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Cryptic diversity begets challenges and opportunities in
biodiversity research
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Abstract

How many species of life are there on Earth? This is a question that we want to know but cannot yet answer.
Some scholars speculate that the number of species may reach 2.2 billion when considering cryptic diversity and
that each morphology-based insect species may contain an average of 3.1 cryptic species. With nearly two million
described species, such high estimates of cryptic diversity would suggest that cryptic species are widespread. The
development of molecular species delimitation has led to the discovery of a large number of cryptic species, and
cryptic biodiversity has gradually entered our field of vision and attracted more attention. This paper introduces
the concept of cryptic species, how they evolve, and methods by which they may be discovered and confirmed, and
provides theoretical and methodological guidance for the study of hidden species. A workflow of how to confirm
cryptic species is provided. In addition, the importance and reliability of multi-evidence-based integrated taxonomy
are reaffirmed as a way to better standardize decision-making processes. Special focus on cryptic diversity and
increased funding for taxonomy is needed to ensure that cryptic species in hyperdiverse groups are discoverable
and described. An increased focus on cryptic species in the future will naturally arise as more difficult groups are
studied, and thereby, we may finally better understand the rules governing the evolution and maintenance of cryptic
biodiversity.
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Biodiversity deeply influences the lives of human be-
ings (Diaz et al. 2006). Ecosystem services, the ways
other species benefit humankind, are in many ways reliant
on species biodiversity, as different species contribute in
different ways. Yet, our understanding of global biodiver-
sity remains incipient for many groups, such as arthro-
pods (Stork 2018; Pfingstl et al. 2021).

How many species are there on Earth? In answering
this question, the taxonomic challenges posed by cryp-
tic/hidden species are non-negligible, resulting in vari-
able estimates of species richness (Costello et al. 2013).
One of the earliest such estimates was 0.4 million, made
by Westwood (1833), followed much later by some esti-
mates as high as 30 million or more (Erwin 1982), and
more recent estimates have eventually settled on 8.7 mil-
lion (Mora et al. 2011) and 5.5-8 million species (Stork
2018). Now, we face another wave of even higher es-
timates, reaching up to 2.2 billion (Li & Wiens 2022).
However, as of 2021, roughly 2 million species have been
formally described and named (Banki et al. 2021), and
half of them are insects. Even less than 1% of biodi-
versity may have been described, depending on which
estimate of species richness is correct (Laurance 2013;
Havermans 2016; Banki et al. 2021; Li & Wiens 2022).
As well, discovering cryptic species will prove essential
to estimate the accurate number of species existing on
Earth.

With the development of molecular biology technolo-
gies, multiple species that could not be discerned via
morphology have been identified, and additional difficult
species complexes also have become tractable. The con-
cepts of “cryptic/hidden species” and “cryptic/hidden bio-
diversity” consequently came into being. Li and Wiens
(2022) suggest that cryptic species may be widespread
and common: that each morphology-based insect species
may contain an average of 3.1 cryptic species. For hy-
perdiverse taxa such as insects, it is to be expected that
discovery would be a multi-step process requiring such
re-examination. The distribution of cryptic species diver-
sity seems unlikely to be random, and this has impor-
tant implications for speciation, evolution, biodiversity
assessment, and conservation (Schonrogge et al. 2002;
Lee & O Foighil 2004; Geml et al. 2006; Williams
etal 2012).

This review will introduce the concept and progress of
their study, how they are thought to evolve, relevant dis-
covery and research methods, and their significance. Our
aim is to convince researchers to pay more attention to
cryptic biodiversity and to more deeply understand evolu-
tionary processes.

THE CONCEPT OF CRYPTIC SPECIES

The concept of cryptic species is considered an ex-
tension of that of species, and the prerequisite for defin-
ing a cryptic species entails defining “species.” In total,
more than 30 species concepts were provided for respec-
tive purposes (Wilkins 2006, 2009; de Queiroz 2007; Orr
et al. 2022). Among them, the biological species con-
cept is the most well-known and widely used, stating that
a species is a group of individuals that are reproduc-
tively isolated from other groups (Mayr 1963, 1982). The
most commonly used concept of a cryptic species is also
largely based on the biological species concept, defined
as “species that are morphologically similar to known
ones but have developed reproductive isolation” (Knowl-
ton 1993; Adams 1998). In addition, some scientists agree
the concept of cryptic species and the concept of species
are incompatible based on points that “cryptic” itself de-
rives from morphology and many species concepts do not
include morphological evidence (e.g. Heethoff 2018; Pf-
ingstl ef al. 2021). Thus, we generally accept the theoret-
ical underpinnings of the biological species concept as it
pertains to the concept of cryptic speciation, which is the
base of this review, although there are long-known ma-
jor issues in its implementation that prevent its universal
application (Ehrlich 1961; Sokal & Crovello 1970; Sta-
mos 2003; de Queiroz 2007; Liu 2016; Orr et al. 2022).
Specifically, in this review, we modified the concept of
cryptic species as follows: “species owning subtle mor-
phological traits but genetic divergence from the known
species” to weaken “reproductive isolation.”

DESCRIPTION AND DEVELOPMENT OF
CRYPTIC SPECIES

Interestingly, the idea of cryptic species has a long his-
tory. William Derham’s 1718 study of the bird genus Phyl-
loscopus (Phylloscopidae) may have reported the very
first potential cryptic species (Winker 2005). Until the
early 2000s, there were few studies about cryptic species,
however (Fig. 1). After that, a series of researchers pro-
posed “DNA barcoding” and explicitly extended it to the
study of cryptic species (Tautz et al. 2002; Hebert ef al.
2003a,b; Blaxter 2004; Xu & Che 2019). This was then a
critical time node in the development history of the cryp-
tic species research, being supported by Web of Science
queries. Using the keywords “cryptic/hidden species” etc.
to search, we found that most (around 95%) of the related
research literature was published after this period, begin-
ning to grow rapidly around 2006. Usually, the discovery
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Figure 1 Numbers of published literature from the Web of Knowledge about cryptic/hidden species per year.
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Figure 2 The research fields and percentages of published literature related to cryptic/hidden species.

and confirmation of cryptic species are byproducts of
other related biological fields, mainly including zoology,
genetic heredity, and evolutionary biology (Fig. 2). Cur-
rently, the study of cryptic species has attracted the atten-
tion of more biologists, opening a new window for under-
standing the mechanisms behind speciation and injecting
new ideas, methods, and rigor into biodiversity science.
Among all the groups of organisms, one significant
bias is the preponderance of animals in published papers
(Fig. 3), and almost all animal taxa include cryptic species
(Fig. 4). Summarizing these papers, several animal groups
were thought to own relatively more common cryptic
species, for example, protozoans, arthropods, and frogs.

Protozoans, as a paraphyletic conglomeration of single-
celled animals, are widely present taxa with many cryptic
species due to the lack of clear defining morphological
features and the difficulty of collection (Gong et al. 2013;
Fan et al. 2021; Liu et al. 2022). Another fascinating
group of cryptic diversity is arthropods, many groups of
which can be considered as a “taxonomist’s nightmare”
(Bickford et al. 2007; Pfingstl ef al. 2021). Among them,
there are groups where the majority of species are likely
to be undescribed and difficult to tell apart (Chimeno
et al. 2022). There are many possible ways that species
might be cryptic, based on characters or habits in addition
to typical morphological differentiation. Frogs and some

© 2024 International Society of Zoological Sciences, Institute of Zoology/ 35
Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

85U801 7 SUOLILLIOD SAIIERID 8ol [dde ay) Aq peuseob 818 3o le YO 8SN JO S9INJ 10} AR.d T 8UIIUQ AB]IA UO (SUOTHPUOD-PUR-SWLBIAL0" A3 IM Ale.d 1 |BulUo//Sciy) SUORIPUOD pue swie | 8y} 88S *[5202/T0/90] Uo AkeiqiTauliuo A8|im ‘Aiseaiun eamnouby euiyo Aq 6082T"228Y-6v2 T/TTTT'OT/I0PAW00 A3 1M Al jpul|uo//Sdiy Woly papeojumod ‘T ‘5202 ‘LL8reY.LT



R. Cheng et al.

Figure 3 The proportion of five main biological groups (ani-
mal, plant, bacteria, fungi, and virus) related to cryptic/hidden
species.

Figure 4 The proportion of 11 main animal groups related to
cryptic/hidden species.

other groups, for example, likely exhibit many cryp-
tic species based on mate selection systems relying on
non-morphological features, such as songs (Narins 1983).

HYPOTHESES OF CRYPTIC
SPECIATION

In this review, we mainly focus on morphology-
conserved cryptic species and how they are formed, which
can be best understood as a “special speciation mecha-
nism.” Here, we summarize four non-mutually exclusive
evolutionary mechanisms that have been hypothesized to
lead to possibly non-random cryptic species (Bickford
et al. 2007; Kress et al. 2015; Struck & Cerca 2019; Pfin-
gstl et al. 2021).

Recent divergence

The simplest explanation for cryptic speciation is that
they have simply not had time to develop differences in
all forms, sometimes called “species on the road to dif-
ferentiation” (Liu 2016). Species identifications that rely

solely on morphology may overlook such recently di-
verged species (Holland et al. 2004), especially if per-
formed by a non-expert. This idea is based on the no-
tion that morphological traits should follow a neutral
evolutionary model (i.e. that morphological differences
accumulate linearly over time; Felsenstein 1985). It is
posited that in the early stages of speciation, selection
pressure may act on physiological, reproductive, behav-
ioral, niche, and other traits, and the effect occurs at a rela-
tively late stage for morphological characteristics (Damm
etal 2010; Cheng et al. 2016; Derycke et al. 2016). There
are many related examples. In the case of the genus Rat-
tus (Muridae), which has undergone a recent species ra-
diation (Middle Pleistocene), morphological differences
between clades are very small (Rowe ef al. 2011). Given
the commonness of this phenomenon, much research has
gone into alternative lines of evidence.

Molecular evidence in many cases may show signifi-
cant differentiation in the absence of distinctive morpho-
logical characters, resulting in splitting at various levels,
such as for insects (Chesters et al. 2012; Jiang et al. 2014;
Cheng et al. 2016; Zhou et al. 2017), mammals (Ander-
sen & Light 2012), and protozoans (Shao et al. 2019). For
example, the formation of a large number of alpine lakes
in the Qinghai—Tibet Plateau and Alps during recent inter-
glacial cycling drove the differentiation of the amphipod
Gammarus lacustris; the morphology of each clade was
similar, but the genetic distances between clades ranged
from 2% to 8% for mitochondrial DNA (Hou et al. 2022).

Some additional special evolutionary phenomena may
occur in the early stages of speciation that can pro-
foundly influence morphological evolution and com-
plicate species delineation, such as budding speciation
(a consequence of incomplete lineage sorting; Harri-
son 1991; Funk & Omland 2003; Kruckenhauser et al.
2014; Cheng et al. 2017) and hybridization (Mallet 2005;
Weigand et al. 2017). For example, a study of one Ti-
betan Plateau frog species (Scutiger mamatus) found that
both budding speciation and incomplete lineage sorting
prompted the formation of a cryptic species (Chen et al.
2009). During hybridization, intermediate morphological
populations with both parents’ genetic traits in a hybrid
zone may form cryptic species (Barton & Hewitt 1985;
Harrison 1993; Wu et al. 2011; Gong et al. 2013; Wang
etal 2014).

Morphological stasis

Studies have found that the process of speciation is
not necessarily accompanied by morphological changes.
In addition to more straightforward biological rea-
sons, such as low mutation rates, or developmental and
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physiological limitations, selection pressures are impor-
tant potential causes of morphological stasis (Grundt
et al. 2006; Struck & Cerca 2019; Pfingstl et al. 2021).
In some environments, selection pressures mainly act
on traits such as behavior and physiology, while mor-
phological traits that are not closely related to survival
evolve very slowly, and thereby do not necessarily change
with speciation. In some parasitic insects, for example,
selection pressures may primarily act on traits related to
parasitism (Schonrogge et al. 2002), such as the ability to
detect hosts or counteract their defenses, while morpho-
logical traits unrelated to parasitism may experience mor-
phological stagnation, as changes in them might reduce
their parasitic efficiency (Chen 1946; Kaleka et al. 2020).

Morphological stasis is especially common in extreme
environments, where organisms do not have many op-
tions for adaptation when dealing with harsh living con-
ditions, and physiology and related morphological traits
are strongly constrained (Rothschild & Mancinelli 2001;
Nevo 2001). This explains why large numbers of cryptic
species are found in habitats such as Arctic tundra, under-
water karst landforms, caves, and deep-sea environments
(Vrijenhoek et al. 1994; Witt et al. 2006; Lefébure ef al.
2006; Hou & Li 2010). Cave spiders, for instance, show
little morphological variation, due to adaptations such as
eye degradation, light body color, and slender legs, and
there are consequently many cryptic species only discov-
ered with extensive examination (Ba & Lai 2009). Indeed,
species complexes are fairly common in cave ecosystems
(Trontelj 2009; Derkarabetian ez al. 2010; Hedin 2015;
Delic et al. 2017).

Traits may also be strongly conserved by behaviors,
such as the use of narrow cavities as nests by the bee
family Megachilidae: Nearly all species that make nests
carry their pollen on their underside rather than on their
legs (Michener 2007), assumedly to avoid pollen rubbing
off their legs in these confining environments. Many
of the traits that are needed to survive in such specific
environments are interlinked with ancillary traits, ulti-
mately inhibiting changes in them that might impact the
functionality of the traits needed to survive. Under such
circumstances, it is no surprise that morphological stasis
may occur.

Nonvisual signals

Cryptic species are commonly found in organisms that
distinguish each other by nonvisual signals (Mayr 1963;
Ruxton 2009; Cooke ef al. 2012). Nonvisual mating sig-
nals (i.e. acoustic signals, chemical mating signals) have
been used to identify insect relatives or cryptic species

A review of cryptic diversity.

(Henry 1994; Marshall & Cooley 2000; Angulo & Re-
ichle 2008; Martinet et al. 2019).

Acoustic signals, such as chirping, are commonly used
to distinguish between birds (Cicero 1996; Lei & Payne
2002; Yang & Lei 2008), frogs (Narins 1983), insects
(Henry 1994; Henry & Wells 2010), and bats (Jones &
Barlow 2004). Perhaps the most famous examples come
from birds, where songs play a central role in reproduc-
tive isolation between species (Yang & Lei 2008; Lei
et al. 2003). Based on differences in songs, several cryp-
tic species were identified, such as the Himalayan cuckoo
(Cuculus saturates) and Horsfields cuckoo (C. saturatus
and C. horsfieldi) (Lei & Payne 2002). Another important
case is among insect songs, which can help entomologists
discover cryptic species. For example, two cryptic sibling
species of Chrysoperla green lacewings were supported
by acoustic niche partitioning (Henry ef al. 2003; Henry
& Wells 2010).

Convergent evolution and parallel evolution

Although the concepts of convergent and parallel evo-
lution are distinguishing, they can lead to similar mor-
phological characteristics, which are often difficult to dis-
tinguish (Belyaeva & Taylor 2009; Pearce 2011; Struck
& Cerca 2019). Unlike the recent divergence of specia-
tion hypothesis, where cryptic species are closely related
sisters, the convergent evolution hypothesis invokes dis-
tantly related species that evolve similar morphological
characteristics independently (Holland et al. 2004; Struck
& Cerca 2019), such as the evolution of wings in birds,
bats, and insects. Similarly, Moen ef al. (2013) suggest
convergent evolution led to a striking similarity in the
morphology of frogs. The convergent evolution hypoth-
esis states that some cryptic species have evolved inde-
pendently from morphologically distinct ancestors (Swift
et al. 2016; Struck et al. 2018). In the early stages of dif-
ferentiation, such species exhibit similar rates of morpho-
logical differentiation. However, at some point in time,
some species began to converge in their morphological
trajectories, forming cryptic species.

In contrast, the parallel evolution hypothesis involves
related species, where descendants of a common ancestor
adapt to similar living environments and independently
develop similar morphology (Holland ef al. 2004; Pearce
2011). A typical example of this hypothesis is that Aus-
tralian marsupials have similar counterparts to true mam-
mals in Eurasia (Weisbecker & Archer 2008). In an ad-
ditional example, Yamamoto and Sota (2007) found that
wingless females of the family Geometridae evolved in-
dependently in three subfamilies, to adapt to climate cool-
ing events in the Oligocene and Early Pleistocene.
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Figure 5 Workflow of confirming cryptic species. COI, cytochrome c oxidase subunit I.

DISCOVERY AND CONFIRMATION OF
CRYPTIC SPECIES

Technological advances in molecular biology have
been central to the study of cryptic species, and a work-
flow of how to confirm cryptic species derived from
molecular evidence is given in Fig. 5. This includes
work based on a wide variety of data types and densi-
ties, including single mitochondrial genes (COls), multi-
ple mitochondrial genes, whole mitochondrial genomes,
reduced-representation genomes, and genome-wide data
(e.g. SNPs). At the same time, morphologists have made
great progress in the last several decades, transitioning
from classical anatomical morphological characteristics
to more detailed morphological studies based on geomet-
ric morphometrics, electron microscopy scanning, and
micro-CT.

Integrative taxonomy, combining molecular, morpho-
logical, ecological, and other sources of evidence, has be-
come key to the synthesis and use of such disparate data

types, enabling more effective means of exploring bio-
diversity and discovering and delimiting cryptic species
(Dayrat 2005; Padial et al. 2010; Hartop et al. 2022; Orr
et al. 2022). Kergoat et al. (2015) combined ecological,
morphological, and molecular data to discover five cryp-
tic species within it, providing a sounder theoretical basis
for the precise control of pest species in this genus. In
another example, it was long thought that there were only
10 species of the common Chinese white-bellied rat genus
Niviventer. However, by integrating external and cranio-
dental measurements with multi-locus molecular data, Ge
et al. (2018, 2021) delimited 18 species in China alone.
However, the ways in which these data are used, includ-
ing how different lines of evidence are weighed, can have
a substantial impact on the results of such biodiversity in-
vestigations. It is therefore vital to understand both the
data and how they can reasonably be used.

Here, we focus our methodological review primarily
on molecular data and how these may be used to explore
cryptic species and cryptic biodiversity.
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Single locus or multiple loci DNA barcoding

The most revolutionary development in the study of
cryptic species has been the widespread adoption of
molecular methods spurred by DNA barcoding and sim-
ilar initiatives for a system of DNA taxonomy (Hebert
et al. 2003a; Tautz et al. 2003). DNA barcoding technol-
ogy was first proposed in 2003 to rapidly discover cryptic
species, delimit species, and reveal their genetic structure
through a gene fragment that is highly variable (quickly
evolving) and relatively easy to amplify for many ani-
mal taxa (Hebert ef al. 2003a,b, 2004; Xiao et al. 2004;
Peng et al. 2008; Liu et al. 2010). The agreed-upon ani-
mal marker, mitochondrial cytochrome ¢ oxidase subunit
I (COI), has been widely used in invertebrates, birds, fish,
and beyond (Hebert et al. 2003a,b, 2004; Costa et al.
2007; Liu et al. 2010; Shen et al. 2019; Xiong et al.
2022). As an independent line of evidence, COI and sim-
ilar markers, such as 16S rRNA for bacteria, provide an
invaluable link between life stages and dimorphic sexes,
while also making it easier to account for complexities
such as phenotypic plasticity.

Driven by the International Barcode of Life (iBOL)
project and immense community inputs, the BOLD web-
site has so far collected 15 466 718 animal barcode se-
quences from 247 000 species as of February 7, 2023,
with arthropods (13 899 279) representing 89.86%. Based
on barcode technology, many cryptic species have been
found in almost all animal groups (Hebert ef al. 2004;
Costa et al. 2007; Wang et al. 2020; Yu & Wang
2021). More recently, the approach has been extended
to other braconid wasps to hasten biodiversity discovery
and species description of hyperdiverse groups (Sharkey
et al. 2021). Another benefit of this approach is, ide-
ally, an inherent standardization of the species delimita-
tion process, such that theoretically, if applied correctly,
all species would be recognized in the same, replicable
manner within the group (Orr et al. 2022).

In addition, technological advances have made larger-
scale data and analyses feasible over the last 20 years. Ex-
cept traditional acquisition of DNA sequences based on
PCR amplification of a single sample, eDNA metabarcod-
ing technology uses high-throughput approaches to obtain
batches of amplicon sequences in mixed samples (Rup-
pert et al. 2019). For mixed insect samples from light
traps, pitfall traps, malaise traps etc., metabarcodes have
been repeatedly leveraged (Zhou et al. 2013; Tang ef al.
2015), and in some cases, even just residual ethanol used
to preserve such samples may be sequenced without dam-
aging specimens (Ritter ef al. 2019; Mata et al. 2021;
Zenker et al. 2020). For example, Huang et al. (2022)
found that 95% of the species of the dipteran insect com-
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munity from Tianmu Mountain based on metabarcodes
were unidentified or undescribed species.

There have been many critiques of this approach, how-
ever, as minimalist treatments may make it harder to
do future taxonomic work on these groups (Fernandez-
Triana 2022). Almost complete reliance on molecular
data in tropical countries could, for instance, make it
much harder for local researchers with limited access to
funds and facilities for molecular analysis to identify local
species. Another primary issue is the questionable prac-
tice of relying solely on a single gene fragment for species
definition (Meier et al. 2022), which is especially prob-
lematic when the data are not fully public and analyses
are not replicable. For example, across varied taxa such
as collembolans, spiders etc., the results of species delim-
itation using COI4+ITS2 are better than when using COI
alone (Agnarsson et al. 2007).

One suggested fix for this is to use multiple markers,
especially to add nuclear markers (Fiser ef al. 2018; De-
sprés 2019), because maternal mitochondrial genes may
prove ineffective in discovering cryptic species under-
going a special evolutionary process (Funk & Omland
2003). For example, the moth cryptic species Limbat-
oclamys pararosthorni and its sister species L. rosthorni
were supported by the nuclear gene (Ef-1a), not by COI
(Han et al. 2007; Jiang et al. 2021). Multiple barcod-
ing markers can find the traits of pseudo-cryptic species
and try to avoid several complex evolutionary processes
such as mito-nuclear discordance and paraphyly. Mito-
nuclear discordance is widespread across certain taxa like
copepods (Barreto ef al. 2018) and insects (Jiang ef al.
2021), and the possible reasons include gene introgres-
sion, incomplete lineage sorting, and Wolbachia infection
within arthropods. For example, Weigand et al. (2017)
confirmed two cryptic species with mito-nuclear discor-
dance induced by gene introgression.

Omics-based research on cryptic species

Although many studies of cryptic species are based on
DNA barcoding, when facing some complex evolution-
ary processes, genomic data provide greater promise for
the resolution of species. Janzen ef al. (2017) suggested
that COls are suited to expose potential cryptic species,
whereas nuclear genomes are used to distinguish/confirm
cryptic species. Thankfully, commonly cryptic species
identified by single mtDNA gene are also supported by
omics data (Janzen ef al. 2017; de Moya et al. 2019).

However, sometimes omics data rebut cryptic clades
identified by single mtDNA genes (Cong et al. 2017;
Hinojosa et al. 2019; Hupalo et al. 2023). Many poten-
tial causes have been discussed previously (introgression
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etc.). Hinojosa et al. (2019) suggested homogeneity of the
nuclear genome via long periods of geographic isolation
also can deny the validity of cryptic species based on COI.
More cases of mitochondrial genome introgression have
gradually been discovered in different animal groups,
demonstrating that some molecular cryptic species for
barcodes might have been products of introgression
(Cong et al. 2017; Ge et al. 2022). For example, several
well-studied and emblematic butterfly groups owning
striking mtDNA introgression, such as Erynnis (family
Hesperiidae), genome data revealed greater reliability
than COI (Zakharov et al. 2009; Cong et al. 2017).

Complicating matters, introgression may have even
occurred historically with now-extinct species, known
as “ghost introgression” (Ottenburghs 2020). This phe-
nomenon can occur when species are undergoing sudden
range or habitat expansions, bringing them into contact
with other closely related species. With the introduction
of new genetic material and its potential fixation, it would
then be much harder or even impossible to use that hy-
pothetical marker to accurately delimit species. In some
cases, these species might also be morphologically cryp-
tic, in which case genomic methods become truly invalu-
able.

Facing these complex evolutionary processes, genome
scanning is a useful method to discover potential cryptic
species by locating key regions of genetic differentiation
between candidate species, such as the genomic island of
speciation and introgression segments (Utsunomiya et al.
2013; Steane et al. 2015; Chattopadhyay et al. 2016; De-
sprés 2019). In the future, pointing omic islands of speci-
ation, containing a series of linked sites related to repro-
ductive isolation, may be one important method to distin-
guish cryptic species.

APPLIED IMPORTANCE OF CRYPTIC
SPECIES RESEARCH

The prevalence of cryptic species has clear and sub-
stantial implications beyond the bounds of systematics
and evolutionary studies. Nowadays, cryptic species have
profound effects on many fields, including biodiversity,
conservation, pest management, and so on. Here, we will
discuss four such distinctive and important cases.

Important advancements for morphological
taxonomy
Classical taxonomy based on morphological features

is highly reliant on taxonomic knowledge and verified
museum specimens (Orr et al. 2020; Hong et al. 2022;

Zhu et al. 2022). Taxonomic knowledge requires substan-
tial training and experience and their practices are often
relatively more subjective in comparison across groups;
molecular analyses and other lines of evidence spurred in
their use by cryptic species discovery can enable more
researchers to freely explore species delimitation while
offering additional methods for standardization (such as
through novel species delimitation algorithms designed
for molecular data). Meanwhile, verified reference mate-
rial, especially type specimens, can be difficult to check
for taxonomists across the Global South, as many types
of verified specimens are held in Western institutions.
Thankfully, barcoding codes are typically more open-
source, held on repositories such as BOLD or NCBI.
Molecular data are also invaluable for making associa-
tions that might be otherwise unclear based on morphol-
ogy alone. This is especially important for associating dif-
ferent sexes, larval and adult stages, or those that differ
in appearance by season. For example, potential cryptic
species of insects and echinoids have been revealed by
larval barcoding (Suh et al. 2019; Collin ef al. 2020).

A critical role for biodiversity research

The assessment of species diversity is inseparable from
the number of species present in an area, and this includes
cryptic species. It is plausible that the discovery of cryp-
tic species can significantly increase the diversity of com-
munities, that is, « and 8 diversity (Voda et al. 2015a;
Darwell & Cook 2017; Mayr et al. 2021). Immense hid-
den biodiversity is also expected in some specific areas or
naturally fragmented habitats, such as oceans, rivers, is-
lands, and caves (Barber et al. 2006; Witt et al. 2006; Liu
et al. 2011; Chen et al. 2015; Suh et al. 2019; Wang et al.
2020). For example, in recent years, the diversity of cave
ecosystems has caused great concerns due to the discov-
ery of plenty of hidden spider species (Ba & Lai 2009;
Hedin 2015; Trontelj 2009; Deli¢ et al. 2017). Zhang and
Li (2014) discovered 15 undescribed cryptic species from
the spider Pinelema cucurbitina in southern China karst
cave, but even some vertebrates such as bats are likely to
have many cryptic species (Chornelia et al. 2022).

Targeted protection of rare and beneficial species

Biodiversity conservation is an increasingly impor-
tant goal for governmental or non-governmental orga-
nizations, as well as the general public, and the under-
standing of cryptic species can dramatically influence
how we go about conservation. Nowadays, many biolo-
gists have realized the importance of cryptic species for
conservation and acknowledged that cryptic species may
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be more vulnerable to threats than previously thought
(Nair et al. 2012; Niemiller et al. 2013; Deli¢ et al.
2017). In recent years, many cryptic species were dis-
covered within flagship protected species, including in
the International Union for Conservation of Nature Red
List. Examples include giraffes (Fennessy et al. 2016),
finless porpoises (Zhou et al. 2018), and giant salaman-
ders (Yan et al. 2018; Chai et al. 2022). Because of the
differences in their distributions, population health, and
degrees of endangerment among such related species,
these cryptic species may decrease the effectiveness of
management if not accounted for and increase unneces-
sary investments. Thus, timely and effective taxonomic
efforts are needed to ensure that we are protecting the
right species.

Targeted identification and control of pest and

invasive species

The accurate identification of pests is crucial for effec-
tive pest management strategies. The existence of cryp-
tic species in pest species can decrease management ef-
ficiency and increase unnecessary investments (Simmons
& Scheffer 2004; Hendrichs et al. 2015; Andrews et al.
2020), and detection of cryptic species in economically
important taxon should consequently be cautious. For
example, the important agricultural pest thrips Thrips
palmi likely contains three cryptic species that are par-
tially sympatric (Tyagi et al. 2017), such that variance in
behavior or susceptibility to pesticides might differ be-
tween them and require separate management strategies.
One important example of cryptic species within inva-
sive species is that of whiteflies. Whiteflies are disastrous
pests prone to widespread spread and often require spe-
cialized management, but they were considered an unten-
able species complex until Dinsdale et al. (2010) found
at least 24 cryptic species based on molecular data (Luo
et al. 2002).

UNSOVLED BUT INTERESTING
PHENOMENON ABOUT CRYPTIC
SPECIES

Although taxonomic challenges involved in cryptic
biodiversity have been recognized for hundreds of years,
forming the foundation of challenges in telling species
apart by morphology, many fascinating unresolved ques-
tions remain (Bickford et al. 2007; Tattersall 2007; Kor-
shunova et al. 2017).

A review of cryptic diversity.

Are cryptic species evenly distributed among differ-
ent taxa and various geographic regions? Through explo-
ration of the published taxonomic literature, there has al-
ways been an illusion that cryptic species are more com-
mon in the tropics than in temperate areas, in insects than
vertebrates (Bickford et al. 2007; Dyer ef al. 2007). This
idea is related to the expected high species diversity of
tropical areas, as two-thirds of species might exist in such
areas (Willig et al. 2003; Pekar 2014). However, incon-
sistently, most of the published studies focused on cryp-
tic species of temperate organisms (Bickford ef al. 2007).
This discrepancy is likely a result of efforts made in tem-
perate areas of the Global North, where there has his-
torically been more taxonomic work (Janzen et al. 2005;
Dyer et al. 2007). Among different taxa, cryptic diver-
sity is thought to be especially common within insects
(Bickford et al. 2007; Murray et al. 2008) because of their
complex life history, limited and small morphological fea-
tures etc. (Van Campenhout et al. 2014). Pfenninger and
Schwenk (2007) suggested that cryptic animal species are
evenly distributed among various regions and taxa based
on one detailed taxonomic list and distribution informa-
tion of cryptic species reports, but this requires further
exploration.

Does cryptic speciation prefer allopatric, parapatric,
or sympatric speciation? Cryptic speciation has been re-
ported for all these types of speciation, for example, al-
lopatry (Amor et al. 2014; Fiser et al. 2018), parapa-
try (Dennis & Hellberg 2010), and sympatry (Scriven
et al. 2016). However, because of biases in the interests
of researchers, where they work, and what they work on,
confirming the relative prevalence of cryptic speciation
across these forms of speciation is likely to prove even
more challenging than for proportions in groups or areas,
as each such case requires greater evidence, including for
the specific mode of speciation.

Can cryptic species occur alongside known species?
How often does this happen? For cryptic species, an
enduring question of active research is whether such
species can evolve together and co-occur (Zhang et al.
2004). One point supported no-occurrence between cryp-
tic species based on species interactions (Voda et al.
2015a,b; Garcia-Robledo et al. 2016; Darwell & Cook
2017). Conversely, others believe that hidden species can
and do co-occur, either because the rate of competitive
exclusion is low and slow-acting, or because they are not
strictly ecologically identical (Scriven et al. 2016; John-
ston et al. 2022) that they differ enough to avoid undue
impacts. Key to answering this question will be looking
for additional lines of evidence by which these species
might distinguish themselves.
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CONCLUSION AND OUTLOOK

Cryptic species have now been discovered across
much of the Tree of Life, from every corner of the globe
(citations from above). Going forward, we need to better
account for cryptic species in biodiversity research and
beyond, and we are constantly developing better methods
and frameworks for these purposes. The fields of pest
management and invasion biology present especially
important arenas for future work. From these and other
studies, we are gradually building a better understanding
of how both species and cryptic species evolve, a funda-
mental question in biology. A growing number of studies
confirm the importance and reliability of integrative tax-
onomy using multiple lines of evidence, but taxonomic
researchers face more challenges in hiring and funding
than ever before, even as awareness of the biodiversity
crisis grows. Therefore, in the future, we hope that more
scholars will pay attention to cryptic species, participate
in this research, integrate various methods, and strive to
explore the mechanism and evolutionary mechanisms un-
derlying cryptic species. Cryptic species are ultimately a
crux in the current biodiversity conservation framework,
and only by understanding them can we effectively know
and protect species.
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