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OPEN - High-quality reference genome
patapescripTor | Of cowpea beetle Callosobruchus
“maculatus

. Hao-Ran Lu®?®, Chu-Yang Mao?39, Li-Jie Zhang*?, Jin-Wu He’, Xie-Shuang Wang?5,
© Xin-Ying Zhang*®, Wei-Li Fan®’, Zheng-Zhong Huang®, Le Zong*¢, Chu-Han Cui’,
. Feng-Ming Wu®, Xue-LiWang?, Zhen Zou(®2>, Xue-Yan Li(®?%38™ & Si-Qin Ge(®***

Callosobruchus maculatus is one of the most competitive stored grain pests, which causes a great loss to
agricultural economy. However, due to an inadequacy of high-quality reference genome, the molecular
. mechanisms for olfactory and hypoxic adaptations to stored environments are unknown and require
: to be revealed urgently, which will contribute to the detection and prevention of the invasive pests
. C.maculatus. Here, we presented a high-quality chromosome-level genome of C. maculatus based
on lllumina, Nanopore and Hi-C sequencing data. The total size was 1.2 Gb, and 65.17% (797.47 Mb)
of it was identified to be repeat sequences. Among assembled chromosomes, chromosome 10 was
considered the X chromosome according to the evidence of reads coverage and homologous genes
among species. The current version of high-quality genome provides preferable data resources for the
adaptive evolution research of C. maculatus.

Background & Summary
. Callosobruchus maculatus (Coleoptera: Chrysomelidae), commonly known as cowpea weevil, is a kind of uni-
© versal stored grain insect pest!. C. maculatus feeds on a diverse range of legume seeds, and was originally dis-
. tributed in the tropical and subtropical areas especially Africa and South Asia?. However, with the global climate
. change and international communication, C. maculatus were observed in wider regions® and caused great losses
© toagricultural grain storage. Each female beetle lays huge amount of eggs on the surface of seeds, then the first

instar larvae hatch and tunnel into the seeds where larvae will grow up and pupate by feeding on cotyledon, and
. complete its lifecycle by emerging as adult beetle’. To control pests and reduce food waste, dozens of approaches
© have been implemented in the past decades*™.

A high-quality chromosome-level genome for C. maculatus (Fig. 1a) supplies a practical and much-needed
resource for C. maculatus agricultural pest control due to its immeasurably damage to stored products, which is
also valuable for understanding the molecular mechanisms of its physiological activity and evolution relation-

. ships in Coleoptera. In the past, a contig-level genome of C. maculatus had been assembled’, but it was smaller
. than the expected genome size due to unknow reasons'’. The C. maculatus genome is highly heterozygous
. with large proportion of repetitive DNA sequences, rendering substantial challenges for the genome assembly
. which is also a momentous reason for difference between K-mer analysis and flow cytometry''? in genome
: size'®. Compared to the result of K-mer analysis, flow cytometry assay experiment was more credible!12. The
: K-mer distribution analysis of the new assembled genome also indicated C. maculatus genome was large with
. high heterozygosity compared to other known Coleoptera species'*'*. To address the challenges posed by high
© heterozygosity and repetitive DNA sequences, long-read sequencing (Nanopore), next-generation sequencing
¢ (Illumina), and high-throughput chromosome conformation capture (Hi-C) mapping have been employed, and
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Fig. 1 Photograph of C. maculatus and Hi-C interaction heatmap. (a) A picture of male C. maculatus on cowpea.
(b) Hi-C heatmap of C. maculatus genome showing interactions among the 10 assembled chromosomes at 1 Mb
resolution. Boxes in blue and green colour indicate scaffolds and contigs. (c) The relative gene density, GC content,
repeat density, as well as the coverage of second-generation, third-generation, and Hi-C sequencing data in
chromosome level are represented from the outside to the center of the circle.

these approaches have proven successful in achieving a high level of completeness and continuity in genome
assemblies for various plant species!®!” as well as animals'*18.

To facilitate C. maculatus control and prevention, a 1.2 Gb novel high-quality chromosome-level genome
of C. maculatus was provided in this research stemming from the new whole genome assembly and correct
strategies. Here, we sequenced and assembled the high-quality chromosomal-level reference genome of cowpea
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Method Plarform Data (Gb)
Shortreads | Illumina Novaseq6000 142.48
Longreads | Nanopore PromethION 137.33
Hi-C reads Illumina Novaseq6000 668.22

Table 1. Summary of sequence reads.

C-value (pg) C-value (Gb)
Callosobruchus | Drosophila Callosobruchus

Number | maculatus lanogast: laty

1 889.00 136.06 1.18

2 917.00 142.00 1.16

3 874.00 132.49 1.19

4 887.00 133.00 1.20

5 890.00 135.28 1.18

Average 891.40 135.77 1.18

Table 2. Result of flow cytometry assay.

weevil combining Illumina, Nanopore and Hi-C sequencing technologies. The current version of high-quality
genome offers superior data resources study of adaptive evolution in of C. maculatus.

Methods

Sampling and genome sequencing. Adultinsects of C. maculatus were intercepted in imported cowpeas
originally from Nigeria and transferred via Ethiopia by Beijing Customs, PR. China, and then inbreed for about
20 generations with full sib-pair mating strategy which were reared on 28 £2°C, 75% relative humidity, 16 h/8h
light/dark photoperiod in ®A =90 mm petri dishes and nurtured with cowpeas. Genomic DNA were extracted
from 10 male beetles for sequencing using DNeasy Blood & Tissue Kit (QIAGEN, Germany).

Short reads libraries (insert size: 350 bp) were generated using a Next Ultra DNA Library Prep Kit (NEB,
USA), and sequenced on Illumina Novaseq6000 platform (PE-150) at Novogene. The raw reads ran through
quality control before the next analysis. For short-read data (i.e., llumina data), the reads which included adapt-
ers, the low-quality reads and N bases were removed, a total of 142.48 Gb clean data was obtained (Table 1). The
rest of short data were used to estimate genome size based on the K-mer size using Jellyfish'® (2.3.0) with option
-5 1.2 G. The genome size was also estimated by flow cytometry (Table 2) using 5 males and 5 female beetles as
described before'®. Additionally, these short-read data were used to correct the potential base errors in de novo
genome assembly. For long-read data (i.e., Nanopore data), genomic DNA was extracted to construct 20-kb
libraries and used for Oxford Nanopore sequencing platform at NextOmics and generated 137.33 Gb raw data
(Table 1).

The Hi-C sequencing was also conducted at NextOmics, which followed the standard protocol and was
sequenced on the Illumina NovaSeq6000 platform. Restriction enzyme Dpnll was used to lyse and digest the
isolate cells which were from sliced tissues and cross-linked before overnight. The cohesive ends were blunted,
reversed, and marked with biotin-14-dATP and purified the DNA by removing biotin from unligated ends.
DNA was sheared to 200-300bp fragments via a Covaris M220 and pulled down the point ligation junctions by
Dynabeads MyOneTM Streptavidin C1 after size selection with AMPure XP beads. Finally, a total of 668.22 Gb
raw data of Hi-C sequencing was obtained and used to assist genome assemble on chromosome-level.

For transcriptome sequencing of adult female/male C. maculatus, each sample consisted of three beetles,
with three replicates for each stage or gender. RNA was extracted using Trizol (Invitrogen, USA), library con-
struction, sequencing on the Illumina NovaSeq6000 platform (PE-150) and quality control was performed in
Novogene, and clean data was generated for further analysis.

De novo genome assembly.  To combine the advantages of high accuracy of second-generation sequencing
and long reads of third-generation sequencing?®, this research employed the strategy that both sequencing meth-
ods were combinedly used for genome assembly. Genomic DNA was extracted and sequenced via Illumina plat-
form and in prior to the Oxford Nanopore sequencing, the K-mer distribution analysis indicated that the genome
size of C. maculatus was 1,358.89 Mb based on 21-mers using the illumina data, which was used to evaluate its
size and characteristics, and consistent with the result of flow cytometry assay experiment (1,182.11 Mb, Table 2).

The long-read data was used to assemble the primary genome. NextDenovo?! (2.3.1) package was used to
assemble the genome, which had several scripts and seq_stat, a binary script to statistic the information of
sequencing data, is one of them. After using seq_stat with option -g =1,200,000,000 to generate the seed cutoff
value, which was required by the main program, run command NextDenovo, the main program, to get the pri-
mary genome with default configure. The primary genome was adjusted with option -a=>50 by purge_dups*
from 3 Gb into 1.2 Gb which was confirmed by K-mer analysis and flow cytometry previously*. NextPolish?*
(1.2.3) package was used to polish the primary genome with default configure, which integrated the short-read
data and the assembled the 1.2 Gb draft genome with an N50 of 1.03 Mb.
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Statistics Previous version'® | This version
Genome size (Gb) 1.01 1.22

Total number 15,778 488

N50 length (Mb) 0.15 117.71

Max length (Mb) 2.10 134.95

GC content (%) 37.52 37.58
BUSCO (completeness, %) 89.25 98.39
Ilumina reads mapping rate (%) — 98.94
Nanopore reads mapping rate (%) — 99.65

Table 3. Statistics of C. maculatus genome.

Chromosome | Ratio[log10(F/M)]
Chr1 0.02760
Chr2 0.02135
Chr3 0.02817
Chr4 0.00607
Chr5 0.01941
Chr 6 0.02911
Chr7 0.01799
Chr8 0.01830
Chr9 0.02676
Chr 10 0.24868

Table 4. Coverage between female and male beetles on chromosomes.

The Hi-C paired-end reads were mapped to the above draft genome iteratively using chromap® (0.2.3) and
yahs?® (1.2al). Finally, juicebox?”*® (2.18) was applied to correct the contig orientation and move the suspicious
fragments into unanchored scaffolds via visual exploration of Hi-C heatmaps. After all, 10 assembled chromo-
somes (Fig. 1b and Table 3), which holds 9 autosomes and one X chromosome (2n =20, n=9 + X), consistent
with that by karyotype analyses*>?°. Totally, 78.5% fragments were anchored to the assembled chromosomes,
and the genome length is 1,222.50 Mb (N50=117.71 Mb) (Fig. 1b and c).

Identification of X chromosomes. Female and male beetle transcriptomes proved that Chr-10 is
X-chromosome since female beetle transcripts showed significant larger coverage on Chr-10 (Table 4). In addi-
tion, we also performed integrating collinearity analysis of multiple homologous species genomes to identify
X chromosomes. Chromosome X (Chr-X) is a distinctive group, which had been identified in Tribolium cas-
taneum (GCA_000002335.3)*°, Harmonia axyridis (GCA_914767665.1)*!, and Coccinella septempunctata
(GCA_907165205.1)*?, and analyzed among the seven Coleoptera species (Fig. 2a). Furthermore, it was reported
that several genes, including Trx, Spastin, ARNTH, etc., were located on the Chr-X in T. castaneum, which could
be found in all other six Coleoptera species Chr-X (Fig. 2b). Besides, the GO enrichment analysis of all seven
Chr-X showed a strong connection to sexual reproduction (Supplementary Fig. 1).

Repeat annotation. Repetitive sequence annotation was divided into two types: homologous sequence
alignment and ab initio prediction. The homologous sequence alignment was based on the repeat sequence
database (RepBase library version: RepeatmaskerEdition-20181026), using Repeatmasker®* (4.1.5) and
RepeatProteinMasker to identify the repetitive sequence had known. Ab initio prediction used LTR FINDER*
(0.3.1), RepeatScout®® (1.0.6) and RepeatModeler* (2.0.4) combined with Repbase nucleotides library and
Repbase proteins library. In the beginning, de novo repeat library was established, and then used Repeatmasker to
predict them. In addition, in the method of ab initio prediction, tandem repeat finder (TRF)*’ (4.0.9) was applied
to find tandem repeats (TEs) in the draft genome. Integrated with the result of ab initio prediction, 797.47 Mb
(65.17%) repeat elements were identified totally (Fig. 3a).

Gene structure prediction. The strategy of Gene structure prediction combined multiple predic-
tion methods including homology prediction (seven species), ab initio prediction and RNA sequences-based
prediction. Homology prediction was to compare the coding protein sequence of Drosophila melanogaster
(GCA_000001215.4)*, Diabrotica virgifera (GCA_917563875.2)*°, T. castaneum, Anoplophora glabripennis
(GCA_000390285.2)*, Sitophilus oryzae (GCA_002938485.2)*!, Leptinotarsa decemlineata (GCA_000500325.2)*,
and Aethina tumida (GCA_024364675.1)*® with the genome sequence of C. maculatus via blast and genewise to
predict the gene structure in the genome. Geneid** (1.4.5), Augustus® (3.5.0), GlimmerHMM?* (3.0.4), SNAP*
(2006-07-28), and Genscan*® (1.0) were employed with default configure in the ab initio prediction which relied
on the statistical characteristics of genome sequence data, codon frequency and exon-intron distribution, to
predict gene structure. Program to Assemble Spliced Alignments (PASA)* (2.5.3) and Cufflinks®® (2.2.1) were
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Fig. 2 Chromosomes synteny and comparative analysis on chromosome X. (a) Gene synteny analysis

of seven coleopteran species. Homologous genes are linked by grey lines between chromosomes, while
X-chromosome homologous genes are linked by blue lines. (b) Gene density of seven coleopteran species
X-chromosomes (including predicted chromosomes) is showed from blue (low) to red (high), and white
blank meant that no gene are annotated. Nine key genes are located on the chromosomes. Hob: Holotrichia
oblita, Psh: Psylliodes chrysocephala, Bra: Brassicogethes aeneus, Cma: C. maculatus, Tca: T. castaneum,
Hax: H. axyridis, Cse: C. septempunctata.

applied in the RNA sequences-based prediction method with default settings. Based on the above prediction
results, combined with the transcriptome comparison data, the EVidenceModeler (EVM)* (2.1.0) and Liftoff™!
(1.6.3) was used to integrate the gene sets predicted by various methods into a non-redundant and more com-
plete gene set with different weights (Supplementary Fig. 2). Finally, used PASA to correct the EVM annota-
tion results combined with the transcriptome assembly results, added untranslated region (UTR) and variable
splicing and other information to get the final gene set. Using homology prediction, ab initio prediction and
RNA sequences-based prediction, totally 14,458 genes were predicted (Table 5, Fig. 3b), and 91.9% proteins were
conserved in BUSCO®? (5.4.1) analysis with protein mode based on Insecta 0odb10 (Table 6). And using the same
method for previous version of the genome showed that annotated gene-sets have completeness value was 84.2%
with 63.6% single copy, while the original completeness value was 75% which based on arthropod datasets!°.

Gene function prediction and Non-coding RNA annotation. The gene functions were identified by
aligning to Swiss-prot, the nonredundant sequence databases: Nucleotide collection (NR and NT), eukaryotic
orthologous groups of proteins (KOG), KEGG, TrEMBL and using BLAST®? (2.15.0 + ) with an E-value cutoff
of 1e-5. The Blast2GO** (6.0) was employed to annotate gene functions in the GO database based on the aligned
results from the NR database. The molecular pathways of predicted genes, which might be involved, were detected
through search and annotation for the KEGG database. Using Interproscan® (5.62-94.0) to search in the Pfam
(35.0), PRINTS (42.0), SMART (9.0) databases, known motifs and domains in the C. maculatus genome were
found. The domain boundaries of interesting proteins were searched on the Pfam website. In all, 14,013 of 14,458
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Fig. 3 Genome functional annotation of whole genome. (a) Taking Repbase as the library, the tandem repeat
sequences (TEs) divergence distribution map was obtained by RepeatMasker annotation. The abscissa shows
the divergence between the TEs annotated in the C. maculatus genome and the corresponding sequences in
Repbase; the ordinate is the percentage of TEs in the genome under a specific divergence, and different TEs are
marked with different colours. (b) Venn diagram how the overlap of five databases, Pfam, Swiss-port, KEGG,
GO and NR, used in the annotation. 14,458 genes are annotated from five databases and 9,098 genes are in all

the databases.
Average transcript | Average CDS | Average exons | Average exon | Average intron
Species Number length (bp) length (bp) per gene length (bp) length (bp)
Agl 14,815 16,288.47 1,520.12 5.59 271.72 3,214.43
Atu 14,076 6,198.17 1,474.90 5.93 248.78 958.34
Cma 14,458 34,576.66 1,481.93 6.31 234.84 6,232.20
Dvi 20,592 37,550.53 1,232.27 4.51 273.25 10,348.22
Lde 14,000 13,981.38 1,386.78 5.06 273.80 3,098.36
Sor 15,044 22,712.70 1,561.81 6.35 246.01 3,954.54
Tea 12,863 6,802.05 1,565.09 5.30 295.38 1,218.29

Table 5. Comparison of gene structures in related species. Agl, Atu, Cma Dvi, Lde, Sor and Tca represent
A. glabripennis, A. tumida, C. maculatus, D. virgifera, L. decemlineata, S. oryzae and T. castaneum.

Previous version'® New version
genome protein Hi-C polish protein
y tation g g ion

Complete BUSCOs 89.2% 84.2% 98.4% 98.1% 91.8%
Complete and single copy BUSCOs 84.2% 63.6% 85.8% 84.4% 82.7%
Complete and duplicated BUSCOs 5.0% 20.6% 12.6% 13.7% 9.1%
Fragmented BUSCOs 3.2% 5.3% 0.3% 0.5% 2.3%
Missing BUSCOs 7.6% 10.5% 1.3% 1.4% 5.9%

Table 6. BUCSO evaluation for genome assembly.

genes were supported by functional annotation from the databases (Fig. 3b). It is worth noting that several genes
related to hypoxia, odorant, and immunity were not well annotated in the previous genome, such as olfactory
receptors and clip-domain serine proteases which had been spot checked.
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mapped length (bp) | number mapped reads | percent of genome
Short-read sequence | 140,893,195,950 985,181,432 98.94%
Long-read sequence 137,175,775,791 53,560,382 99.65%
Hic sequence 655,131,101,700 5,986,042,949 98.56%

Table 7. Statistics of genome mapping.

According to the structural characteristics, tRNAscan-SE® (1.3.1) was used to identify the tRNA in the
genome. Meanwhile, because of the highly conservative of it, the rRNA sequences of related species were used as
a reference sequence and aligned with C. maculatus genome via blast. Additionally, the covariance model of the
Rfam family was used, and the INFERNAL® (1.1.4) that came with Rfam to predict the information of miRNA
and snRNA on the genome. There were 493,139 bp non-coding RNA, and most of them is tRNA (2,827 genes for
206,000 bp), while it was 6,948 tRNA genes in the previous genome'”.

Data Records

The whole raw data has been deposited at the NCBI Sequence Read Archive under BioProject number
PRJNA1048654 and BioSample ID SAMN38657795 for C. maculatus. Raw sequencing data (Illumina, Nanopore,
Hi-C and RNA-seq data) have been deposited in the Sequence Read Archive database as SRP477247°. The final
genome assembly and gene annotation results have been deposited in GenBank® and Figshare®.

Technical Validation

To evaluate the completeness of the assembly, BWA®! (0.7.17) was used to align the short-reads data with genome
while Minimap2%? (2.17) aligned the long-reads data and the coverage depth for assembled chromosomes were
calculated via SAMtools® (1.16.1) (Table 7). The chromosome-level genome was also evaluated via BUSCO
(5.4.1) which was compared with Insecta odb10 with 1367 genes, and the results showed that 98.4% and 0.3%
conserved core genes were identified as completed and fragmented (Table 6). These results showed that the
assembled C. maculatus chromosome-level genome has an elevated level of completeness.

Code availability

All commands and pipelines utilized in the data processing were executed in accordance with the manuals and
protocols of the respective bioinformatics software. In instances where detailed parameters were absent, default
parameters were employed. The version of the software used is delineated in the Methods section. Notably, no
custom programming or coding was incorporated.
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