factor 2 (NRF2) pathway, and the expression

of antioxidant enzymes, such as superoxide dismutases (SODs),

which aim to eliminate harmful effects of ROS. However, exces-

sive ROS production or impaired antioxidant defense can lead

to oxidative stress, causing damage to cellular macromolecules

and ultimately contributing to cellular dysfunction and aging-

related processes.27–30 Interestingly, recent studies have shown

a close relationship between oxidative-stress-related aging and

its underlying epigenetic regulation.

On the one hand, epigenetic regulation is implicated in endog-

enous oxidative-stress-related aging processes due to the hy-

peractive production of intracellular ROS and the impairment of

antioxidant systems. For instance, glyceraldehyde 3-phosphate

dehydrogenase (NADPH) oxidase 4 (NOX4), one of the major

endogenous ROS-generating enzymes, displays increased

expression that is consistently coupled with excessive ROS

accumulation in various aging models of rodents and human

cells.31–33 Enrichment of the active histone mark H4K16ac at

the promoter region contributes to the epigenetic activation of

theNOX4 gene and release of H2O2 in cellular aging,34 indicating

NOX4 as a potential aging biomarker and driver with possible

involvement of epigenetics. Multiple layers of epigenetic alter-

ations are also associated with dysregulation of antioxidant sys-

tems during aging. For example, dysregulation of microRNA

(miRNA) processing contributes to DNA methyltransferase 3A

(DNMT3A)-mediated hypermethylation and repressed expres-

sion of SOD2, a mitochondrial SOD, which, in turn, results in

high ROS levels and accelerates aging in human mesenchymal

stem cells (MSCs).35 Moreover, in fibroblasts from aged mice,

decreased expression of SOD3, an extracellular SOD, along

with elevated levels of ROS, coincides with changes in a variety
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of histone marks at the SOD3 promoter region, such as the

decrease in H3K9ac and the increase in H3K27me3.36 Further-

more, the antioxidant activity of NRF2, which declines with hu-

man MSC aging, can also be regulated by DNA methylation

and histone modifications.37,38 For example, deficiency of

SIRT6, one of the seven mammalian sirtuins, results in failed de-

acetylation of H3K56 and impeded transcription of NRF2 target

genes, such as the gene encoding heme oxygenase 1

(HMOX-1), increasing ROS accumulation and accelerating hu-

man MSC aging.39 Additionally, SIRT3 and SIRT7, two other sir-

tuin members, also participate in maintaining intracellular redox

homeostasis and counteracting stem cell aging at least partially

by stabilizing the nuclear lamina and heterochromatin.40,41 Over-

all, these findings suggest that the epigenetic regulation of ROS-

generating enzymes and antioxidant factors contributes to

intrinsic oxidative stress and the aging process.

On the other hand, oxidative stress induced by exogenous

stimuli can also cause epigenetic alterations and contribute to ag-

ing and age-related diseases. Beyond directly inducing the oxida-

tion of methylated cytosines (5-methylcytosine, abbreviated as

5mC in DNA) to 5-hydroxymethylcytosine (5hmC), ROS are also

able to regulate the activity of epigenetic enzymes modifying

DNA,RNA,andhistonemodifications. For instance, inhumanneu-

roblastoma cells, H2O2 treatment upregulates the expression of

amyloid precursor protein (APP) and beta-site APP cleaving

enzyme 1 (BACE1) via the induction of DNA hypomethylation

due to the repression of DNMT1 and DNMT3A. This stress

response is associated with increasing b-amyloid (Ab) deposition,

a mechanism known to play a pivotal role in Alzheimer’s disease

(AD), an aging-related neurodegenerative disorder.42 Moreover,

alterations in DNA methylation may also be involved in ROS-

related aging regulation inducedbyUV, highglucose, andpsycho-

social stress.43–48 Apart from DNA methylation, RNA methylation

and histone modification are also implicated in the regulation of

oxidative-stress-related aging triggered by exogenous inducers.

For example, in H2O2-treated human colon carcinoma cells, the

enhancement of RNA methyltransferases METTL3/METTL14-

mediated N6-methyladenosine (abbreviated as m6A in RNA) and

NSUN2-mediated 5-methylcytidine (abbreviated as m5C in RNA)

modifications facilitates translation of the senescence marker

p21,which exacerbates oxidative-stress-induced cellular aging.49

Upregulation of p21 can also be triggered by the elevation of

H4K16ac due to the reduced binding of histone deacetylase 2

(HDAC2) at its promoter region in H2O2-induced neuronal degen-

eration.50 Similarly, smoking-associated ROS induction directly

triggers downregulation of HDAC2 and subsequent upregulation

of p21, contributing to cellular aging in patients with chronic

obstructive pulmonary disease, another age-related disorder.51

Despite numerous studies suggesting that oxidative stress re-

duces longevity and promotes aging, there is countering evidence

showing beneficial roles of ROS in extending lifespan.26 For

example, in yeast, mitochondrial ROS can increase the deposition

of H3K36me3 by downregulating the expression of its demethy-

lase, resulting inSir3p-mediated transcriptional silence of subtelo-

meric regions and longevity.52 In addition, in C. elegans, early-life

exposure to H2O2 can increase stress resistance and lifespan via

the global reduction of H3K4me3.53 These findings suggest that

ROS inaging regulation isbothpleiotropicandcontextdependent.
36 Molecular Cell 84, January 4, 2024
Genotoxic stress
Genotoxic stress refers to any disturbance in genomic stability

caused by internal or external factors, including oxidative dam-

age, radiation, and chemical agents, as well as errors in DNA

replication, repair, and transcription.9,28,54–56 In response to gen-

otoxic stress, signaling pathways are activated to safeguard

genomic integrity, such as the DNA damage response (DDR)

pathways, which encompass ataxia telangiectasia mutated

(ATM), ataxia telangiectasia and Rad3-related protein (ATR),

and p53, and can result in either of two outcomes: successful

DNA repair or genomic instability. Genomic instability, character-

ized by DNA damage and genetic mutations, is a critical hallmark

and major contributor to aging and age-related diseases.10,57 In

recent years, significant progress has been made toward under-

standing the regulatory mechanisms responsible for epigenetic

changes during aging within the context of genotoxic stress.

A variety of genetic disorders that show premature aging de-

fects,9,55 such as Werner syndrome (WS) and Hutchinson-Gilford

progeria syndrome (HGPS), are usually identified by detecting

accumulation of DNA damage and disruption of the epigenome.

For example, accumulation of phosphorylated H2AX (gH2AX), a

surrogate marker of genotoxic stress detecting double-strand

breaks (DSBs), and increased nuclear foci of 53BP1, evidence

for the activation of DDR, are observed in cellular models of WS

andHGPS.58,59Extensive epigeneticabnormalities at thegenomic

and transcriptomic levels are also detected in these cellular aging

models atmultiple levels, including lamina-chromatin interactions,

higher-ordered genomic organization covering compartments, to-

pologically associating domains (TADs) and loops, chromatin

accessibility, multiple histone modifications, as well as DNA and

RNA methylation.60–62 Beyond WS and HGPS, other progeroid

disorders causedbymutations inDNA repair genes, suchasXero-

derma pigmentosa and Cockayne syndrome, also display geno-

toxic stress-related features, including defective DNA repair and

accelerated cellular senescence.63,64 Additionally, genetic muta-

tions in epigenetic modifying enzymes, such as SIRT6, can also

lead to genomic instability, epigenetic dysregulation, and prema-

ture aging.56 Finally, it is worth noting that recent research sug-

gests that even non-mutagenic DSBs can disrupt the epigenetic

landscape and contribute to accelerated aging.65

Intracellular oxidation and replication stress are also internal

sources of genotoxic stress that are associated with epigenetic

regulation and contributing to aging-related processes. For

instance, oxidative DNA modifications induced by cellular ROS,

suchas8-oxo-7,8-dihydro-20-deoxyguanosine (8-oxodG),which

increases during aging and age-related diseases, erodes

genomic stability but also serves as an epigenetic marker con-

nected to DNA and histone methylation remodeling and for con-

trol of downstream gene transcription.66,67 Similarly, 5hmC, an

oxidized form of 5mC, appears to be localized at DNA damage

sites and acts as a substrate for base excision repair, as well as

an epigenetic mark involved in regulating gene expression

related to neurodegenerative disorders.68,69 Replication stress

caused by disturbances in DNA polymerase progression is

another factor contributing to genomic instability and cellular ag-

ing.54,70 Additionally, epigenomic reorganization, including

changes in histone modifications and nucleosome assembly,

has been implicated in replication stress.54
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Telomere shortening is another critical aspect of aging-associ-

ated genomic instability. It is considered one of the key hallmarks

of aging, triggeringDNAdamage at chromosome ends and exac-

erbating the progression of aging and related diseases.10,71–73

Notably, progressive telomere attrition is associated with epige-

netic alterations at multiple layers such as DNA and RNAmethyl-

ation and histone modifications. For instance, a positive correla-

tion has been reported between lower DNA methylation levels

and shorter telomere lengths, which may contribute to increased

genomic instability and susceptibility to diseases and aging.74

The DNA-damage-inducible protein GADD45a also links DNA

methylation status to the regulation of telomere integrity in the ag-

ing-related process.73 Similarly, RNA methylation plays a signifi-

cant role in telomere stability as well. For example, the RNA-bind-

ing protein HuR enhances telomerase activity through m5C

modification on TERCRNA, amechanismwhich counters cellular

senescence.75Moreover,METTL3-mediatedRNAm6Amodifica-

tion has also been implicated in maintaining telomere integrity by

stabilizing TERRA.76 In addition, a variety of histone modifica-

tions, including both repressive and active marks, regulate the

integrity of telomeric and subtelomeric regions, such as

H3K9me3, H4K20me3, and various acetylated forms of H3 and

H4.77 In addition to telomeres are various other specialized nu-

cleic acid structures that show high susceptibility to genotoxic

stresses. These include the G-quadruplex (G4),78 a non-canoni-

cal four-stranded DNA structure formed by G-rich sequences,

and the R-loop,79 a three-stranded structure containing a

DNA:RNA hybrid and a displaced single-stranded DNA. These

structures can also interact with multiple histone marks, partici-

pating in the regulation of stem cell pluripotency and differentia-

tion, as well as aging-related processes.80–84

Extranuclear nucleic acid structures, including mitochondrial

DNA (mtDNA) and micronuclei (MN), can also function as geno-

toxic stress sentinels. Due to the lack of a refined DNA repair sys-

tem and proximity to the major source of ROS, mtDNA is more

prone to damage ormutation. As a result, mtDNAmutations accu-

mulate with age, leading to mitochondrial dysfunction and the

progression of aging-associated disorders, such as cancer and

age-related infertility.85–88Epigenetic regulationofmtDNA involves

inherent DNA methylation and non-coding RNA within mitochon-

dria, impacting gene expression and subsequent mitochondrial

homeostasis and aging.89,90 On the other hand, mitochondria

also indirectly influence the nuclear epigenome, including DNA

and histone methylation, through metabolic intermediates and

by-products, such as a-ketoglutarate.91,92 In addition, copy-num-

ber variationofmtDNA isalsoassociatedwithaging-relatedepige-

netic regulation, as demonstrated by studies on human tissues

supporting a positive correlation between mtDNA copy number

and epigenetic aging.93,94 Unlike mtDNA, MN represent non-ca-

nonical structures formed from mis-segregation of chromosome

and in response to extensive DNA damage.79,95 Aberrant MN are

associated with altered histone modifications and chromatin

accessibility, suggesting a connection to abnormal transcription,

genomic instability, and potentially aging.96,97

A variety of exogenous factors such asUV radiation, g rays, and

genotoxic chemicals are also linked to genomic instability and epi-

genomic remodeling during aging. For instance, UV-induced DNA

damage is associatedwith shifts inDNA andRNAmethylation pat-
terns,which further contribute to theprogression of cellular and tis-

sue aging.62,98–100 Likewise, g irradiation can induceDNA damage

and accelerate skin aging through a miRNA-mediated regulatory

axis.101 Bleomycin-induced cellular senescence also involves

accumulation of DNA damage and reorganization of the epige-

nome, characterized by KDM4-mediated demethylation of H3K9

andH3K36.102Moreover, inexogenousoncogene-inducedcellular

aging models, a possible interplay between DDR and higher-or-

dered chromatin organization has been described.103–105 In addi-

tion, lifestyle risk factors, such as alcohol,106–108 smoking,109–111

and sleep disturbance,112–115 also contribute to genotoxic stress

and are associatedwith aging-related epigenetic variations. Taken

together, thesefindingsprovideaconciseoverviewofendogenous

and exogenous sources of genotoxic stresses and their complex

interplay with epigenetic alterations in the regulation of aging.

Inflammatory stress
Inflammation is a vital response that maintains tissue balance,

aids immune responses, and supports tissue repair. However,

excessive inflammation (inflammatory stress) harms physiolog-

ical functions and contributes to age-related diseases.116–118

Aging itself is associated with a chronic low-grade inflammation

state known as inflammaging, in which immune responses and

tissue regeneration are disrupted.116,119 A deep-learning

method, based on inflammatory patterns and applied as an ag-

ing clock,120 emphasized the critical link between inflammation

and aging. Various stimuli such as DNA damage and foreign in-

fections can induce inflammatory stress, triggering downstream

signaling pathways, such as nuclear factor-kB (NF-kB), to pro-

mote the transcription of pro-inflammatory cytokines. Specific

for aging-associated inflammation is the senescence-associ-

ated secretory phenotype (SASP), a common feature of cellular

senescence, where secreted pro-inflammatory factors exacer-

bate inflammation to further drive development of age-related

conditions.119 Epigenetic modifications play a crucial role in

regulating gene expression during aging-related inflammation.

Understanding the intricate interplay between epigenetics and

inflammation is therefore essential for uncovering the molecular

basis of aging and identifying potential therapies.

Among multifaceted internal causes of inflammatory stress,

genomic instability represents a critical one which can uniquely

drive sterile inflammation related to aging and associates with

many aspects of epigenetics. For example, DNA damage itself

acts as an inducer of inflammation and prompts post-translational

modifications of involved modulators in DDR. Damage-suscepti-

ble R-loops or MN also contribute to aseptic inflammation and

are implicated in aging-related pathways.79 Moreover, mutations

in genes encoding epigenetic modifying enzymes (e.g.,

DNMT3A) also intersect with the regulation of chronic inflamma-

tion linked to aging.121,122 Remarkably, genomic-instability-

induced derepression of retrotransposable elements (REs), which

can activate the cyclic GMP-AMP synthase (cGAS)-stimulator of

interferon genes (STING) innate immunity pathway (Figure 2),

has been inextricably intertwined with aging-associated inflam-

mation.123 For example, knockout of SIRT7 in human MSCs

results in heterochromatin loss, disrupted lamina-chromatin inter-

action, increased chromatin accessibility, and derepression of

long-interspersed element-1 (LINE1) retrotransposons. These
Molecular Cell 84, January 4, 2024 37



Figure 2. The cGAS-STING signaling in aging-related inflammation
The cGAS-STING pathway is induced by exogenous or endogenous DNA and then promotes the synthesis of 2030-cyclic GMP-AMP (cGAMP), phosphorylation of
interferon regulatory factor 3 (IRF3), and nuclear translocation of NF-kB. This mechanism triggers activation of interferon (IFN)-I and SASP signaling, which further
contributes to aging-related inflammation. Notably, exogenous DNA comes mainly from bacterial or viral infections. In contrast, endogenous DNA is primarily
derived from genomic instability that produces damaged DNA fragments or micronuclei, cDNA of REs, such as LINE1 and ERV, and DNA leakage from damaged
mitochondrion. Abbreviations are as follows: RT, reverse transcription; cDNA, complementary DNA; RVLP, retrovirus-like particles.
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cellular dysfunctions activate the cGAS-STING pathway, upregu-

lating inflammatory factors and further exacerbating stem cell ag-

ing.41 Similar observations are seen in prematurely aged human

MSCs with deficiency of the circadian regulators CLOCK and

BMAL1.124,125 Consistent with the findings at the cellular level,

LINE1 activation also induces inflammatory responses in SIRT6-

deficient progeroidmice, aswell as in physiologically aged human

and mouse tissues.126,127 Additionally, endogenous retroviruses

(ERVs), another type of RE, whose activation involves the remod-

eling ofDNAmethylation and histonemodifications, can also stim-

ulate the cGAS-STING pathway and upregulate inflammation to

amplify aging, potentially via a paracrine mechanism.128,129 RNA

m6A decoration is also implicated in the regulation of REs and

SASP factors.100,130–132 However, direct evidence is still lacking

to address whether m6A regulates the aging-related inflammatory

responses via modulation of RE activity. Similar to REs, released

mtDNA can elicit the cGAS-STING activity as well, driving inflam-

mation, neurotoxicity, and brain aging, although it is unknown

whether the epigenome is involved.133

Non-coding RNA and three-dimensional (3D) genomic organi-

zation are also involved in the regulatory network of aging-

related inflammation. For example, non-coding RNAs derived

from the pericentromeric region impair the DNA-binding capac-

ity of CCCTC-binding factor (CTCF), a key player in chromatin or-
38 Molecular Cell 84, January 4, 2024
ganization, accounting for increased chromatin accessibility and

activated transcription of SASP genes.134 Moreover, genomic

remodeling of H3K27ac-enriched enhancers within TADs modu-

lates the expression dynamics of adjacent SASP genes in repli-

catively senescent cells.135 Additionally, METTL3 and METTL14

facilitate the formation of promoter-enhancer loops to regulate

SASP gene expression independently of m6A.136 These findings

reflect the intricate regulation of aging-associated inflammation

from distinct epigenetic layers.

Inflammatory stress related to aging may also originate from

extrinsic stimuli, such as viral or bacterial infections, which usually

trigger acute inflammation. For instance, severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) infection, which has

received great attentions in recent years, has been coupled to

accumulated DNA damage, hyperactivated inflammation, and

accelerated aging in host cells.137–141 Multiple epigenetic regula-

tion is involved in this process. For example, the SARS-CoV-2pro-

tein ORF8 functions as a histone H3 mimic to affect the host epi-

genome, thus widely disrupting the landscape of histone

modifications, as featured by increased H3K9me3 and

H3K27me3 and decreased H3K9ac.142 Furthermore, SARS-

CoV-2 induces widespread nuclear reorganization in host cells,

especially at the compartment scale,which potentially contributes

to the altered gene expression profile covering inflammatory
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genes.143,144 Besides, the SARS-CoV-2 N-protein disrupts 53BP1

recruitment by competitively binding damage-induced long non-

coding RNA, leading to impaired DNA repair, which, in turn, exac-

erbates inflammation and cellular senescence.145 To be noted,

increasing evidence support that the high susceptibility to

SARS-CoV-2 infection in the elderly and the lethal ‘‘cytokine

storm’’ may be related to the high expression of SARS-CoV-2 re-

ceptor genes during aging,whereas the specific epigeneticmech-

anisms remain elusive.146–148 Inflammation induced by poly(I:C)

treatment or bacterial infection can promote epigenetic aging as

well.117 Additionally, psychological stress and sleep-deprivation-

induced chronic inflammation have been linked to epigenetic dys-

regulation and accelerated aging.22,113,114,149–153 However,

further research is needed to uncover the precise molecular

mechanisms involved.

Metabolic stress
Nutritionandmetabolism intricately regulate a variety of biological

processes. Imbalanced nutrient andmetabolic signals profoundly

impact cellular functions, accelerating aging and age-related dis-

eases.154,155 Nutrient affects biological functions through

signaling pathways, such as insulin/insulin-like growth factor 1

(IGF-1), mammalian target of rapamycin (mTOR), sirtuins, and

AMP-activated protein kinase (AMPK), which regulate cellular

growth, autophagy, andmetabolism.Dysregulationof thesepath-

ways, often associated withmetabolic disorders, such as obesity

and diabetes, accelerates aging.9 Metabolic stress, induced by

variouscauses, suchasexcessivecaloric intake, nutrientdepriva-

tion, impaired nutrient sensing, and accumulation of toxic metab-

olites, leads to oxidative damage and mitochondrial dysfunction,

promoting cellular senescence and accelerated aging.156 Epige-

netic modifications can mediate the effects of metabolic stress

on aging by altering distinct marks and influencing metabolic

gene expression. Understanding these connections will provide

novel insights into the development of strategies for maintaining

metabolic balance and promoting healthy aging.

Metabolic pathways utilize nutrients such as glucose, fatty

acids, and amino acids to generate metabolites that regulate

life activities. Disruptions in nutrient uptake and metabolism

can cause epigenetic changes, impacting gene expression pat-

terns associated with aging. For example, glucose metabolism

involves the non-oxidative pentose phosphate pathway (PPP)

and transketolase, an essential enzyme. Defects in transketolase

impair glucose metabolism, increase oxidative stress, trigger

mitochondrial dysfunction, global DNA hypermethylation,

repression of functional genes in immune cells, and potentially

contribute to immunosenescence.157,158 During stem cell ag-

ing-related processes, reduced glucose uptake may contribute

to decreased histone acetylation (including H4K16ac),159 which

potentially associates with increased CDC42, a Rho family

GTPase involved in aging regulation.160 Lipid metabolism affects

aging and longevity by interacting with DNAmethylation and his-

tone modifications. As an example, the gene encoding a fatty

acid elongase known as elongation of very long chain fatty

acids-like 2 (ELOVL2), a master regulator controlling the synthe-

sis of polyunsaturated fatty acid, is hypermethylated, concomi-

tated with a downregulated expression level during biological

aging. Deficiency of ELOVL2 leads to dysregulated lipid meta-
bolism, indicated by accumulation of short fatty acids, glucose

intolerance, insulin resistance, and premature aging in mice.161

Metabolic dysregulation of specific fatty acids inhibits HDAC, re-

sulting in alterations in histone acylation and crotonylation, and

subsequent gene expression dynamics.162,163 Besides, the epi-

transcriptomic machinery, including the RNA m6A demethylase

fat mass- and obesity-associated protein (FTO), also affects lipid

metabolism. For instance, FTO genetic variants associate with

obesity risk, whereas its deficiency reduces adipose tis-

sue.164,165 Similarly, knockout of FTO in human MSCs causes

impaired lipid synthesis, along with accelerated senescence

phenotypes encompassing nuclear abnormalities, heterochro-

matin loss, and telomere attrition.166 Amino acid metabolism

and its interconnections with epigenetics also play a role in aging

regulation. For example, vascular endothelial cell (VEC) aging in-

volves downregulation of intracellular serine and phosphoglyc-

erate dehydrogenase (PHGDH), a key enzyme in serine synthe-

sis. Knockdown of PHGDH decreases serine levels and

accelerates VEC aging. Mechanistically, PHGDH facilitates nu-

clear translocation of pyruvate kinase M2 (PKM2) via p300-cata-

lyzed acetylation, leading to histone H3T11 phosphorylation and

expression of aging-associated factors, such as SIRT1.167 In

addition, branched-chain amino acids modulate aging or

longevity potentially through altering the neuronal histone acety-

lome covering H3K9ac.168,169

Non-coding RNAs, an integral layer of epigenomics, are con-

nected toaging-relatedmetabolic regulationaswell. Oneexample

is miRNA, which plays a pivotal role in regulating metabolic bal-

anceduringagingandage-relateddisorders.miRNAsarebelieved

to target nutrient sensing pathways, such as insulin and mTOR

signaling, affecting glucose and lipid metabolism.170 For instance,

miR-143, downregulated during aging, promotes myogenesis as

an alternative mechanism. However, overexpression of miR-143

interferes with insulin-related regulation and disrupts liver glucose

metabolism in mouse models of obesity.171 Another important

player is Altre, a long non-coding RNA found in regulatory T cells

that increases with aging. Altre is involved in regulating mitochon-

drial dynamics to maintain immune-metabolic homeostasis in the

liver during aging. Consequently, depletion ofAltre leads to dysre-

gulated lipid metabolism, hyperactive ROS accumulation, and in-

flammatory liver microenvironment in aged mice.172

Other types of phytochemicals from diets or general metabolic

intermediates and by-products from host cells or gut microbes

also interplay with aging-related epigenetics (Figure 3). For

example, dihydrocaffeic acid (DHCA), present in grapes and other

plants and a microbial metabolite with antioxidant capacity, can

decrease DNMT1 expression in mice, leading to intronic DNA

hypomethylation and downregulated expression of interleukin

(IL)-6, a common SASP factor.173 S-adenosyl-methionine (SAM),

an important metabolite involved in one-carbon metabolism, en-

hances the trimethylation of H3K36 and production of IL-1b,

another well-known SASP factor, thus contributing to aging-

related defects.174,175 NAD+, a cofactor of sirtuins, links epigenetic

regulation to aging-related gene expression dynamics such that

declining NAD+ levels during aging are associated with alterations

in histone acetylation patterns.176 For instance, reduced NAD+

levels concomitant with impaired SIRT2 activity contribute to

aging-induced demyelination through failed inhibition of H3K18
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Figure 3. The interplay between metabolism and epigenetics
Mitochondria provide essential metabolic intermediates or by-products implicated in aging regulation, for example, acetyl-CoA, NAD+, a-ketoglutarate, and
SAM, which function as cofactors to remodel epigenetic marks, such as histone acetylation and methylation, and DNA methylation.
Abbreviations are as follows: HATs, histone acetyltransferases; HDACs, histone deacetylases; HMTs, histonemethyltransferases; HDMs, histone demethylases;
DNMTs, DNA methyltransferases; TETs, ten-eleven translocation DNA demethylases.
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acetylation and ID4 transcription.177 Moreover, decreased SIRT2

activity also disrupts deacetylation but facilitates phosphorylation

of p66Shc, a mitochondrial adaptor protein, resulting in aberrant

mitochondrial ROS and exacerbated vascular aging.178 Likewise,

acetyl-coenzyme A (CoA), a metabolite that can be derivedfrom

glucose, fatty acids, and amino acids, also participates in aging

regulation by remodeling histone acetylation. For example, the

acetyl-CoA synthetase Acs2 in yeast, or its human ortholog

ACSS2, can promoteH4K16ac enrichment at the subtelomeric re-

gion, compromising telomere silencing and accelerating aging.179

Similarly, reduced acetyl-CoA production sensed by the nucleo-

some remodeling and deacetylase (NuRD) complex leads to

decreased histone acetylation and chromatin remodeling, which

furthersagingprogression.180Besides,asmentionedearlier,a-ke-

toglutarate, an intermediate of the tricarboxylic acid (TCA) cycle,

acts as a cofactor for both DNA and histone demethylases, exert-

ing extensive effects on gene regulation in aging-related epige-

neticmodulation.91,92Taken together, thesefindings revealacom-

plex interplay between multi-dimensional epigenetic regulation,

nutrient sensing, and metabolic pathways in aging-related pro-

cesses.

Other types of stresses
Beyond oxidation, inflammation, genotoxicity, and metabolic

imbalance, other types of stresses such as proteostatic stress
40 Molecular Cell 84, January 4, 2024
and thermal stress play significant roles in the aging process

(Figure 1). Proteostatic stress, a disruption of the protein quality

control system leading to accumulation of toxic proteins and

cellular dysfunction, comprises abnormal protein synthesis

and degradation or the accumulation of misfolded or damaged

proteins within cells. It can be induced by oxidative damage,

endoplasmic reticulum (ER) stress, and heat shock, and in-

volves signaling pathways associated with unfolded protein

response (UPR) and autophagy. Thermal stress, on the other

hand, occurs when cells or organisms experience temperature

conditions outside their optimal range. Extremely high or low

temperatures can provoke heat or cold shock response and

even disrupt the thermoregulation system, which further exac-

erbate oxidative stress, protein misfolding, and cellular dam-

age. Both proteostatic stress and thermal stress play important

roles in regulating aging, and investigating such roles stand to

offer additional insights into underlying mechanisms, including

the interactive role of epigenetics.

Proteostatic stress

Loss of proteostasis is regarded as a hallmark and driver of aging

and age-related diseases.10,181,182 Throughout the entire cycle of

protein synthesis, folding, and degradation, epigenetic modifica-

tions play important regulatory roles. During protein synthesis,

disruption of ribosome-associated quality control compromises

translation, resulting in proteostasis collapse and age-dependent



Figure 4. Aging interventions related to stress relief and epigenomic
stabilization
A diverse range of interventions, including active health approaches, small
molecule-based strategies, gene therapy, cell transplantation, heterochronic
parabiosis, reprogramming, fecal microbiota transplantation, immunotherapy,
etc., are explored to alleviate harmful stresses and rejuvenate the aging epi-
genome. These intervention strategies demonstrate varying degrees of
effectiveness in attenuating aging and age-related degenerations across
cellular, tissue, or organismal levels.
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protein aggregation.183 Ribosomal mutations causing translation

errors drive premature aging in mice, reflected as shortened life-

span alongwithweight loss, ROSaccumulation, telomere attrition,

and accelerated epigenetic aging.184 RNA epigenetics and post-

translational modifications are also involved in the regulation of

aging-related proteostasis. As mentioned earlier, m6A and m5C

modifications coordinately regulate the translation efficiency of

p21, impacting cellular aging.49 tRNA m7G methylation and

mRNA ac4C modification are also implicated in translational ho-

meostasis regulation,185,186 potentially influencing the aging pro-

cess.Moreover,decreasedH3K27me3 isassociatedwithdownre-

gulation of the eukaryotic translation initiation factor 4A2 (eIF4A2),

which acts as both a translation activator and a repressor.187

METTL13-catalyzed dimethylation at lysine 55 enhances the

intrinsic GTPase activity of eukaryotic translation elongation factor

1A (eEF1A), another critical player in protein synthesis, leading to

increased translational output.188 Theseobservations point to a di-

versity of epigenetic regulation in protein translation potentially

associated with aging progression.

Misfolding and abnormal aggregation of proteins are con-

nected to epigenetic regulation in aging-related processes. For

example, misfolding and aggregation of the Ab peptide, which

is linked with the onset and progression of AD, can be exacer-

bated by genome-wide increase in H3K27ac and H3K9ac

levels.189 Furthermore, aberrant accumulation of the microtu-

bule-binding protein tau causes neurotoxic effects that promote

neurodegeneration, wherein phosphorylation and ubiquitination
modifications play an important role.190–192 Aging-interfered pro-

tein degradation likewise involves epigenetic dysregulation. For

example, global loss of ubiquitination in C. elegans during aging

led to dysregulated proteasomal degradation and a shortened

lifespan.193 Additionally, aging-induced accumulation of apoli-

poprotein E (APOE) facilitated degradation of the nuclear lamina

and heterochromatin-associated proteins via the autophagy-

lysosomal pathway.194 This process is accompanied by hetero-

chromatin loss, dissociation of lamina-chromatin interaction,

gain of chromatin accessibility, and reactivation of repetitive el-

ements. Taken together, these findings highlight the involvement

of epigenetics in aging-related loss of proteostasis and provide

valuable insights into aging mechanisms.

Thermal stress

Increasingevidencesuggest a complex interactionbetweenaging

and thermoregulation. For instance, rodents and humans experi-

ence age-related declines in body temperature, indicating

reduced heat tolerance and abnormal thermoregulatory re-

sponses.195,196 Conversely, impaired thermoregulation due to

ageorextremeenvironmental exposurecanexacerbatemolecular

and cellular damage, accelerating aging and aging-related disor-

ders.197–199 As an example, rodents exposed to hot ambient tem-

peratures acquired elevated body temperature, decreased meta-

bolic rate, and shortened lifespan.200 In contrast, moderate cold

exposure improves proteostasis and prolongs the lifespan of

C. elegans.201 Recent studies reveal how such epigeneticmecha-

nisms regulate thermal stress-related aging. For example, aging-

induced downregulation of SIRT1 is responsible for the weakened

DNA-binding capacity of the heat shock factor (HSF)-1, potentially

due to failed deacetylation and contributing to the impaired heat

tolerance.197,202–204 Interestingly, however, mild heat exposure

can also promote longevity via remodeling DNA and histonemod-

ifications. For instance, heat stress in worms induces heritable

longevity, which is mediated by DNA methyltransferase DAMT-

1-catalyzed N6-methyladenosine (abbreviated as 6mA in DNA)

modification and histone methyltransferase SET-25 and SET-32-

catalyzed H3K9me3 deposition. Meanwhile, transcription factors

like the abnormal dauer formation protein (DAF)-16/forkhead box

protein O (FOXO), HSF-1, and the nuclear receptor DAF-12/

farnesoid X receptor (FXR) are also required for the transgenera-

tional inheritance of heat stress-induced longevity.205 Likewise,

early-life exposure tomoderateheat stress inC.eleganspromotes

longevity and long-lasting stress resistance but through establish-

ing an epigenetic memory mediated by histone acetyltransferase

CREB-binding protein (CBP)-1 and the chromatin remodeling

complex switch/sucrose nonfermentable (SWI/SNF).206 These

findings demonstrate the critical role of epigenetics in heat-

stress-related aging regulation and provide potential targets to

enhance stress resistance and outfight aging.

AGING INTERVENTIONS FOR STRESS ALLEVIATION
AND EPIGENETIC REJUVENATION

On the basis of mechanisms underlying the interconnection be-

tween stress and aging, various intervention strategies have

been proposed to combat aging and age-related disorders.

These include adopting a healthy lifestyle and therapeutic treat-

ments, including small molecules, gene therapies, and cell
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transplantation. Additionally, promising interventions for slowing

down aging also include heterochronic parabiosis, reprogram-

ming, gut microbial transfer, and immunotherapy. This section

will briefly discuss representative aging interventions and their

associated stress alleviation and epigenetic regulation (Figure 4).

Active-health-based interventions
Achieving active health involvesmaintaining a state of well-being

through regular physical activity and adopting a healthy lifestyle

that encompasses various factors such as diet, exercise, sleep,

mood, and environment. Calorie restriction (CR) is an effective

approach for combating aging by reducing calorie intake without

sacrificing essential nutrients. It has shown wide-ranging effects

on extending health span or lifespan through the improvement of

stress resistance in a species-conserved manner from yeast to

human,207–210 with the involvement of epigenetic mechanisms,

including DNA methylation shifting and histone modification re-

modeling.211–213 In addition to CR, other dietary control strate-

gies, such as amino acid or protein restriction and intermittent

or periodic fasting, also present beneficial influences on energy

metabolism, health span, and longevity, mostly in animal

models.207 Exercise, similar to CR, triggers geroprotective ef-

fects and mitigates age-related hazards at least partially by alle-

viating inflammatory and metabolic stresses.214,215 Epigenetic

regulation, possibly through alterations in DNA methylation and

histone modifications, plays an important role in the geroprotec-

tive effects of exercise. For example, late-life exercise mitigated

DNA-methylation-indicated epigenetic aging in skeletal muscle

in mice.216 Exercise also influences H3K9 methylation profiles

in the rat hippocampus with an age-dependent manner.217 Addi-

tionally, emotional stability, regular sleep patterns, and effective

smoking cessation also present beneficial results to decelerate

epigenetic aging in humans.218–221

Small-molecule-based interventions
Extensive efforts have been dedicated toward development of

small-molecule-based aging interventions that can be broadly

categorized into two classes. The first class, geroprotective or

rejuvenating compounds, enhances metabolic homeostasis, bol-

sters antioxidant capacity, reduces inflammatory stress, and pro-

motes (epi)genomic stability. For example,metformin, an anti-dia-

betic drug widely applied to promote longevity and healthspan in

model organisms,222–224 has been approved in a clinical trial

named Targeting AgingwithMetformin (TAME) for its potential ag-

ing-targeting effects.225 Metformin exhibits the ability to reverse a

range of aging hallmarks in multiple cellular and animal models,

leading to improved nutrient signaling, enhanced intercellular

communications, ameliorated proteostasis, attenuated genomic

instability, and remodeled epigenetic landscape with increased

DNA methylation and H3K27me3 deposition.225 Resveratrol, an

activator of SIRT1, retards aging-related deterioration in mice

and prolongs health span or lifespan with metabolic benefits

mimicking dietary restriction,226–228 potentially by affecting DNA

methylation and histone acetylation.229,230 NAD+, as mentioned

earlier, can regulate the activity of sirtuins as well and participate

in aging regulation potentially via histone deacetylation. Supple-

mentation with its precursors, such as nicotinamide riboside

(NR) and nicotinamide mononucleotide (NMN), effectively pre-
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vented the decline of NAD+ and triggered geroprotective effects

at least in rodents.224,231 Vitamin C, also known as ascorbic

acid, has a geroprotective role in prematurely senescent stem

cells via restoration of heterochromatin and nuclear lamina.232

Nucleoside reverse transcriptase inhibitors, such as lamivudine

(3TC) and abacavir, alleviate aging-related inflammation via inhibi-

tion of LINE1 and ERV.126–129 Additionally, other small molecules,

such as rapamycin,233 aspirin,234 uridine,235 taurine,236 quer-

cetin,237 chloroquine,238 gallic acid,239 lycorine hydrochloride,240

oltipraz,241 etc., have also demonstrated rejuvenating effects.

The second class, known as senolytics, involves agents

capable of targeting elimination of senescent cells by inducing

apoptosis.242 For instance, the pan-tyrosine kinase inhibitor

dasatinib and the flavonoid quercetin were the first senolytic

agents identified to induce apoptosis of senescent cells and

alleviate age-related impairments in various tissues,243–245

which may be associated with changes in DNA and histone

methylation profiles.246,247 Other senolytics, including BCL-2

inhibitors, such as Navitoclax (ABT-263), ABT-737, A1331852,

and A1155463,248–252 heat shock protein 90 (HSP90) inhibi-

tors,253 cardiac glycosides,254 and FOXO4 peptide,255 also

function by inducing senescent cell apoptosis to ameliorate tis-

sue damage, yet their association with epigenetic regulation re-

mains largely unknown.

Gene-therapy-based interventions
Gene therapy interventions hold promise in counteracting hu-

man stem cell aging and age-related degenerations. For

instance, rejuvenating factors, such as DGCR8, CLOCK,

CBX4, and SOX5, counteract human stem cell aging by stabiliz-

ing heterochromatin and, when delivered via lentiviral injection,

have been reported to promote cartilage regeneration and atten-

uate osteoarthritis in mice.124,256–258 Similarly, administration of

lentiviral vectors encoding YAP or FOXD1 also alleviate mouse

osteoarthritis.259 Overexpression of SIRT2 is capable of allevi-

ating cardiac aging in mice.260 In addition, adeno-associated vi-

rus (AAV)-mediated delivery of vascular endothelial growth fac-

tor (VEGF) triggers amelioration of aging-associated

pathologies, such as osteoporosis and inflammaging, rejuvena-

tion of metabolism, and extension of lifespan in mice.261

Conversely, genetic inhibition of aging acceleration factors,

such as ERV and KAT7, also result in beneficial effects on allevi-

ating human stem cell aging and extends mouse health span or

lifespan. For example, lentiviral CRISPR-mediated inhibition of

ERV rejuvenated senescent human stem cells and induced

structural and functional improvements in the joints of aged

mice.128 Similarly, inactivation of KAT7, a histone acetyltransfer-

ase, attenuated human stem cell aging by decreasing H3K14ac

deposition and p15 expression and extended lifespan in both

physiologically and prematurely aged mice.262 In addition,

knockout of APOE stabilized the nuclear lamina and heterochro-

matin, alleviating stem cell aging and presenting a potential

target for novel gene therapies.194 Furthermore, targeting pro-

gerin transcripts with antisense technology increased the life-

span of progeroid mice, highlighting another avenue for potential

development of genetic therapeutic strategies.263 However,

most of these genetic intervention approaches have not yet

been tested in clinical trials.
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Interestingly, learning from long-lived animals also holds great

promise for developing new genetic intervention strategies to

combat aging. The nakedmole-rat (NMR), for example, is known

for its outstanding resistance to aging-related diseases,

including cancer and exceptional longevity.264–266 This may be

attributed to its stable genome and epigenome because NMR

cells are characterized by the unusual stabilization of p53 pro-

tein, high deposition of H3K27 methylation, and low deposition

of H3K27 acetylation, alongside a more closed chromatin state

at the promoter region.266–268 Most recently, a study reported

a mouse model overexpressing NMR hyaluronic acid synthase

2, which showed a higher level of hyaluronan. More intriguingly,

these genetically modified mice displayed resistance to inflam-

mation, oxidative stress, and cancer, as well as an extended

health span and lifespan.269 These findings suggest that the

NMR longevity mechanism can be extended to other species,

paving a potential way for gene-based strategies against ag-

ing-related disorders in humans.

Cell-transplantation-based interventions
Cell transplantation-based strategies have been developed in

both laboratory and clinical studies to combat aging and age-

related disorders. For example, transplantation of glial progenitor

cells into aged mice achieves long-term integration as well as

improved neurological function.270 Moreover, administration of

stem cells or vascular cells, expressing genetically enhanced

NRF2 or FOXO3, conferred resistance to both aging and tumori-

genesis and successfully promoted vascular or cardiac regenera-

tion in mice.37,271–273 In general, MSCs represent a powerful

source for cell transplantation approaches and have been applied

in clinical studies toward antagonizing age-related disorders.274

For instance, transfusion of human umbilical cord-derived MSCs

in patients with liver cirrhosis yielded safe and effective improve-

ments in liver function.275 Furthermore, the therapeutic safety

and efficacy of MSCs in treatment of osteoarthritis lend clinical

validation toward broad applicability of stem cell transplantation

strategies in mitigating aging-related disorders.276 Interestingly,

stem cell-derived extracellular vesicles also show rejuvenation ef-

fects both in vitro and in vivo. For instance, exosomes derived

from antler stem cells alleviate human MSC aging and mouse

osteoarthritis.277 Similarly, extracellular vesicles from umbilical-

cord-derived MSCs also rejuvenate senescent MSCs and miti-

gate bone and kidney degeneration in aged mice.278 In addition,

MSC-derived extracellular vesicles have also been reported to

reverse epigenetic aging and improve health span in mice, poten-

tially mediated through miRNA-dependent regulation.279,280

Other intervention strategies
Many other geroprotective strategies, including heterochronic

parabiosis, reprogramming, fecal microbiota transplantation,

and immunotherapy, offer promising effects on combating ag-

ing-related conditions (Figure 4). Heterochronic parabiosis,

where young and aged mice are surgically joined together to

share a common circulatory system, rejuvenates tissue and or-

gan functions in the aged organism through exposure to factors

present in young blood.281–284 Such rejuvenation may be

achieved in part by DNAmethylation remodeling.285 Reprogram-

ming refers to a rejuvenation strategy via the global remodeling
to revert somatic cells to a pluripotent state by overexpression

of Yamanaka transcription factors (OCT4, SOX2, KLF4, and

MYC, also known as OSKM) or induction with chemicals.286–289

This approach restores a youthful epigenetic status via resetting

H3K9me3, H4K20me3, and DNA methylation levels.286,290–292

Another promising strategy for restoring healthy aging is fecal

microbiota transplantation, which can reshape the host gut mi-

crobiota and alleviate aging in multiple tissues.293–295 In this pro-

cess, microbiota-derived metabolites may act as epigenetic

players to remodel the host’s DNA and histone modifica-

tions.296,297 Additionally, and similar to senolytics, aging-delay-

ing immunotherapies aim to eliminate senescent cells by stimu-

lating the organism’s immune system rather than inducing

apoptosis. In principle, by identifying antigens specifically en-

riched in senescent cells (also known as seno-antigens), such

as the glycoprotein nonmetastatic melanoma protein B

(GPNMB) and urokinase-type plasminogen activator receptor

(uPAR), vaccines or chimeric antigen receptor (CAR) T cells

recognizing these seno-antigens achieve targeted removal of

senescent cells, ultimately enabling the treatment of aging-

related disorders, such as atherosclerosis, liver fibrosis and can-

cers, as well as the extension of health span or lifespan in

mice.298,299 However, the possible epigenetic involvement in

these immunotherapy-based interventions remains unexplored.

CONCLUSION AND PERSPECTIVES

In conclusion, we here provide an extensive exploration of cur-

rent advances in understanding the intricate relationship be-

tween stress, aging, and the involved epigenetics. We discuss

a wide range of epigenetic modifications at different layers and

the various, although not all, stresses associated with aging. Of

note, these stresses are interdependent and have crosstalk

with each other to form a complex network of aging mecha-

nisms. Furthermore, we also review intervention strategies

aimed at mitigating aging by alleviating stress and stabilizing

epigenetic processes. These strategies hold great promise for

guiding the development of innovative therapeutic approaches

to combat age-related disorders.

However, it is imperative to acknowledge that most of the cur-

rent evidence on the relationship between epigenetic inheritance

and stress-related aging provides correlation, not causation, high-

lighting the need for deeper mechanistic insights to develop safe

and effective aging interventions. On the other hand, although

some aging interventions have progressed to clinical trials,

many more remain at the laboratory stage, reflecting a significant

gap between basic research and practical application.12 Howev-

er, findings from model organisms and cellular models may not

directly apply to humans in clinical settings, necessitating species,

tissue, and cell-type-specific investigations and cautious interpre-

tation of results. Fortunately, such validation approaches become

increasingly feasible due to advancements in high-resolution,

spatial, single-cell and multi-omics sequencing technologies,300

which will help deepen our understanding of the systemic, hetero-

geneous, and programmed nature of aging, especially from the

perspective of stress and epigenetic interactions. Besides, to

avoid disparities that may emerge in different research models

and settings, establishing uniform standards or guidelines for
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model design, mechanism validation, and evaluation approaches

of intervention effectiveness and safety would be advantageous.

Specifically, for example, preclinical investigations using large an-

imal models, particularly non-human primates,301,302 can prove

valuable in validating molecular targets and assessing the safety

and efficacy of aging interventions, facilitating their translation to

clinical trials. Moreover, the identification and utilization of

increasingly sensitive and specific aging biomarkers will be instru-

mental in precisely evaluating the detrimental effects of stresses

and the efficacy of interventions.242,303 As anexample, large-scale

studies involving robust cohorts might be of great significance.304

Additionally, the development of user-friendly and efficient tech-

nical equipment, such as artificial-intelligence-assisted wearable

devices, holds significant promise for advancing data collection

and analysis in this field.305 These technological advancements

may also facilitate real-time monitoring of molecular changes,

enabling timely interventions and personalized treatment ap-

proaches. Taken together, continued research that focuses on

addressing the existing limitations and challenges in this field

carries immense potential for enhancing our understanding of

the epigenetic crosstalk between stress and aging. Combined,

such efforts will drive the development of novel intervention stra-

tegies for effective clinical translation, ultimately leading to the

successful mitigation of age-associated diseases.
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de Magalhães, J.P., Mau, T., Maes, M., Moritz, R., Niedernhofer, L.J.,
et al. (2021). Molecular damage in aging. Nat. Aging 1, 1096–1106.
https://doi.org/10.1038/s43587-021-00150-3.

29. Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gar-
giulo, G., Testa, G., Cacciatore, F., Bonaduce, D., et al. (2018). Oxidative
stress, aging, and diseases. Clin. Interv. Aging 13, 757–772. https://doi.
org/10.2147/CIA.S158513.

30. Cheng, F., Ji, Q., Wang, L., Wang, C.C., Liu, G.H., and Wang, L. (2023).
Reducing oxidative protein folding alleviates senescence by minimizing
ER-to-nucleus H2O2 release. EMBO Rep. 24, e56439. https://doi.org/
10.15252/embr.202256439.

31. Vendrov, A.E., Vendrov, K.C., Smith, A., Yuan, J., Sumida, A., Robidoux,
J., Runge, M.S., and Madamanchi, N.R. (2015). NOX4 NADPH oxidase-
dependent mitochondrial oxidative stress in aging-associated cardio-
vascular disease. Antioxid. Redox Signal. 23, 1389–1409. https://doi.
org/10.1089/ars.2014.6221.

32. McCrann, D.J., Yang, D., Chen, H., Carroll, S., and Ravid, K. (2009). Up-
regulation of Nox4 in the aging vasculature and its association with
smooth muscle cell polyploidy. Cell Cycle 8, 902–908. https://doi.org/
10.4161/cc.8.6.7900.

33. Weyemi, U., Lagente-Chevallier, O., Boufraqech,M., Prenois, F., Courtin,
F., Caillou, B., Talbot, M., Dardalhon, M., Al Ghuzlan, A., Bidart, J.M.,
et al. (2012). ROS-generating NADPH oxidase NOX4 is a critical mediator
in oncogenic H-Ras-induced DNA damage and subsequent senescence.
Oncogene 31, 1117–1129. https://doi.org/10.1038/onc.2011.327.

34. Sanders, Y.Y., Liu, H., Liu, G., and Thannickal, V.J. (2015). Epigenetic
mechanisms regulate NADPH oxidase-4 expression in cellular senes-
cence. Free Radic. Biol. Med. 79, 197–205. https://doi.org/10.1016/j.
freeradbiomed.2014.12.008.

35. Jung, Y.D., Park, S.K., Kang, D., Hwang, S., Kang, M.H., Hong, S.W.,
Moon, J.H., Shin, J.S., Jin, D.H., You, D., et al. (2020). Epigenetic regula-
tion of miR-29a/miR-30c/DNMT3A axis controls SOD2 and mitochon-
drial oxidative stress in human mesenchymal stem cells. Redox Biol.
37, 101716. https://doi.org/10.1016/j.redox.2020.101716.

36. Roman, J., Zhu, J., Ritzenthaler, J.D., and Zelko, I.N. (2017). Epigenetic
regulation of EC-SOD expression in aging lung fibroblasts: role of histone
acetylation. Free Radic. Biol. Med. 112, 212–223. https://doi.org/10.
1016/j.freeradbiomed.2017.07.028.

37. Yang, J., Li, J., Suzuki, K., Liu, X., Wu, J., Zhang, W., Ren, R., Zhang, W.,
Chan, P., Izpisua Belmonte, J.C., et al. (2017). Genetic enhancement in
cultured human adult stem cells conferred by a single nucleotide recod-
ing. Cell Res. 27, 1178–1181. https://doi.org/10.1038/cr.2017.86.

38. Thiruvengadam, M., Venkidasamy, B., Subramanian, U., Samynathan,
R., Ali Shariati, M., Rebezov, M., Girish, S., Thangavel, S., Dhanapal,
A.R., Fedoseeva, N., et al. (2021). Bioactive compounds in oxidative
stress-mediated diseases: targeting the NRF2/ARE signaling pathway
and epigenetic regulation. Antioxidants (Basel) 10. https://doi.org/10.
3390/antiox10121859.
39. Pan, H., Guan, D., Liu, X., Li, J., Wang, L., Wu, J., Zhou, J., Zhang, W.,
Ren, R., Zhang, W., et al. (2016). SIRT6 safeguards human mesenchymal
stem cells from oxidative stress by coactivating NRF2. Cell Res. 26,
190–205. https://doi.org/10.1038/cr.2016.4.

40. Diao, Z., Ji, Q., Wu, Z., Zhang, W., Cai, Y., Wang, Z., Hu, J., Liu, Z., Wang,
Q., Bi, S., et al. (2021). SIRT3 consolidates heterochromatin and counter-
acts senescence. Nucleic Acids Res. 49, 4203–4219. https://doi.org/10.
1093/nar/gkab161.

41. Bi, S., Liu, Z., Wu, Z., Wang, Z., Liu, X., Wang, S., Ren, J., Yao, Y., Zhang,
W., Song, M., et al. (2020). SIRT7 antagonizes human stem cell aging as a
heterochromatin stabilizer. Protein Cell 11, 483–504. https://doi.org/10.
1007/s13238-020-00728-4.

42. Gu, X., Sun, J., Li, S., Wu, X., and Li, L. (2013). Oxidative stress induces
DNA demethylation and histone acetylation in SH-SY5Y cells: potential
epigenetic mechanisms in gene transcription in Ab production. Neuro-
biol. Aging 34, 1069–1079. https://doi.org/10.1016/j.neurobiolaging.
2012.10.013.

43. Orioli, D., and Dellambra, E. (2018). Epigenetic regulation of skin cells in
natural aging and premature aging diseases. Cells 7. https://doi.org/10.
3390/cells7120268.

44. Yi, Y., Xie, H., Xiao, X., Wang, B., Du, R., Liu, Y., Li, Z., Wang, J., Sun, L.,
Deng, Z., et al. (2018). Ultraviolet A irradiation induces senescence in hu-
man dermal fibroblasts by down-regulating DNMT1 via ZEB1. Aging (Al-
bany, NY) 10, 212–228. https://doi.org/10.18632/aging.101383.

45. Chen, Q., Tang, L., Xin, G., Li, S., Ma, L., Xu, Y., Zhuang, M., Xiong, Q.,
Wei, Z., Xing, Z., et al. (2019). Oxidative stress mediated by lipid meta-
bolism contributes to high glucose-induced senescence in retinal
pigment epithelium. Free Radic. Biol. Med. 130, 48–58. https://doi.org/
10.1016/j.freeradbiomed.2018.10.419.

46. Safi, S.Z., Qvist, R., Yan, G.O., and Ismail, I.S. (2014). Differential expres-
sion and role of hyperglycemia induced oxidative stress in epigenetic
regulation of b1, b2 and b3-adrenergic receptors in retinal endothelial
cells. BMC Med. Genomics 7, 29. https://doi.org/10.1186/1755-8794-
7-29.

47. Polsky, L.R., Rentscher, K.E., and Carroll, J.E. (2022). Stress-induced
biological aging: a review and guide for research priorities. Brain Behav.
Immun. 104, 97–109. https://doi.org/10.1016/j.bbi.2022.05.016.

48. Zannas, A.S. (2019). Epigenetics as a key link between psychosocial
stress and aging: concepts, evidence, mechanisms. Dialogues Clin.
Neurosci. 21, 389–396. https://doi.org/10.31887/DCNS.2019.21.4/
azannas.

49. Li, Q., Li, X., Tang, H., Jiang, B., Dou, Y., Gorospe, M., and Wang, W.
(2017). NSUN2-mediated m5C methylation and METTL3/METTL14-
mediated m6A methylation cooperatively enhance p21 translation.
J. Cell. Biochem. 118, 2587–2598. https://doi.org/10.1002/jcb.25957.

50. Peng, S., Zhao, S., Yan, F., Cheng, J., Huang, L., Chen, H., Liu, Q., Ji, X.,
and Yuan, Z. (2015). HDAC2 selectively regulates FOXO3a-mediated
gene transcription during oxidative stress-induced neuronal cell death.
J. Neurosci. 35, 1250–1259. https://doi.org/10.1523/JNEUROSCI.
2444-14.2015.

51. Aitbaev, K.A., Murkamilov, I.T., and Fomin, V.V. (2019). Molecular mech-
anisms of aging: the role of oxidative stress and epigenetic modifications.
Adv. Gerontol. 32, 20–28.

52. Schroeder, E.A., Raimundo, N., and Shadel, G.S. (2013). Epigenetic
silencing mediates mitochondria stress-induced longevity. Cell Metab.
17, 954–964. https://doi.org/10.1016/j.cmet.2013.04.003.

53. Bazopoulou, D., Knoefler, D., Zheng, Y., Ulrich, K., Oleson, B.J., Xie, L.,
Kim, M., Kaufmann, A., Lee, Y.T., Dou, Y., et al. (2019). Developmental
ROS individualizes organismal stress resistance and lifespan. Nature
576, 301–305. https://doi.org/10.1038/s41586-019-1814-y.

54. Berti, M., Cortez, D., and Lopes, M. (2020). The plasticity of DNA replica-
tion forks in response to clinically relevant genotoxic stress. Nat. Rev.
Mol. Cell Biol. 21, 633–651. https://doi.org/10.1038/s41580-020-0257-5.
Molecular Cell 84, January 4, 2024 45

https://doi.org/10.1038/s41398-021-01735-7
https://doi.org/10.1038/s41398-021-01735-7
https://doi.org/10.1038/nature13193
https://doi.org/10.1038/s41556-019-0354-x
https://doi.org/10.1038/s41556-019-0354-x
https://doi.org/10.1111/j.1468-2494.2007.00415.x
https://doi.org/10.1038/s41580-020-0230-3
https://doi.org/10.1038/s41580-018-0020-3
https://doi.org/10.1038/s43587-021-00150-3
https://doi.org/10.2147/CIA.S158513
https://doi.org/10.2147/CIA.S158513
https://doi.org/10.15252/embr.202256439
https://doi.org/10.15252/embr.202256439
https://doi.org/10.1089/ars.2014.6221
https://doi.org/10.1089/ars.2014.6221
https://doi.org/10.4161/cc.8.6.7900
https://doi.org/10.4161/cc.8.6.7900
https://doi.org/10.1038/onc.2011.327
https://doi.org/10.1016/j.freeradbiomed.2014.12.008
https://doi.org/10.1016/j.freeradbiomed.2014.12.008
https://doi.org/10.1016/j.redox.2020.101716
https://doi.org/10.1016/j.freeradbiomed.2017.07.028
https://doi.org/10.1016/j.freeradbiomed.2017.07.028
https://doi.org/10.1038/cr.2017.86
https://doi.org/10.3390/antiox10121859
https://doi.org/10.3390/antiox10121859
https://doi.org/10.1038/cr.2016.4
https://doi.org/10.1093/nar/gkab161
https://doi.org/10.1093/nar/gkab161
https://doi.org/10.1007/s13238-020-00728-4
https://doi.org/10.1007/s13238-020-00728-4
https://doi.org/10.1016/j.neurobiolaging.2012.10.013
https://doi.org/10.1016/j.neurobiolaging.2012.10.013
https://doi.org/10.3390/cells7120268
https://doi.org/10.3390/cells7120268
https://doi.org/10.18632/aging.101383
https://doi.org/10.1016/j.freeradbiomed.2018.10.419
https://doi.org/10.1016/j.freeradbiomed.2018.10.419
https://doi.org/10.1186/1755-8794-7-29
https://doi.org/10.1186/1755-8794-7-29
https://doi.org/10.1016/j.bbi.2022.05.016
https://doi.org/10.31887/DCNS.2019.21.4/azannas
https://doi.org/10.31887/DCNS.2019.21.4/azannas
https://doi.org/10.1002/jcb.25957
https://doi.org/10.1523/JNEUROSCI.2444-14.2015
https://doi.org/10.1523/JNEUROSCI.2444-14.2015
http://refhub.elsevier.com/S1097-2765(23)00809-2/sref51
http://refhub.elsevier.com/S1097-2765(23)00809-2/sref51
http://refhub.elsevier.com/S1097-2765(23)00809-2/sref51
https://doi.org/10.1016/j.cmet.2013.04.003
https://doi.org/10.1038/s41586-019-1814-y
https://doi.org/10.1038/s41580-020-0257-5


ll
Review
55. Schumacher, B., Pothof, J., Vijg, J., and Hoeijmakers, J.H.J. (2021). The
central role of DNA damage in the ageing process. Nature 592, 695–703.
https://doi.org/10.1038/s41586-021-03307-7.

56. Soto-Palma, C., Niedernhofer, L.J., Faulk, C.D., and Dong, X. (2022). Epi-
genetics, DNA damage, and aging. J. Clin. Invest. 132. https://doi.org/
10.1172/JCI158446.
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