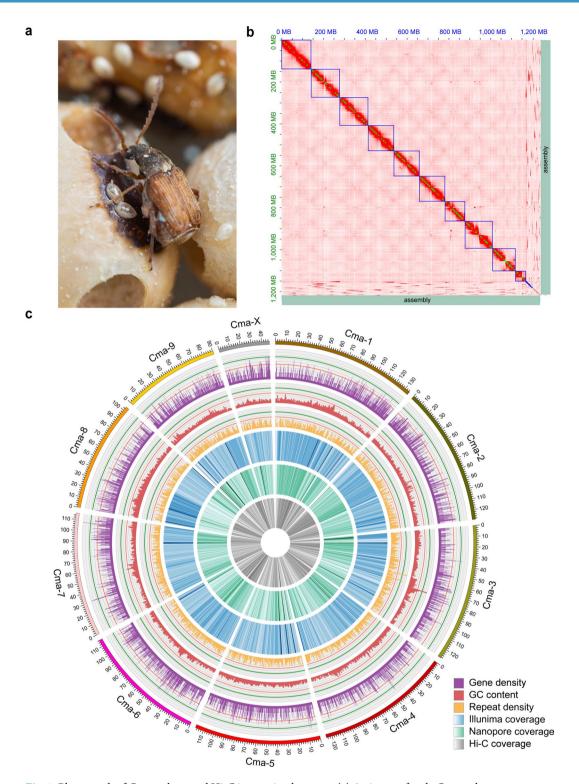
scientific data

OPEN

DATA DESCRIPTOR

OPEN High-quality reference genome of cowpea beetle *Callosobruchus* maculatus

Hao-Ran Lu₁, ^{1,2,9}, Chu-Yang Mao^{2,3,9}, Li-Jie Zhang^{4,9}, Jin-Wu He⁵, Xie-Shuang Wang^{2,6}, Xin-Ying Zhang^{2,6}, Wei-Li Fan^{6,7}, Zheng-Zhong Huang⁶, Le Zong^{2,6}, Chu-Han Cui⁷, Feng-Ming Wu⁶, Xue-Li Wang¹, Zhen Zou 1, Xue-Yan Li 2, Xue-Yan Li 3, Xue-Yan Li 2, Xue-Yan Li 2, Xue-Yan Li 2, Xue-Yan Li 3, Xue-


Callosobruchus maculatus is one of the most competitive stored grain pests, which causes a great loss to agricultural economy. However, due to an inadequacy of high-quality reference genome, the molecular mechanisms for olfactory and hypoxic adaptations to stored environments are unknown and require to be revealed urgently, which will contribute to the detection and prevention of the invasive pests C. maculatus. Here, we presented a high-quality chromosome-level genome of C. maculatus based on Illumina, Nanopore and Hi-C sequencing data. The total size was 1.2 Gb, and 65.17% (797.47 Mb) of it was identified to be repeat sequences. Among assembled chromosomes, chromosome 10 was considered the X chromosome according to the evidence of reads coverage and homologous genes among species. The current version of high-quality genome provides preferable data resources for the adaptive evolution research of C. maculatus.

Background & Summary

Callosobruchus maculatus (Coleoptera: Chrysomelidae), commonly known as cowpea weevil, is a kind of universal stored grain insect pest¹. *C. maculatus* feeds on a diverse range of legume seeds, and was originally distributed in the tropical and subtropical areas especially Africa and South Asia². However, with the global climate change and international communication, *C. maculatus* were observed in wider regions³ and caused great losses to agricultural grain storage. Each female beetle lays huge amount of eggs on the surface of seeds, then the first instar larvae hatch and tunnel into the seeds where larvae will grow up and pupate by feeding on cotyledon, and complete its lifecycle by emerging as adult beetle¹. To control pests and reduce food waste, dozens of approaches have been implemented in the past decades^{4–8}.

A high-quality chromosome-level genome for *C. maculatus* (Fig. 1a) supplies a practical and much-needed resource for *C. maculatus* agricultural pest control due to its immeasurably damage to stored products, which is also valuable for understanding the molecular mechanisms of its physiological activity and evolution relationships in Coleoptera. In the past, a contig-level genome of *C. maculatus* had been assembled⁹, but it was smaller than the expected genome size due to unknow reasons¹⁰. The *C. maculatus* genome is highly heterozygous with large proportion of repetitive DNA sequences, rendering substantial challenges for the genome assembly which is also a momentous reason for difference between *K*-mer analysis and flow cytometry^{11,12} in genome size¹³. Compared to the result of *K*-mer analysis, flow cytometry assay experiment was more credible^{11,12}. The *K*-mer distribution analysis of the new assembled genome also indicated *C. maculatus* genome was large with high heterozygosity compared to other known Coleoptera species^{14,15}. To address the challenges posed by high heterozygosity and repetitive DNA sequences, long-read sequencing (Nanopore), next-generation sequencing (Illumina), and high-throughput chromosome conformation capture (Hi-C) mapping have been employed, and

¹State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. ²University of Chinese Academy of Sciences, Beijing, China. ³Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. ⁴Science and Technical Research Center of China Customs, Beijing, China. ⁵Northwestern Polytechnical University, Xian, China. ⁶State Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. ⁷College of Life Sciences, Hebei University, Baoding, China. ⁸Yunnan Key Laboratory of Biodiversity Information, Yunnan, 650223, China. ⁹These authors contributed equally: Hao-Ran Lu, Chu-Yang Mao, Li-Jie Zhang. [∞]e-mail: zouzhen@ioz.ac.cn; lixy@mail.kiz.ac.cn; gesq@ioz.ac.cn

Fig. 1 Photograph of *C. maculatus* and Hi-C interaction heatmap. **(a)** A picture of male *C. maculatus* on cowpea. **(b)** Hi-C heatmap of *C. maculatus* genome showing interactions among the 10 assembled chromosomes at 1 Mb resolution. Boxes in blue and green colour indicate scaffolds and contigs. **(c)** The relative gene density, GC content, repeat density, as well as the coverage of second-generation, third-generation, and Hi-C sequencing data in chromosome level are represented from the outside to the center of the circle.

these approaches have proven successful in achieving a high level of completeness and continuity in genome assemblies for various plant species 16,17 as well as animals 14,18 .

To facilitate *C. maculatus* control and prevention, a 1.2 Gb novel high-quality chromosome-level genome of *C. maculatus* was provided in this research stemming from the new whole genome assembly and correct strategies. Here, we sequenced and assembled the high-quality chromosomal-level reference genome of cowpea

Method	Plarform Da	
Short reads	Illumina Novaseq6000	142.48
Long reads	Nanopore PromethION	137.33
Hi-C reads	Illumina Novaseq6000	668.22

Table 1. Summary of sequence reads.

	C-value (pg)	C-value (Gb)	
Number	Callosobruchus maculatus	Drosophila melanogaster	Callosobruchus maculatus
1	889.00	136.06	1.18
2	917.00	142.00	1.16
3	874.00	132.49	1.19
4	887.00	133.00	1.20
5	890.00	135.28	1.18
Average	891.40	135.77	1.18

Table 2. Result of flow cytometry assay.

weevil combining Illumina, Nanopore and Hi-C sequencing technologies. The current version of high-quality genome offers superior data resources study of adaptive evolution in of *C. maculatus*.

Methods

Sampling and genome sequencing. Adult insects of *C. maculatus* were intercepted in imported cowpeas originally from Nigeria and transferred via Ethiopia by Beijing Customs, P.R. China, and then inbreed for about 20 generations with full sib-pair mating strategy which were reared on 28 ± 2 °C, 75% relative humidity, 16 h/8 h light/dark photoperiod in $\Phi A = 90 \text{ mm}$ petri dishes and nurtured with cowpeas. Genomic DNA were extracted from 10 male beetles for sequencing using DNeasy Blood & Tissue Kit (QIAGEN, Germany).

Short reads libraries (insert size: 350 bp) were generated using a Next Ultra DNA Library Prep Kit (NEB, USA), and sequenced on Illumina Novaseq6000 platform (PE-150) at Novogene. The raw reads ran through quality control before the next analysis. For short-read data (i.e., Illumina data), the reads which included adapters, the low-quality reads and N bases were removed, a total of 142.48 Gb clean data was obtained (Table 1). The rest of short data were used to estimate genome size based on the *K*-mer size using Jellyfish¹⁹ (2.3.0) with option -s 1.2 G. The genome size was also estimated by flow cytometry (Table 2) using 5 males and 5 female beetles as described before¹⁸. Additionally, these short-read data were used to correct the potential base errors in de novo genome assembly. For long-read data (i.e., Nanopore data), genomic DNA was extracted to construct 20-kb libraries and used for Oxford Nanopore sequencing platform at NextOmics and generated 137.33 Gb raw data (Table 1).

The Hi-C sequencing was also conducted at NextOmics, which followed the standard protocol and was sequenced on the Illumina NovaSeq6000 platform. Restriction enzyme *DpnII* was used to lyse and digest the isolate cells which were from sliced tissues and cross-linked before overnight. The cohesive ends were blunted, reversed, and marked with biotin-14-dATP and purified the DNA by removing biotin from unligated ends. DNA was sheared to 200–300 bp fragments via a Covaris M220 and pulled down the point ligation junctions by Dynabeads MyOneTM Streptavidin C1 after size selection with AMPure XP beads. Finally, a total of 668.22 Gb raw data of Hi-C sequencing was obtained and used to assist genome assemble on chromosome-level.

For transcriptome sequencing of adult female/male *C. maculatus*, each sample consisted of three beetles, with three replicates for each stage or gender. RNA was extracted using Trizol (Invitrogen, USA), library construction, sequencing on the Illumina NovaSeq6000 platform (PE-150) and quality control was performed in Novogene, and clean data was generated for further analysis.

De novo genome assembly. To combine the advantages of high accuracy of second-generation sequencing and long reads of third-generation sequencing 20 , this research employed the strategy that both sequencing methods were combinedly used for genome assembly. Genomic DNA was extracted and sequenced via Illumina platform and in prior to the Oxford Nanopore sequencing, the K-mer distribution analysis indicated that the genome size of C. M matrix was 1,358.89 Mb based on 21-mers using the illumina data, which was used to evaluate its size and characteristics, and consistent with the result of flow cytometry assay experiment (1,182.11 Mb, Table 2).

The long-read data was used to assemble the primary genome. NextDenovo²¹ (2.3.1) package was used to assemble the genome, which had several scripts and seq_stat, a binary script to statistic the information of sequencing data, is one of them. After using seq_stat with option -g = 1,200,000,000 to generate the seed cutoff value, which was required by the main program, run command NextDenovo, the main program, to get the primary genome with default configure. The primary genome was adjusted with option -a = 50 by purge_dups²² from 3 Gb into 1.2 Gb which was confirmed by *K*-mer analysis and flow cytometry previously²³. NextPolish²⁴ (1.2.3) package was used to polish the primary genome with default configure, which integrated the short-read data and the assembled the 1.2 Gb draft genome with an N50 of 1.03 Mb.

Statistics	Previous version ¹⁰	This version
Genome size (Gb)	1.01	1.22
Total number	15,778	488
N50 length (Mb)	0.15	117.71
Max length (Mb)	2.10	134.95
GC content (%)	37.52	37.58
BUSCO (completeness, %)	89.25	98.39
Illumina reads mapping rate (%)	_	98.94
Nanopore reads mapping rate (%)	_	99.65

Table 3. Statistics of *C. maculatus* genome.

Chromosome	Ratio[log10(F/M)]
Chr 1	0.02760
Chr 2	0.02135
Chr 3	0.02817
Chr 4	0.00607
Chr 5	0.01941
Chr 6	0.02911
Chr 7	0.01799
Chr 8	0.01830
Chr 9	0.02676
Chr 10	0.24868

Table 4. Coverage between female and male beetles on chromosomes.

The Hi-C paired-end reads were mapped to the above draft genome iteratively using chromap 25 (0.2.3) and yahs 26 (1.2a1). Finally, juicebox 27,28 (2.18) was applied to correct the contig orientation and move the suspicious fragments into unanchored scaffolds via visual exploration of Hi-C heatmaps. After all, 10 assembled chromosomes (Fig. 1b and Table 3), which holds 9 autosomes and one X chromosome (2n = 20, n = 9 + X), consistent with that by karyotype analyses 23,29 . Totally, 78.5% fragments were anchored to the assembled chromosomes, and the genome length is 1,222.50 Mb (N50 = 117.71 Mb) (Fig. 1b and c).

Identification of X chromosomes. Female and male beetle transcriptomes proved that Chr-10 is X-chromosome since female beetle transcripts showed significant larger coverage on Chr-10 (Table 4). In addition, we also performed integrating collinearity analysis of multiple homologous species genomes to identify X chromosomes. Chromosome X (Chr-X) is a distinctive group, which had been identified in *Tribolium castaneum* (GCA_000002335.3)³⁰, *Harmonia axyridis* (GCA_914767665.1)³¹, and *Coccinella septempunctata* (GCA_907165205.1)³², and analyzed among the seven Coleoptera species (Fig. 2a). Furthermore, it was reported that several genes, including *Trx*, *Spastin*, *ARNTH*, etc., were located on the Chr-X in *T. castaneum*, which could be found in all other six Coleoptera species Chr-X (Fig. 2b). Besides, the GO enrichment analysis of all seven Chr-X showed a strong connection to sexual reproduction (Supplementary Fig. 1).

Repeat annotation. Repetitive sequence annotation was divided into two types: homologous sequence alignment and *ab initio* prediction. The homologous sequence alignment was based on the repeat sequence database (RepBase library version: RepeatmaskerEdition-20181026), using Repeatmasker³³ (4.1.5) and RepeatProteinMasker to identify the repetitive sequence had known. *Ab initio* prediction used LTR FINDER³⁴ (0.3.1), RepeatScout³⁵ (1.0.6) and RepeatModeler³⁶ (2.0.4) combined with Repbase nucleotides library and Repbase proteins library. In the beginning, *de novo* repeat library was established, and then used Repeatmasker to predict them. In addition, in the method of *ab initio* prediction, tandem repeat finder (TRF)³⁷ (4.0.9) was applied to find tandem repeats (TEs) in the draft genome. Integrated with the result of *ab initio* prediction, 797.47 Mb (65.17%) repeat elements were identified totally (Fig. 3a).

Gene structure prediction. The strategy of Gene structure prediction combined multiple prediction methods including homology prediction (seven species), *ab initio* prediction and RNA sequences-based prediction. Homology prediction was to compare the coding protein sequence of *Drosophila melanogaster* (GCA_000001215.4)³⁸, *Diabrotica virgifera* (GCA_917563875.2)³⁹, *T. castaneum*, *Anoplophora glabripennis* (GCA_000390285.2)⁴⁰, *Sitophilus oryzae* (GCA_002938485.2)⁴¹, *Leptinotarsa decemlineata* (GCA_000500325.2)⁴², and *Aethina tumida* (GCA_024364675.1)⁴³ with the genome sequence of *C. maculatus* via blast and genewise to predict the gene structure in the genome. Geneid⁴⁴ (1.4.5), Augustus⁴⁵ (3.5.0), GlimmerHMM⁴⁶ (3.0.4), SNAP⁴⁷ (2006-07-28), and Genscan⁴⁸ (1.0) were employed with default configure in the *ab initio* prediction which relied on the statistical characteristics of genome sequence data, codon frequency and exon-intron distribution, to predict gene structure. Program to Assemble Spliced Alignments (PASA)⁴⁹ (2.5.3) and Cufflinks⁵⁰ (2.2.1) were

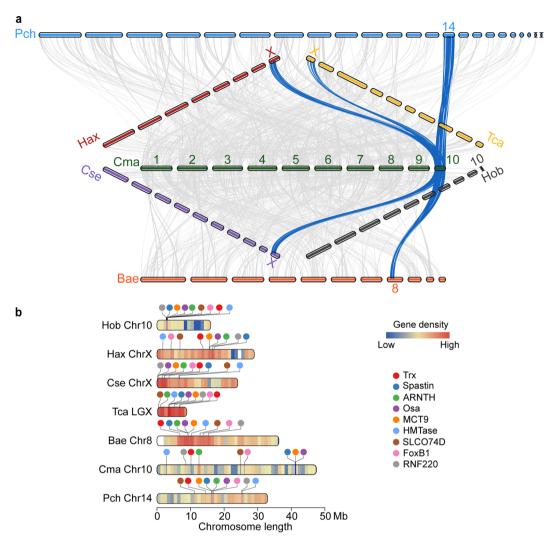


Fig. 2 Chromosomes synteny and comparative analysis on chromosome X. (a) Gene synteny analysis of seven coleopteran species. Homologous genes are linked by grey lines between chromosomes, while X-chromosome homologous genes are linked by blue lines. (b) Gene density of seven coleopteran species X-chromosomes (including predicted chromosomes) is showed from blue (low) to red (high), and white blank meant that no gene are annotated. Nine key genes are located on the chromosomes. Hob: Holotrichia oblita, Psh: Psylliodes chrysocephala, Bra: Brassicogethes aeneus, Cma: C. maculatus, Tca: T. castaneum, Hax: H. axyridis, Cse: C. septempunctata.

applied in the RNA sequences-based prediction method with default settings. Based on the above prediction results, combined with the transcriptome comparison data, the EVidenceModeler (EVM)⁴⁹ (2.1.0) and Liftoff⁵¹ (1.6.3) was used to integrate the gene sets predicted by various methods into a non-redundant and more complete gene set with different weights (Supplementary Fig. 2). Finally, used PASA to correct the EVM annotation results combined with the transcriptome assembly results, added untranslated region (UTR) and variable splicing and other information to get the final gene set. Using homology prediction, *ab initio* prediction and RNA sequences-based prediction, totally 14,458 genes were predicted (Table 5, Fig. 3b), and 91.9% proteins were conserved in BUSCO⁵² (5.4.1) analysis with protein mode based on Insecta odb10 (Table 6). And using the same method for previous version of the genome showed that annotated gene-sets have completeness value was 84.2% with 63.6% single copy, while the original completeness value was 75% which based on arthropod datasets¹⁰.

Gene function prediction and Non-coding RNA annotation. The gene functions were identified by aligning to Swiss-prot, the nonredundant sequence databases: Nucleotide collection (NR and NT), eukaryotic orthologous groups of proteins (KOG), KEGG, TrEMBL and using BLAST⁵³ (2.15.0+) with an E-value cutoff of 1e-5. The Blast2GO⁵⁴ (6.0) was employed to annotate gene functions in the GO database based on the aligned results from the NR database. The molecular pathways of predicted genes, which might be involved, were detected through search and annotation for the KEGG database. Using Interproscan⁵⁵ (5.62–94.0) to search in the Pfam (35.0), PRINTS (42.0), SMART (9.0) databases, known motifs and domains in the *C. maculatus* genome were found. The domain boundaries of interesting proteins were searched on the Pfam website. In all, 14,013 of 14,458

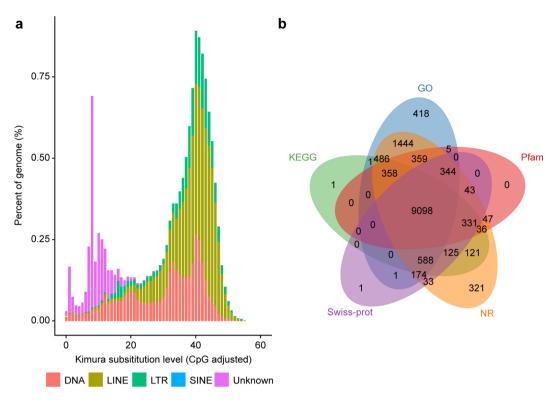


Fig. 3 Genome functional annotation of whole genome. (a) Taking Repbase as the library, the tandem repeat sequences (TEs) divergence distribution map was obtained by RepeatMasker annotation. The abscissa shows the divergence between the TEs annotated in the *C. maculatus* genome and the corresponding sequences in Repbase; the ordinate is the percentage of TEs in the genome under a specific divergence, and different TEs are marked with different colours. (b) Venn diagram how the overlap of five databases, Pfam, Swiss-port, KEGG, GO and NR, used in the annotation. 14,458 genes are annotated from five databases and 9,098 genes are in all the databases.

Species	Number	Average transcript length (bp)	Average CDS length (bp)	Average exons per gene	Average exon length (bp)	Average intron length (bp)
Agl	14,815	16,288.47	1,520.12	5.59	271.72	3,214.43
Atu	14,076	6,198.17	1,474.90	5.93	248.78	958.34
Ста	14,458	34,576.66	1,481.93	6.31	234.84	6,232.20
Dvi	20,592	37,550.53	1,232.27	4.51	273.25	10,348.22
Lde	14,000	13,981.38	1,386.78	5.06	273.80	3,098.36
Sor	15,044	22,712.70	1,561.81	6.35	246.01	3,954.54
Tca	12,863	6,802.05	1,565.09	5.30	295.38	1,218.29

Table 5. Comparison of gene structures in related species. Agl, Atu, Cma Dvi, Lde, Sor and Tca represent A. glabripennis, A. tumida, C. maculatus, D. virgifera, L. decemlineata, S. oryzae and T. castaneum.

	Previous version ¹⁰		New version		
	genome assembly	protein annotation	Hi-C genome	polish genome	protein annotation
Complete BUSCOs	89.2%	84.2%	98.4%	98.1%	91.8%
Complete and single copy BUSCOs	84.2%	63.6%	85.8%	84.4%	82.7%
Complete and duplicated BUSCOs	5.0%	20.6%	12.6%	13.7%	9.1%
Fragmented BUSCOs	3.2%	5.3%	0.3%	0.5%	2.3%
Missing BUSCOs	7.6%	10.5%	1.3%	1.4%	5.9%

Table 6. BUCSO evaluation for genome assembly.

genes were supported by functional annotation from the databases (Fig. 3b). It is worth noting that several genes related to hypoxia, odorant, and immunity were not well annotated in the previous genome, such as olfactory receptors and clip-domain serine proteases which had been spot checked.

	mapped length (bp)	number mapped reads	percent of genome
Short-read sequence	140,893,195,950	985,181,432	98.94%
Long-read sequence	137,175,775,791	53,560,382	99.65%
Hic sequence	655,131,101,700	5,986,042,949	98.56%

Table 7. Statistics of genome mapping.

According to the structural characteristics, tRNAscan-SE⁵⁶ (1.3.1) was used to identify the tRNA in the genome. Meanwhile, because of the highly conservative of it, the rRNA sequences of related species were used as a reference sequence and aligned with *C. maculatus* genome via blast. Additionally, the covariance model of the Rfam family was used, and the INFERNAL⁵⁷ (1.1.4) that came with Rfam to predict the information of miRNA and snRNA on the genome. There were 493,139 bp non-coding RNA, and most of them is tRNA (2,827 genes for 206,000 bp), while it was 6,948 tRNA genes in the previous genome¹⁰.

Data Records

The whole raw data has been deposited at the NCBI Sequence Read Archive under BioProject number PRJNA1048654 and BioSample ID SAMN38657795 for *C. maculatus*. Raw sequencing data (Illumina, Nanopore, Hi-C and RNA-seq data) have been deposited in the Sequence Read Archive database as SRP477247⁵⁸. The final genome assembly and gene annotation results have been deposited in GenBank⁵⁹ and Figshare⁶⁰.

Technical Validation

To evaluate the completeness of the assembly, BWA⁶¹ (0.7.17) was used to align the short-reads data with genome while Minimap2⁶² (2.17) aligned the long-reads data and the coverage depth for assembled chromosomes were calculated via SAMtools⁶³ (1.16.1) (Table 7). The chromosome-level genome was also evaluated via BUSCO⁵² (5.4.1) which was compared with Insecta odb10 with 1367 genes, and the results showed that 98.4% and 0.3% conserved core genes were identified as completed and fragmented (Table 6). These results showed that the assembled *C. maculatus* chromosome-level genome has an elevated level of completeness.

Code availability

All commands and pipelines utilized in the data processing were executed in accordance with the manuals and protocols of the respective bioinformatics software. In instances where detailed parameters were absent, default parameters were employed. The version of the software used is delineated in the Methods section. Notably, no custom programming or coding was incorporated.

Received: 11 February 2024; Accepted: 11 July 2024;

Published online: 18 July 2024

References

- 1. Kalpna, Hajam, Y. A. & Kumar, R. Management of stored grain pest with special reference to *Callosobruchus maculatus*, a major pest of cowpea: A review. *Heliyon* 8, e08703 (2022).
- 2. Naseri, B., Ebadollahi, A. & Hamzavi, F. Oviposition preference and life-history parameters of *Callosobruchus maculatus* (Coleoptera: Chrysomelidae) on different soybean (Glycine max) cultivars. *Pest Management Science* **78**, 4882–4891 (2022).
- 3. Global Biodiversity Information Facility Secretariat. GBIF Backbone Taxonomy, https://www.gbif.org/species/1047343 (2023).
- 4. Ranabhat, S., Zhu, K. Y., Bingham, G. V. & Morrison, W. R. III Mobility of phosphine-susceptible and -resistant Rhyzopertha dominica (Coleoptera: Bostrichidae) and Tribolium castaneum (Coleoptera: Tenebrionidae) after exposure to controlled release materials with existing and novel active ingredients. Journal of Economic Entomology 115, 888–903 (2022).
- 5. Caswell, G. H. The storage of cowpeas in the northern states of Nigeria. Proceedings of the agricultural society of Nigeria 5, 4-6 (1970).
- 6. Pimbert, M. A model of host plant change of Zabrotes Subfasciatus Boh. (Coleoptera: Bruchidae) in a traditional bean cropping system in Costa Rica. Biological Agriculture & Horticulture 3, 39–54 (1985).
- Keever, D. W. & Daniel Cline, L. Effect of light trap height and light source on the capture of Cathartus quadricollis (Guérin-Méneville) (Coleoptera: Cucujidae) and Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in a warehouse. Journal of Economic Entomology 76, 1080–1082 (1983).
- 8. New, J. H. & Rees, D. P. Laboratory studies on vacuum and inert gas packing for the control of stored-product insects in foodstuffs. *Journal of the Science of Food and Agriculture* 43, 235–244 (1988).
- 9. Sayadi, A. Callosobruchus maculatus, whole genome shotgun sequencing project. GenBank https://identifiers.org/ncbi/insdc:CAACVG000000000 (2019).
- 10. Sayadi, A. et al. The genomic footprint of sexual conflict. Nature Ecology & Evolution 3, 1725–1730 (2019).
- 11. Adan, A., Alizada, G., Kiraz, Y., Baran, Y. & Nalbant, A. Flow cytometry: basic principles and applications. *Critical Reviews in Biotechnology* 37, 163–176 (2017).
- 12. Kron, P., Suda, J. & Husband, B. C. Applications of flow cytometry to evolutionary and population biology. *Annual Review of Ecology, Evolution, and Systematics* 38, 847–876 (2007).
- 13. Blommaert, J. Genome size evolution: towards new model systems for old questions. *Proceedings of the Royal Society B: Biological Sciences* 287, 20201441 (2020).
- 14. Zhang, L. et al. Chromosome-level genome assembly of the predator Propylea japonica to understand its tolerance to insecticides and high temperatures. Molecular Ecology Resources 20, 292–307 (2020).
- 15. Fu, X. et al. Long-read sequence assembly of the firefly *Pyrocoelia pectoralis* genome. *GigaScience* **6**, gix112 (2017).
- 16. Wang, P. et al. The genome evolution and domestication of tropical fruit mango. Genome Biology 21, 60 (2020).
- 17. Shang, J. et al. The chromosome-level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter. Genome Biology 21, 200 (2020).
- 18. Yang, J. et al. Chromosome-level reference genome assembly and gene editing of the dead-leaf butterfly Kallima inachus. Molecular Ecology Resources 20, 1080–1092 (2020).
- 19. Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. *Bioinformatics* 27, 764–770 (2011).

- 20. Shendure, J. et al. DNA sequencing at 40: past, present and future. Nature 550, 345-353 (2017).
- 21. Nextomics. NextDenovo https://github.com/Nextomics/NextDenovo (2020).
- 22. Guan, D. Purge Dups https://github.com/dfguan/purge_dups (2020).
- 23. Arnqvist, G. et al. Genome size correlates with reproductive fitness in seed beetles. Proc Biol Sci 282, 20151421 (2015).
- 24. Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. *Bioinformatics* 36, 2253–2255 (2019).
- 25. Zhang, H. et al. Fast alignment and preprocessing of chromatin profiles with Chromap. Nature Communications 12, 6566 (2021).
- 26. Zhou, C., McCarthy, S. A. & Durbin, R. YaHS: yet another Hi-C scaffolding tool. Bioinformatics 39, btac808 (2023).
- 27. Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Systems 3, 99-101 (2016).
- 28. Neva, C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Systems 3, 95-98 (2016).
- 29. Yadav, J. S. Karyological studies on the three species of Bruchidae (Coleoptera). Caryologia 24, 157-166 (1971).
- Liu, Y. et al. Tribolium castaneum strain Georgia GA2, whole genome shotgun sequencing project. GenBank https://identifiers.org/ ncbi/insdc:AAJJ00000000 (2016).
- 31. Wellcome Sanger Institute. *Harmonia axyridis*, whole genome shotgun sequencing project. *GenBank* https://identifiers.org/ncbi/insdc:CAJZBN000000000 (2021).
- 32. Wellcome Sanger Institute. Coccinella septempunctata, whole genome shotgun sequencing project. GenBank https://identifiers.org/ncbi/insdc:CAJRAZ00000000 (2021).
- 33. Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. *Current Protocols in Bioinformatics* 5, 4.10.11–14.10.14 (2004).
- 34. Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. *Nucleic Acids Research* 35, W265–268 (2007).
- 35. Price, A. L., Jones, N. C. & Pevzner, P. A. *De novo* identification of repeat families in large genomes. *Bioinformatics* 21(Suppl 1), i351–358 (2005).
- 36. Smit, A. & Hubley, R. RepeatModeler Open-1.0 www.repeatmasker.org/ (2015).
- 37. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27, 573-580 (1999).
- 38. Adams, M. D. et al. Release 6 of the Drosophila melanogaster genome. GenBank https://identifiers.org/insdc.gca:GCA_000001215.4 (2017).
- National Center for Biotechnology Information. Genome assembly PGI_DIABVI_V3a. GenBank https://identifiers.org/ncbi/insdc.gca:GCA_917563875.2 (2022).
- 40. Murali, S. et al. Anoplophora glabripennis isolate ALB-LARVAE, whole genome shotgun sequencing project. GenBank https://identifiers.org/ncbi/insdc:AQHT00000000 (2017).
- 41. Parisot, N. et al. Sitophilus oryzae breed Bouriz, whole genome shotgun sequencing project. GenBank https://identifiers.org/ncbi/insdc:PPTJ00000000 (2019).
- 42. Murali, S. et al. Leptinotarsa decemlineata strain Imidocloprid resistant, whole genome shotgun sequencing project. GenBank https://identifiers.org/ncbi/insdc:AYNB00000000 (2017).
- 43. Evans, J. et al. Aethina tumida isolate Nest 87, whole genome shotgun sequencing project. GenBank https://identifiers.org/ncbi/insdc:IALKMD000000000 (2022).
- 44. Alioto, T., Blanco, E., Parra, G. & Guigó, R. Using geneid to identify genes. Current Protocols in Bioinformatics 64, e56 (2018).
- 45. Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve *De novo* gene finding. *Bioinformatics* 24, 637–644 (2008).
- 46. Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: two open source *ab initio* eukaryotic gene-finders. *Bioinformatics* 20, 2878–2879 (2004).
- 47. Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).
- 48. Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. Journal of Molecular Biology 268, 78–94 (1997).
- 49. Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biology 9, R7 (2008).
- 50. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols 7, 562–578 (2012).
- 51. Shumate, A. & Salzberg, S. L. Liftoff: accurate mapping of gene annotations. Bioinformatics 37, 1639–1643 (2021).
- 52. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics* 31, 3210–3212 (2015).
- 53. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
- 54. Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. *Bioinformatics* 21, 3674–3676 (2005).
- 55. Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236-1240 (2014).
- 56. Chan, P. P. T. M. L. tRNAscan-ŠE: Searching for tRNA genes in genomic sequences. Methods in Molecular Biology 1962, 1–14 (2019).
- 57. Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933-2935 (2013).
- 58. NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP477247 (2024).
- 59. Lu, H.-R., Ge, S.-Q., Li, X.-Y. & Zou, Z. Callosobruchus maculatus breed cowpea beetle isolate GSQ-2024a, whole genome shotgun sequencing project. GenBank https://identifiers.org/ncbi/insdc:JBDIZO000000000 (2024).
- 60. Lu, H.-R., Ge, S.-Q., Li, X.-Y. & Zou, Z. Genome data of Callosobruchus maculatus. Figshare https://doi.org/10.6084/m9.figshare.24893025 (2023).
- 61. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760 (2009).
- 62. Li, H. New strategies to improve minimap2 alignment accuracy. Bioinformatics 37, 4572–4574 (2021).
- 63. Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021).

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 32270460), the Third Xinjiang Scientific Expedition Program (No. 2021xjkk0605), the National Natural Science Foundation of China (No. 32370522), the National Key Plan for Scientific Research and Development of China (No. 2022YFC2602500 and No. 2021YFC2600100), and the Science and Technology fund from GACC (No. 2023HK051). Sincere thanks to Doctor Jie Yang (Northwestern Polytechnical University) for her help.

Author contributions

S.Q.G., Z.Z. and X.Y.L. designed the research. H.R.L. and J.W.H. planned the project. S.Q.G., L.J.Z., X.S.W., X.Y.Z., W.L.F. and C.H.C. prepared the material for sequencing. H.R.L. and C.Y.M. designed the genome assembly, annotation, and analyses. H.R.L. performed evolutionary analysis and gene identification. Z.Z.H. provided the photograph. H.R.L. drafted the manuscript. H.R.L., J.W.H., L.Z., Z.Z.H., X.Y.L., Z.Z. and S.Q.G. revised the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41597-024-03638-w.

Correspondence and requests for materials should be addressed to Z.Z., X.-Y.L. or S.-Q.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024