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Deciphering universal gene regulatory mechanisms in diverse organisms holds great potential for advancing our knowledge of
fundamental life processes and facilitating clinical applications. However, the traditional research paradigm primarily focuses on
individual model organisms and does not integrate various cell types across species. Recent breakthroughs in single-cell
sequencing and deep learning techniques present an unprecedented opportunity to address this challenge. In this study, we built
an extensive dataset of over 120 million human and mouse single-cell transcriptomes. After data preprocessing, we obtained
101,768,420 single-cell transcriptomes and developed a knowledge-informed cross-species foundation model, named
GeneCompass. During pre-training, GeneCompass effectively integrated four types of prior biological knowledge to enhance our
understanding of gene regulatory mechanisms in a self-supervised manner. By fine-tuning for multiple downstream tasks,
GeneCompass outperformed state-of-the-art models in diverse applications for a single species and unlocked new realms of cross-
species biological investigations. We also employed GeneCompass to search for key factors associated with cell fate transition and
showed that the predicted candidate genes could successfully induce the differentiation of human embryonic stem cells into the
gonadal fate. Overall, GeneCompass demonstrates the advantages of using artificial intelligence technology to decipher universal
gene regulatory mechanisms and shows tremendous potential for accelerating the discovery of critical cell fate regulators and
candidate drug targets.
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INTRODUCTION
Vertebrate organisms are intricate systems composed of up to
trillions of cells classified into hundreds of different types. These
cells collaborate to form diverse tissues and organs, each with
unique physiological functions.1,2 Elucidating the gene regulatory
mechanisms underlying these tissues and organs is crucial for
deciphering their development patterns and promoting clinical
therapies. With rapid advances in omics sequencing technologies,
we have begun to dissect how cells in various organs exert their
specific functions at single-cell resolution3 and thus accumulate

large amounts of single-cell data. However, gene expression is
regulated at multiple levels, ranging from chromatin accessibility to
post-transcriptional modification.4,5 This implies that comprehen-
sively deciphering gene regulatory mechanisms solely through wet
biological experiments is labor-intensive and time-consuming. The
emergence of deep-learning models that capture and represent
complex patterns in large datasets offers the opportunity to dissect
multilevel and cross-species regulatory mechanisms.6,7

In recent years, foundation models such as BERT,8 GPT,9

PaLM,10,11 and LLaMA12 in natural language domains and
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DALL-E13 in visual domains have demonstrated remarkable
performance in diverse downstream tasks. They typically adopt
a paradigm involving initial pre-training on extensive data via self-
supervised learning, followed by an adaptation step for specific
downstream tasks via fine-tuning. Natural language serves as an
abstract layer for understanding human activities. Similarly, the
transcriptome can serve as a representative layer for under-
standing gene regulatory activities within biological systems.
Several studies have utilized single-cell transcriptome data to
construct pre-trained foundation models such as scGPT,14

Geneformer,15 UCE16 and scFoundation.17 These studies share
the commonality of leveraging tens of millions of human single-
cell transcriptomic profiles to pre-train foundation models and
have demonstrated remarkable performance across a broad range
of downstream tasks, such as cell clustering, cell type annotation,
gene perturbation simulation, and drug target prediction.
Despite the extensive phenotypic diversity among vertebrates,

gene regulatory networks exhibit a high level of conservation.18,19

Current models of gene regulation heavily rely on data from a
single species. Thus, integrating datasets from different species
represents a remarkable opportunity to unravel the intricate
complexities of gene regulation.2,20–22 In the genomics era, a
wealth of prior knowledge has been accumulated. This knowledge
includes identification of crucial regulatory elements involved in
gene expression, validated interactions between genes (gene
regulatory network (GRN) and gene co-expression relationship),
and definition of gene families with similar functional domains.
This information significantly contributes to our comprehensive
understanding of biological processes. Incorporating this knowl-
edge into the pre-training process can substantially guide the
model to learn universal gene regulatory mechanisms in a self-
supervised manner.
In this study, we propose GeneCompass, a knowledge-informed

cross-species foundation model pre-trained on scCompass-126M,
which is the largest corpus encompassing over 120 million single-
cell transcriptomes from humans and mice. After data pre-
processing, 101,768,420 cells were utilized. The model incorpo-
rated prior biological knowledge, including promoter sequences,
gene co-expression networks, gene family information, and
transcription factor-target gene regulatory relationships. By fine-
tuning our pre-trained model for various downstream tasks,
GeneCompass achieved superior or comparable performance to
state-of-the-art (SOTA) models across diverse biological contexts.
Overall, our model represents a significant breakthrough in the
development of foundational models for dissecting universal gene
regulatory mechanisms from mouse to human and expediting the
identification of crucial regulators of cell fate and potential targets
for drug development.

RESULTS
The architecture of GeneCompass and pre-training
GeneCompass is a knowledge-informed cross-species foundation
model pre-trained on a transcriptomic corpus of over 120 million
human and mouse cells (Fig. 1a). Four types of prior biological
knowledge (GRN, promoter information, gene family annotation,
and gene co-expression relationship) were integrated into self-
supervised pre-training of GeneCompass (Fig. 1b). Utilizing the
self-attention mechanism for explicit context encoding,23 Gene-
Compass could understand the essence of cells and the intricate
relationships among genes based on the input transcriptomes.
The pre-trained GeneCompass was designed to be efficiently
applied to various downstream biological tasks by further fine-
tuning limited task-specific data.
We initiated the development of GeneCompass by constructing

a large-scale pre-training corpus, scCompass-126M. This corpus
consists of 126 million human and mouse single-cell transcrip-
tomes collected from publicly available datasets covering an

extensive range of organs and cell types (Fig. 1c, d; Supplementary
information, Fig. S1a–c). To ensure data quality, cells with outlier
gene expression were filtered, and 101.76 million single-cell
transcriptomes in scCompass-126M were retained. Additionally,
we retained informative genes with sufficient variability or
expression levels across the datasets to capture the biological
heterogeneity and cell-type-specific signatures (Supplementary
information, Fig. S1a). To integrate human and mouse cells,
homologous genes between the two species were uniformly
represented using human Ensembl IDs. Genes that did not have
homologs were labeled with their respective species-specific
Ensembl IDs. In this study, the token dictionary comprised 17,465
homologous genes out of 36,092 genes (Supplementary informa-
tion, Fig. S1b).
The current large-scale transcriptomic pre-training models

primarily utilize relative gene rankings15 or binned gene expres-
sion values14 as inputs, leading to inadequate representations of
the transcriptome. To overcome this limitation, we first selected
the top 2048 genes to construct the context for each cell after
normalizing and ranking their gene expression, which was also
used by Geneformer,15 then we concatenated absolute gene
expression values and the corresponding gene IDs (Fig. 1a),
towards stronger supervision constraints in self-supervised learn-
ing for GeneCompass. To further enhance the capability of our
pre-trained model, four different types of biological prior knowl-
edge, including GRN, promoter information, gene family annota-
tion, and gene co-expression relationship, were encoded into a
unified embedding space24,25 (Fig. 1b; Supplementary informa-
tion, Fig. S1d–f). An extra token denoting the species (human or
mouse) information was pre-pended to each cell (Fig. 1a) to fulfill
cross-species pre-training. GeneCompass integrated gene ID,
expression value, and prior knowledge as gene inputs and utilized
a 12-layer transformer framework23 to encode cells. Inspired by
self-supervised learning in the natural language processing
domain, the masked language modeling strategy8 was employed
to randomly mask 15% of gene inputs in each cell. GeneCompass
built surrogate self-supervised tasks of recovering the gene IDs
and expression values of masked gene inputs simultaneously,
which enhanced its ability to capture the intricate gene relation-
ships in a context-aware manner (see “Materials and Methods”).

GeneCompass captures inherent gene features and
relationships across species
Homologous genes often retain similar expression patterns and
functional roles, rendering known homology information an
effective component for the integration of corpus across species.26

To validate whether the gene embeddings encoded by Gene-
Compass retained homology information, we randomly selected a
total of 2000 B cells from human and mouse corpora, and
compared the cosine similarity between the embeddings of
homologous and non-homologous genes in different species. We
found that the embeddings of homologous genes from Gene-
Compass were more similar than those of non-homologous genes,
in terms of the statistical distribution of gene embedding similarity
(Fig. 2a, left panel). The cosine similarity between different genes
within the same mouse or human cell was also compared. The
mean of the similarity distribution that was nearly zero showed
the distinguishability between different gene embeddings of both
human and mouse origin (Fig. 2a, right panel). Similar results were
also observed in multiple cell types such as hepatocytes,
macrophage cells, and a more generalized scenario by randomly
selecting cells from different cell types, demonstrating that
GeneCompass successfully captured the gene homology across
species (Supplementary information, Fig. S2a–c). To test whether
the similarity between homologs was derived from the prior
knowledge or the self-supervised pre-training, we compared
the cosine similarity of homologous genes in various scenarios,
including pre-trained GeneCompass with prior knowledge,
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Fig. 1 GeneCompass architecture and pre-training corpus. a The framework of GeneCompass. The model was pre-trained on large-scale
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Fig. 2 Analysis of gene embedding generated from GeneCompass. a Cosine similarity between homologous genes as well as non-
homologous ones of different species (left panel), and that between different genes in the same mouse or human cell (right panel). b, c Effects
of in silico deletion of GATA4 and TBX5 on different gene types, including their direct targets, indirect targets, NOTCH1 targets, NKX2-5 targets
and housekeeping genes in human cardiomyocytes, respectively. d Effects of the individual and combined deletion of GATA4 and TBX5 as well
as their combinatorial deletion with other genes that are not known to co-bind housekeeping genes and target genes in humans. e, f Effects
of in silico deletion of GATA4 and TBX5 on different gene types, including their direct targets, indirect targets, NOTCH1 targets, NKX2-5 targets
and housekeeping genes in mice which are obtained by homologous mapping. g Effects of the combined deletion of GATA4 and TBX5 on
housekeeping genes and co-bound target genes in mice. (*P < 0.05, wilcoxon-test, NS no significance).
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pre-trained GeneCompass without prior knowledge, unpre-trained
GeneCompass with prior knowledge. The cosine similarity of non-
homologous genes from the pre-trained GeneCompass with prior
knowledge was also compared as a baseline (Supplementary
information, Fig. S2d). The results showed that both the prior
knowledge and the self-supervised pretraining contributed to the
cross-species homology of GeneCompass, while the latter played a
major role.
Next, we performed in silico gene deletion to validate whether

GeneCompass could capture the gene regulatory relationships via
pre-training. Previous reports have shown that GATA4 and TBX5
have a significant impact on congenital heart disease. The direct
target genes that are known to be most aberrantly regulated by
variants of GATA4 and TBX5 have been identified.27,28 We
compared the cosine similarity of these genes after individual or
simultaneous in silico deletion of GATA4 and TBX5 in human fetal
cardiomyocytes. Consistent with the existing wet experimental
results,27,28 in silico deletion of GATA4 or TBX5 individually had
more impact on their direct target genes compared to their
indirect target genes, housekeeping genes, and other congenital
heart disease-related genes such as NOTCH1 targets29 and NKX2-5
targets30 (Fig. 2b, c). The difference between direct target genes
and housekeeping genes was statistically significant by t-test. The
in silico deletion of GATA4 and TBX5 simultaneously also
suggested the cooperative impact on their co-bound target genes
(defined by ChIP-Seq) and the impact on housekeeping genes was
compared as a baseline (Fig. 2d). We also compared individual
deletion and combinatorial deletion with other genes that they
are not known to co-bind with them, and the results further
proved that the pre-trained GeneCompass learned the co-bound
effect of GATA4 and TBX5. Considering the cross-species capability
of GeneCompass, we conducted an array of the same experiments
in mouse cardiomyocytes by homologously mapping GATA4, TBX5,
and those corresponding targets and indirect genes from human
to mouse, and obtained consistent experimental results (Fig. 2e–g;
Supplementary information, Figs. S2e, S3e–h).
Additionally, we evaluated GeneCompass by in silico deleting

more transcription factors (TFs) in various cell types of different
species, i.e., STAT1 on human PBMC cells, SMARCA4 on human
acute myeloid leukemia cells, CBX8 on mouse embryonic stem
cells, and MTA2 on mouse colonic epithelium cells. In silico
deletion of these TFs had more impact on their corresponding
targets from the ChIP-seq dataset than on those housekeeping
genes (Supplementary information, Fig. S3a–d).
To further validate the GeneCompass-learned gene regulatory

relationships, we systematically evaluated GeneCompass’s ability
in GRN recognition via two new experiments, an in silico gene
deletion experiment and a gene perturbation simulation experi-
ment. The results, illustrated in Supplementary information,
Fig. S4a, showed that the gene regulation relationship obtained
from the in silico perturbation suppressed the random guessing.
Besides, we conducted the gene perturbation simulation using a
former reported method from scGPT.14 The results on CREB1,
BLHE40, and DDIT3 demonstrated that GeneCompass could
preserve the gene–gene relationship for the perturbed conditions
(Supplementary information, Fig. S4b, c).
Therefore, the extensive experiments demonstrated that the

gene embeddings encoded by pre-trained GeneCompass could
capture the inherent gene features and further learn gene
regulatory mechanisms across species.

GeneCompass boosts cell-type annotation from single species
to cross species
Although existing methods have shown decent performance in
cell-type annotation, they only focus on single-species tasks.
GeneCompass is pre-trained using the cross-species corpus and
four types of prior knowledge, which could potentially boost cell-
type annotation from single species to cross species. We observed

that the performance of GeneCompass continuously improved as
the pre-training corpus size increased for cell-type annotation on
the human multiple sclerosis dataset (Supplementary Methods).
With the same size of human pre-training corpus, GeneCompass
(blue line) was consistently better than other benchmarked
methods, i.e., Geneformer15 (green circle point) and scGPT (green
square point), in terms of macro-f1 and accuracy, despite using a
6-layer transformer (Fig. 3a). Additionally, GeneCompass pre-
trained with a combined human and mouse corpus (black line)
demonstrated superior performance compared to models trained
solely on human data or models trained on equivalent amounts of
mouse data. These results indicated that incorporating another
species’ data could enhance the performance of downstream
tasks in one target species (Fig. 3a). Furthermore, we showed that
GeneCompass with a 12-layer transformer performed better than
that of the 6-layer transformer (Supplementary information,
Fig. S5b). After that, we compared the performance of GeneCom-
pass with or without this knowledge on the cell-type annotation
task, the results of which demonstrated the advantage of infusing
the prior information (Supplementary information, Fig. S5a and
Table S2).
Next, to evaluate the capability of GeneCompass for single-species

cell-type annotation tasks, we performed a comprehensive analysis
of diverse organ datasets from humans and mice. A comprehensive
comparison of four models, GeneCompass without pretraining,
TOSICA,31 Geneformer,15 and pre-trained GeneCompass, was con-
ducted in different human datasets, i.e., multiple sclerosis (hMS),
lung (hLung) and liver (hLiver), and diversemouse datasets, i.e., brain
(mBrain), lung (mLung) and pancreas (mPancreas) (Supplementary
Methods). We observed that pre-trained GeneCompass improved
macro-f1 by 10%–18% than the case without pre-training, by
21%–28% than TOSICA, and by 3%–8% than Geneformer in human
datasets (Fig. 3b). Meanwhile, pre-trained GeneCompass improved
macro-f1 by 16%–36% than the case without pre-training, by
16%–25% than TOSICA, and by 10%–19% than Geneformer in
mouse datasets (Fig. 3c). Fine-grained analysis showed that the pre-
trained GeneCompass achieved higher recall on 16 of the 18 cell
types in the mPancreas dataset comparing with TOSICA31 (Supple-
mentary information, Fig. S5c, d). What’s more, compared with
Geneformer, no matter the original one or the retrained one with the
same corpus as GeneCompass, GeneCompass showed better
performances on cell-type annotation (Supplementary information,
Tables S3, S4). We could see that the performance improvement of
GeneCompass was attributed to both pre-training input data and
model architectures. These results indicated the superiority of
GeneCompass on cell-type annotation tasks by pre-training a large-
scale cross-species corpus.
To explore the capability of GeneCompass for cross-species cell-

type annotation tasks, we integrated GeneCompass with SOTA
method CAME.17 Gene embeddings generated by GeneCompass
were utilized as the initial gene node features within CAME
(Supplementary information, Fig. S5e). We utilized mouse cell type
as a reference to annotate human cells on seven paired datasets
from four distinct organs (retina, brain, pancreas, and testis).
Following the integration of GeneCompass, we observed an
overall comparable performance with an improvement in four of
the seven paired datasets when comparing with CAME (Fig. 3d;
Supplementary information, Fig. S5f). It is noteworthy that in a
complex cross-species annotation task such as the retina (NMDA-
Mnseq, the first column), which involves over 12 different cell
types, we observed a 7.5% improvement compared to CAME, a
leading specialized cross-species cell annotation tool. This
improvement was achieved simply by replacing the gene
information embeddings generated during the process with the
embeddings generated by GeneCompass. This result highlights
the potential of boosting cross-species tasks by GeneCompass.
In summary, the knowledge-informed cross-species GeneCom-

pass pre-trained with over 120 million human and mouse cells
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Fig. 3 GeneCompass boosts the performance of cell-type annotations from single species to cross species. a Comparison of the
performance of GeneCompass and other baseline methods on the downstream task of cell type annotation in the human multiple sclerosis
(hMS) dataset. GeneCompass was pre-trained using human & mouse (HM, black line), human (H, blue line), and mouse (M, red line) single-cell
transcriptome corpus with different cell numbers. The green circle point and green square point represent Geneformer and scGPT,
respectively. “Layers6” denotes GeneCompass with a 6-layer transformer. b Comparison of the performance of GeneCompass and other
baseline methods on hMS, hLung, and hLiver datasets. c Comparison of the performance of GeneCompass and other baseline methods on
mBrain, mLung, and mPancreas datasets. d Comparison of the performance of GeneCompass+CAME with original CAME on cross-species cell
type annotation (Mouse and human data were used as reference and target species, respectively). A 7.5% improvement was observed in
NMDA-Mnseq, a retina dataset (the first column). The datasets in b–d derived from humans and mice are marked as “h” and “m”, respectively.
Detailed information on datasets can be found in the Supplementary Methods. “Without pre-training” denotes that the parameters of
GeneCompass were randomly initialized and fine-tuned directly without the pre-training process.
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outperformed the most advanced methods on single-species cell-
type annotation tasks and exhibited great potential on cross-
species tasks.

Pre-trained gene embeddings improve the prediction
performance in multiple biological contexts
To further investigate the capabilities of the gene embeddings
encoded in GeneCompass, we applied them to several down-
stream prediction tasks, including GRN inference, drug dose-
response prediction, gene expression profiling, and gene dosage
sensitivity (Fig. 4a; Supplementary information, Fig. S6).
GRN provides information on gene regulation and signal

transduction, offering insights into gene expression patterns and
key regulatory genes in diseases. During the pretraining process,
GeneCompass effectively captured gene regulatory relationships
within its gene embeddings, which could potentially enhance the
GRN inference application. Thus, we generated gene–gene
relationship information based on the cosine similarity between
the gene embeddings from GeneCompass by turning the pairwise
similarities into a binary adjacency matrix with an optimized
universal threshold at 0.4. This information was then used to
update the output GRNs from DeepSEM,32 an advanced GRN
inference tool. Moreover, we conducted a similar assay using gene
embeddings generated by other pre-trained models, namely
Geneformer and scGPT, respectively. The GRN inference task was
known to be a typical imbalanced problem where only a small
percentage of gene pairs had a regulatory relationship. Thus, we
used the Area Under the Precision-Recall Curve (AUPRC) as the
evaluation metric for assessing the performance, which was also
derived from DeepSEM.32 The ground truth dataset was based on
ChIP-Seq and de-duplicated against the prior knowledge of PECA
GRN. Then through this metric, we observed that GeneCompass
achieved the best GRN inference performance compared to
scGPT, Geneformer, and vanilla DeepSEM (Fig. 4b; Supplementary
information, Fig. S7a–c).
Predicting drug responses to gene expression changes to

different types and dosages of drugs is crucial for drug functional
evaluation. To validate the potential benefits of gene embeddings
generated by GeneCompass and other pre-trained models for this
task, we incorporated them into the Compositional Perturbation
Autoencoder (CPA)33 framework to predict the expression
changes of specific genes (as an example, MDM2). GeneCompass
exhibited constantly better performance with increasingly
enlarged data volume. GeneCompass achieved the highest scores,
the same as Geneformer (Fig. 4c; Supplementary information,
Fig. S7d), and demonstrated lower variance across different drug
conditions compared to the other models (Supplementary
information, Figs. S6d, S7). In addition to predicting single gene
changes, we also incorporated gene embeddings generated by
GeneCompass into DeepCE,34 a widely used model for predicting
drug-induced changes in gene expression profiles, to assess its
impact on model performance. As the data volume increased,
the performance of GeneCompass was consistently improved.
The performance of the final GeneCompass was comparable with
that of Geneformer and better than other pre-trained models
(Fig. 4d).
Determining dosage-sensitive genes is of vital importance for

interpreting copy number variations (CNVs) in genetic diagnosis.
Here, we fine-tuned GeneCompass to identify the dosage-
sensitive genes on predefined dosage-sensitive and non-
sensitive gene datasets.15 We observed that as the number of
cells used for pre-training increased, the predictive performance of
GeneCompass in terms of area under the receiver operating
characteristic curve (AUC) consistently improved, reaching 0.95
(Fig. 4e). Utilizing an identical amount of training dataset,
GeneCompass achieved superior performance compared to
Geneformer. This improved efficacy could be attributed to the
strategic inclusion of prior knowledges during pretraining.

In summary, GeneCompass demonstrated promising results in
multiple tasks, including GRN inference, drug dose response
prediction, gene expression profiling, and gene dosage sensitivity
prediction tasks. The performance of GeneCompass proved its
adaptability and effectiveness in a variety of downstream
biological tasks. What is more, the extensive experiments also
proved the plentful corpus and novel architecture improved the
performance of GeneCompass on the full-panel of downstream
tasks (Supplementary information, Tables S3, S4).

Pre-trained gene embedding improves gene perturbation
prediction
Although gene dosage has a significant impact on disease and
drug treatment, functional mutations directly affect gene function
and lead to a wide range of cellular changes. We attempted to
leverage the gene embedding provided by GeneCompass to
predict global gene expression changes resulting from perturba-
tions caused by functional gene mutations. We integrated
GeneCompass gene embedding into the advanced perturbation
prediction tool GEARS35 by replacing the original gene embed-
ding that was learned from the co-expression knowledge graph in
the original procedure (Fig. 5a). This led to a decrease of 15.4% in
the mean squared error (MSE) for the top 20 differentially
expressed genes (DEGs) when training on Norman perturb-seq
dataset,36 indicating a lower discrepancy between the predicted
and actual expression changes for these critical genes (Fig. 5b).
We then ran a hold-out test to evaluate the GeneCompass

performance for 102 one-gene and 128 two-gene perturbation
predictions. The Spearman’s rho between the predicted and true
changes in gene expression after perturbations showed that
GeneCompass had an improvement of 2.2% compared to GEARS,
increasing from 79.8% to 82.0% (Fig. 5c). This enhancement was
observed in both one-gene and two-gene perturbations (Supple-
mentary information, Fig. S9a–e). Next, we investigated whether
GeneCompass could more accurately predict the correct direction
of changes in gene expression after perturbations. The top 20 DEGs
with incorrect directions for each perturbation prediction were
summarized. Comparing the results with those predicted by GEARS,
we observed a decrease of 13.7% from 336 to 290 DEGs with
incorrect directions (Fig. 5d; Supplementary information, Fig. S9f).
Furthermore, the deviation analysis for each perturbation

prediction indicated that GeneCompass exhibited lower deviations
against the ground truth in the top 20 DEGs for both one-gene and
two-gene perturbations, as compared to GEARS (Fig. 5e; Supple-
mentary information, Fig. S9g). GeneCompass provided a deviation
reduction of 5.9% for one-gene perturbations and 12.5% for two-
gene perturbations compared with GEARS (Fig. 5f). As an example,
we showed that the prediction results for 17/20 DEGs from
GeneCompass were more accurate than those from GEARS when
perturbing TGFBR2 and PTRG genes (Fig. 5g). Similar results could
also be observed in other gene perturbations (Supplementary
information, Fig. S9h–j). In summary, gene embedding in Gene-
Compass provided a more effective representation of relationships
between genes, enhancing the prediction of gene perturbations.

GeneCompass enables cell fate prediction and identifies key
regulatory factors
Owing to that both the absolute expression value and relative
ranking indices of genes were masked and reconstructed during
the self-supervised pre-training, GeneCompass could capture
intricate regulatory mechanisms, thus enabling in silico quantita-
tive gene perturbation (Fig. 6a). To verify this capacity, we
simulated iPSCs induction procedure, similar to the existing
work15 (Supplementary information, Fig. S10b), a well-
characterized reprogramming paradigm, via in silico overexpres-
sion of OSKM genes37 (OCT4, SOX2, KLF4 and c-MYC) in human
fibroblasts. We set two levels of overexpression for OSKM genes:
the median value of the gene across the corpus (low-level
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overexpression) and the maximum value in the cell (high-level
overexpression). Compared to the control group that over-
expressed four other random genes, cells with both levels of in
silico OSKM overexpression exhibited a shift towards the iPSC
state. Notably, cells with a high-level overexpression of OSKM

were shifted further towards the iPSC state than those with a low-
level overexpression of OSKM, reflecting a precise simulation of
cell reprogramming. Consistent results were observed in mouse
fibroblasts (Fig. 6b). Then GeneCompass was evaluated on in silico
quantitative knockout tasks in cell differentiation processes.
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Zbtb11 and Zfp131 are reported to be essential TFs for the
maintenance of pluripotency in mouse embryonic stem cells
(ESCs).38 Deletion of Zbtb11 and Zfp131 could induce endoderm
differentiation. In our study, in silico quantitative knockouts of
Zfp131 and Zbtb11 were performed in mouse ESCs by progres-
sively reducing their expression levels to half, quarter, and zero,
respectively. Consistent with the actual knockout results,38 we
observed that all simulated knockout cells exhibited a shift
towards the endoderm state. Importantly, we found a positive
correlation between the extent of shifting and the in silico
knockout levels (Supplementary information, Fig. S10a).
Next, we utilized GeneCompass to predict key regulatory factors

in cell fate transitions through in silico analysis, with the aim of
promoting efficiency of wet experiments and uncovering novel
mechanisms. Here, we conducted an experiment on the differentia-
tion of human ESCs to the gonadal lineage cells (Fig. 6c;
Supplementary information, Fig. S10c). Specifically, each gene in
the initial ESCs was in silico overexpressed to generate a cell
embedding that represented the simulated differentiation state. By
comparing the cosine similarities among initial, simulated, and
target cell embeddings, we identified the top five genes, i.e., NR2F1,
NR5A1, WT1, TCF21, and GATA4, whose simulated cell embeddings
exhibited higher similarity to both gonadal progenitors and mature
Leydig cells while lower similarity to the original ESCs (Fig. 6c,
see “Materials and Methods”). Interestingly, all five of these
genes are transcription factors, and three of them, i.e., WT1,
NR5A1, and NR2F1, have been reported to be essential for mouse
gonadal development in vivo.39–45 Hence, these genes could be key
factors that trigger the differentiation of ESCs into gonadal
progenitor cells.
To further validate the role of these genes, we individually

overexpressed NR5A1 and GATA4 in ESCs and subsequently
induced differentiation towards the gonadal lineage (Supplemen-
tary information, Fig. S10d). Immunofluorescence results demon-
strated that overexpression of either gene alone in human ESCs
could induce gonadal gene programs, as evidenced by the
activation of marker genes associated with the gonadal progeni-
tors (Fig. 6d; Supplementary information, Fig. S10e). Additionally, a
comprehensive transcriptome comparison analysis revealed a
significant upregulation of known marker genes associated with
reproductive development in NR5A1- or GATA4-overexpressed
cells, compared to ESCs (Fig. 6e; Supplementary information,
Fig. S10f). The DEGs were found to be enriched in gonadal-related
biological processes (Fig. 6f; Supplementary information,
Fig. S10g). Intuitively, NR5A1- and GATA4-overexpressing cells
directly upregulated the RBP1 gene involved in maintaining
retinoic acid homeostasis and the related genes STAR and HSD3β1
involved in steroid hormone synthesis in testicular cells (Fig. S10h,
i). These results suggested that the predicted genes indeed played
an important role in the gonadal differentiation from human ESCs.
In summary, GeneCompass exhibited the capability of cell fate

prediction and key regulatory factor identification which could be
applied to refine the efficiency of wet experiments and reveal
novel mechanisms.

DISCUSSION
In this study, we introduced GeneCompass, a large-scale pre-
trained model that integrates 126 million cross-species single-cell
transcriptomes with four types of prior known biological knowl-
edge. GeneCompass used a deep learning architecture based on
Transformer’s self-attention mechanism to capture long-range
dynamic associations between different genes in different cellular
contexts. During pre-training, genes were ranked and combined
with expression values for dual encoding input. This enables
GeneCompass to effectively and sensitively extract relationships
between genes and provide a more precise analysis of gene–gene
interactions under specific conditions.
We found that GeneCompass using large-scale cross-species data

for downstream tasks of single species followed the scaling law:
larger-scale multi-species pre-training data produce superior pre-
training representations compared to single-species data, further
enhancing downstream tasks performance. This finding further
confirms the existence of conserved gene regulatory patterns
across species, which can be learned and understood by pre-
training models. It also suggests that as species and data expand,
model performance is expected to be continuously improved.
GeneCompass represents a knowledge-embedded cross-spe-

cies pre-trained large foundation model in life sciences, enabling
transfer learning for multiple cross-species downstream tasks.
Compared to the existing models, it achieved better performance
in various downstream tasks such as cell type annotation, GRN
inference, drug dose response prediction, gene expression
profiling, and gene dosage sensitivity prediction as well as
quantitative gene perturbation predictions. These results proved
the effectiveness of the strategy that pre-training a foundation
model on multi-species large-scale unlabeled data and subse-
quent fine-tuning on limited task-specific data could make it a
promising universal solution to various important biological
problems related to gene–cell features. In addition, we conducted
extensive cross-validation experiments to investigate the impact
of incorporating various prior knowledge on pre-training perfor-
mance by utilizing full panel of downstream tasks. These results
showed that infusion of prior knowledge could promote the
understanding of complex feature associations between biological
data by the pre-trained foundation model.
However, there still is potential for improvement. Our model

incorporated information from only two species: human and
mouse. When attempting to include data from other species, we
suspected that species-specific gene expression patterns may
offset the benefits of enlarged data size. In addition to current
prior knowledge, other essential information such as enhancers
and protein sequences should also be explored. Furthermore,
apart from transcriptional data at the single-cell level, a wealth of
epigenomic, proteomic, and metabolomic data would provide
richer insights into gene regulation. Investigating effective
strategies for integrating multimodal information into models is
a pivotal avenue for future research.
GeneCompass demonstrates promising performance for multi-

ple downstream tasks. With ongoing evolution and increased

Fig. 5 GeneCompass shows enhanced performance for the gene perturbation prediction task. a The workflow of GeneCompass for the
perturbation prediction task. b MSE in predicting the expression changes in the top 20 DEGs by GeneCompass and GEARS. MSE only
considered on the top 20 most DEGs. c Scatter plot of the predicted and true changes in gene expression. Each dot represents a specific gene,
and Spearman’s correlation is marked as “ρ”. d Total number of the top 20 DEGs genes where the predicted post-perturbation differential
expression was in the incorrect direction of the ground truth. e Expression deviation between the predicted and true changes in gene
expression for the top 20 DEGs analyzed by GeneCompass and GEARS. f Percentage of perturbations that exhibited a smaller deviation
between the prediction results and ground truth when comparing GeneCompass with GEARs, using the deviation in the top 20 DEGs as the
criterion. “GeneCompass better” is defined as GeneCompass having a smaller deviation than GEARS. g Expression changes for the combined
TGFBR2 and PRTG perturbation in true experiment post perturbation were predicted by GeneCompass and GEARS. The grey error bar denotes
the ground truth of mean gene expression change with standard deviation after perturbing the gene combination TGFBR2 and PRTG (n= 205).
The red triangle symbol shows the gene expression change predicted by GeneCompass with TGFBR2 and PRTG perturbation excluded during
training. The blue square symbol shows the gene expression change predicted by GEARS.
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adoption, it holds the promise to provide substantial value in
optimizing cell-fate prediction and uncovering key regulatory
factors. This can open up new avenues for its clinical application,
for example, disease target gene discovery, tumor drug screening,
and drug toxicity prediction. In the future, we anticipate that the
fusion of large foundation models and wet experiments will create
a novel paradigm in life science research, catalyzing advance-
ments in various fields.

MATERIALS AND METHODS
Collecting and preprocessing of multi-species training data
We constructed a large-scale pre-training corpus, scCompass-126M,
comprising more than 120 million single-cell transcriptomes derived from
humans and mice. In detail, we obtained 53,568,337 human single cells,
48,200,083 mouse single cells, and a total of 101,768,420 human and
mouse single cells. More than 90% (about 94.41%) of the data were
obtained from publicly available datasets from various sources, including
the Gene Expression Omnibus of the National Center for Biotechnology
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Information (NCBI), European Molecular Biology Laboratory-European
Bioinformatics Institute (EMBL-EBI) ArrayExpress, and China National Center
for Bioinformation (CNCB) (Supplementary information, Table S1). Raw
sequence data were downloaded from these databases, with different
regions in the world, each sample file was labeled with a unique ID, and
the gene count matrices were obtained using Cell Ranger.46 The other part
of the data in the gene count matrix were mainly downloaded from
CELLxGENE database.
A unified bioinformatics processing pipeline was utilized for high-quality

data filtering (Supplementary information, Fig. S1a). The pipeline consisted
of the following steps: filtering cells with less than 200 expressed genes,
filtering samples with less than 4 cells, filtering cells with more than 7
expressed protein-coding or miRNA genes, filtering cells with a proportion
of mitochondrial genes exceeding 15%, filtering cells with an expressed
gene number exceeding three standard deviations from the mean number
among all cells in the gene expression matrix for each sample, and
dropping genes not in the core gene list. Informative gene annotations
from Ensembl were used to define a core gene list including protein-
coding genes, lncRNAs, and miRNAs. Categories like pseudogenes, tRNAs,
rRNAs, and other non-capturable loci by current single-cell transcriptomics
were excluded from the analysis.
Our pretraining corpus included disease cells, cancer cells, and

immortalized cell lines. Metadata descriptions in the datasets, including
single-cell perturbation, cancer cell identification, gender distribution, and
cell differentiation time, were used to assess the diversity of the datasets
(Supplementary information, Fig. S1c).

GeneCompass architecture and pre-training
GeneCompass architecture. GeneCompass employed self-attention
transformer to encode each single-cell transcriptome data. We denoted
the number of transformer layers as L, the number of self-attention
heads as H, and the hidden size as D. We primarily utilized a transformer
with L ¼ 12;H ¼ 12;D ¼ 768, whose total parameters reached over
100,000,000. GeneCompass operated on a sequence of 2048 genes for
each cell sample, with each sequence obtained according to the
corresponding ranked high expression. Given a gene, the information
including gene ID, expression value, corresponding prior knowledge
(promoter, GRN, gene family, and co-expression), and a special token
indicating species were concatenated and further encoded into 768-
dimension embeddings. A position embedding indicating the gene
ranking was also added to the input. Gaussian Error Linear Units (GELUs)
were employed for nonlinear activation, and the dropout probability for
both self-attention and dense layers is 0.02 (standard deviation of the
initializer for weight matrices is 0.02; epsilon for layer-normalization
layers is 1 × 10–12). Code for model configuration, data loading, and
training was implemented by Pytorch and Huggingface Transformers
library.47 Furthermore, we extended the library for inputting scalable
external knowledge.

GeneCompass pre-training and optimization. Inspired by self-supervised
learning in the NLP domain, a masked language modeling strategy8 was
employed to randomly mask genes including their IDs, expressions, and
prior knowledge during the pre-training. To be detailed, 15% of the genes
were selected randomly to be masked in each cell. Compared with existing
studies,14,15,17 GeneCompass built a multi-task learning paradigm to
predict both expression value and ID of the masked genes based on the
encoded gene embedding in the meanwhile. We used the MSE loss for

gene expression prediction, which was defined as follows:

Lexp ¼ 1
nm

Xnm
j¼1

exðiÞj � xðjÞj
� �2

where nm denoted the number of masked genes, exðiÞj denoted the
predicted gene expression and the ground truth expression was denoted
as xðiÞj . Cross-entropy (CE) loss was employed for gene ID prediction, which
was defined as follows:

LID ¼ � 1
nm

Xnm
j¼1

p xj
� �

log qðxjÞ

where pðxÞ denoted the probability of the real gene ID, and qðxÞ denoted
the probability of predicted ID. The overall training objective combines the
MSE loss for gene expression and CE loss for gene ID:

minð1� βÞLID þ βLID

where β is the hyperparameter to balance the tasks’ gradient.
The pre-training parameters were as follows: to make full use of GPU, the

batch size is adjusted to the maximum allowable value of 10 for the 12-
layer transformer model. The learning rate was set to linear decay with
10,000 warm-up steps, and the maximum learning rate was 5e–5 using the
AdamW optimizer. GeneCompass was pre-trained for 3 epochs, in which
case the loss basically did not decrease. The whole pre-training process
was accomplished in 9 days using 4 ´ 8 NVIDIA A800 GPUs.

Cell and gene embedding. We could obtain the cell and gene embeddings
from the output of last layer in GeneCompass. GeneCompass encoded
each gene into a 768-dimension embedding, which contained its context
information in the cell. And the embedding of the special token was used
as the cell embedding that indicated the cell status.

Ablation experiments. An ablation study of GeneCompass with the inclusion
of different kinds of prior knowledge is performed using the full human single-
cells corpus (~55 millions). To avoid consuming too much computing power,
GeneCompass utilized a smaller self-attention transformer with
L ¼ 6;H ¼ 4;D ¼ 256. Specifically, GeneCompass with inclusion of zero,
one, and all kinds of prior knowledges, respectively, were used for pre-training.
To compare with Geneformer, we also re-trained Geneformer using the same
dataset as GeneCompass. To clarify the impact of input data on model
performance, we further built two small datasets of 5 million single cells by
randomly selecting from Geneformer and GeneCompass corpus. Then,
Geneformer and GeneCompass were pre-trained based on the corresponding
dataset. The experimental results were based on fine-tuning these pre-trained
models on full-panel multiple downstream tasks by cross-validation.

Downstream task fine-tuning. For a downstream task, the pretrained
GeneCompass was further fully fine-tuned using limited data. A task-specific
decoder (e.g., a dense layer) was appended to the 12-layer transformer
encoder of GeneCompass. For those comparative methods of downstream
tasks, all the hyperparmeters were fine-tuned with a same process as
GeneCompass to guarantee a fair comparison. Specifically, we firstly used the
official codebases of the comparative methods for downstream tasks; then,
we performed the same parameter fine-tuning process on the models (such
as learning rate, batch size, and number of iterations); finally, we used the
best performance of each model achieved to compare.

Fig. 6 In silico quantitative perturbation for cell reprogramming and differentiation. a Diagram of in silico cell fate transition. In silico
knockout or overexpression experiment is performed by removing or shifting the highlighted gene in red forward within the ranking genes. b In
silico low-level or high-level overexpression of OSKM is performed in human (upper) or mouse (bottom) fibroblasts to calculate the cosine
similarity of the simulated cell states with iPSCs. In silico overexpression of four other random genes is used as control. In each simulation group,
all embedding pairs between perturbed fibroblast cells and iPSCs are used to compute the cosine similarity. The cosine similarity of all pairs in
each group is simultaneously presented using probability density and box plots. c Distribution of candidate genes that drive the shift of cell
embeddings towards Leydig cell status and gonadal progenitor status in response to in silico overexpression in human ESC cells. Top 50 genes
shifting towards Leydig cell (lower) or gonadal progenitor (upper) status and away from the ESC status are presented. Five genes in the
intersection set of Venn diagram are selected as candidate genes for gonadal differentiation. d Protein co-immunofluorescence staining for
markers of interstitial/Leydig lineage and Sertoli cells with GATA4 (GATA4+, red; TCF21+, green; NR2F2/NR2F1+, cyan),). Scale bars: 100μm e The
identification of upregulated gonadal lineage-related marker genes in the GATA4 overexpression group compared to cells derived fromwild-type
ESCs, with fold changes exceeding 2-fold. f Gene ontology (GO) enrichment analysis was performed using DAVID for the total up-regulated genes
with a 2-fold change in the GATA4 overexpression group compared to cells derived from wild-type ESCs. (*P < 0.05, Wilcoxon-test).
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Knowledge embedding and incorporation
Four types of prior biological knowledge of a gene were encoded into the
same 768-dimension of embedding and incorporated with gene ID and
expression value, which included GRN, promoter information, gene family
annotation and gene co-expression relationship.

GRN embeddings. We used paired gene expression and chromatin
accessibility data from the Encyclopedia of DNA Elements (ENCODE) to
construct the PECA248 GRN. In total, 84 mouse and 76 human GRNs were
generated (Supplementary information, Fig. S1f). We then embedded
these gene pairs with regulatory relationships into vectors using the
gene2vec method.25

Promoter embeddings. The promoter is a noncoding sequence of a gene
that serves as an activating signal for gene transcription. The promoter for
each gene consists of 2500 bases, including upstream 500 bases before the
transcription start site (TSS) and downstream 2000 bases. The promoter
sequences were fine-tuned on the pre-trained model DNABert24 for 40
epochs to obtain promoter embeddings with 768 dimensions.

Gene family embeddings. The human gene family data are from the
HUGO Gene Nomenclature Committee (HGNC) database, and can be
downloaded from https://www.genenames.org/download/custom/. The
mouse gene family data were derived from the human gene family data
based on the homologous genes between humans and mice, and the
homologous genes are from the BioMart database, which is a sub-database
of the Ensembl database. We analyzed the genes of two organisms and
their family relationships as follows: 1539 gene families for mice and 1645
gene families for humans. Any two genes belonging to the same gene
family were regarded as a gene pair to construct a gene pair list. All gene
pairs were encoded by gene2vec method.25 We retained the structure of
the initial gene2vec but modified the embedding dimension from 256 to
768 during training. Eventually, each gene was represented as a 768-
dimension embedding (Supplementary information, Fig. S1e).

Co-expression embeddings. We employed a uniform sampling strategy by
selecting 3000 cells from each gene expression matrix. This step aimed to
comprehensively cover the range of gene expression, capture overall
features, and avoid bias towards specific cell types or expression levels. We
calculated the Pearson correlation coefficient (PCC) between two
expressed genes (count ≥ 1) (Supplementary information, Fig. S1d). The
nonzero-based correlation coefficient calculation avoided unnecessary
calculations for zero values, ensuring the practicality and interpretability of
the analysis results. Gene pairs with PCCs larger than 0.8 were selected to
be embedded using the gene2vec method.

Multiple downstream tasks
Gene embedding analysis. This task was designed to analyze the
gene–gene interaction by performing in silico deletion without the
comparison with perturbed conditions. The in silico perturbation was
conducted by removing the target gene from single-cell transcriptome.
The shift of each gene was calculated by comparing the similarity of
gene embeddings between the origin and in silico perturbed status.
The larger shift denoted the higher correlation with the perturbed
gene. The GRN inference demonstrated in Supplementary information,
Fig. S4a was performed based on in silico deletion of TFs in CHIP-Atlas
related to PBMC cells on GSE43036. For each transcription factor, we
calculated the precision of predicted TFs using GeneCompass and
random selection.

Single-species cell type annotation. To simulate the application scenario of
GeneCompass more realistically, we selected samples with different
biological backgrounds and batches as the training set and testing set,
respectively. To predict single-species cell types, a fully connected layer
was added to the cell embeddings generated from GeneCompass. The
cross-entropy loss was used as objective function. For human-specific and
mouse-specific tasks, we compared pre-trained GeneCompass with
GeneCompass without pre-training, Geneformer and TOSICA on human
multiple sclerosis (hMS), lung (hLung) and liver (hLiver) datasets, and
mouse brain (mBrain), lung (mLung) and pancreas (mPancreas) datasets.
Details of the datasets used for model training and validation can be found
in the Supplementary Methods. Through the hyperparameter tuning
process, different models can obtain hyperparameters that were more
suitable for the datasets, which also facilitates comparison between

different methods. For GeneCompass, learning rate was set to 5e–5, batch
size was set to 16, and number of training epochs is set to 50. For
Geneformer, learning rate was set to 5e–5, batch size was set to 16, and
number of training epochs was set to 50. For TOSICA, learning rate was set
to 5e–5, batch size was set to 16, and number of training epochs was set to
20. For scGPT, we used the results from the corresponding dataset
provided in the original article.

Cross-species cell type annotation. To predict cell types across species, we
combined GeneCompass with CAME49 to obtain a heterogeneous graph
neural network called GeneCompass+CAME, in which cells and genes
were modeled as heterogeneous nodes (Supplementary information,
Fig. S5e). Furthermore, similar to CAME, we created a heterogeneous graph
with six heterogeneous types: “cell to gene”, “gene to cell”, “cell to cell”,
“gene to gene”, “cell self-loop”, and “gene self-loop”, where we denoted
the corresponding weights (shared across species) as Wcg , Wgc , Wcc , Wgg ,
Wc and Wg , respectively. Unlike CAME, GeneCompass+CAME adopted
gene embeddings from pre-trained GeneCompass as input.
Here, we denoted a gene expression matrix with N cells and M genes as

X 2 RN ´M , and the corresponding pre-trained gene embeddings as
Xg 2 RM

0 ´ P . The initial embedding (the 0-th layer) for each cell i was
calculated as follows:

h 0ð Þ
ci ¼ σ W 0ð Þ

c xec i þ b 0ð Þ
c

� �
;

where σ was the leaky ReLU activation function with a negative slope of
0.05, xec i represented the embeddings generated from the selected
homologous genes for cell i, W 0ð Þ

c and b 0ð Þ
c were learnable weight and bias

vectors. In GeneCompass+CAME, we used the pretrained gene embedding
h 0ð Þ
gj

to initialize each gene. We then aggregated the features of the
corresponding neighboring cells to update the gene embedding:

h 1ð Þ
gj

¼ σ h 0ð Þ
gj

þ
X
i2N c

gj

1
zgj ;c

W 0ð Þ
cg xec i þ b 0ð Þ

g

0
B@

1
CA;

where N c
gj
was the set of cells that express gene j, and W 0ð Þ

cg and b 0ð Þ
g were

the learnable weight and bias vectors, respectively.
For the remaining layers, we used the same strategy as CAME, where we

updated the embeddings of each node under the guidance of a
heterogeneous graph and used a graph attention layer as the cell-type
classifier. Finally, we used the cross-entropy loss with a label smoothing
mechanism50 as the training loss and optimized by the Adam.51 In
addition, we used the adjusted mutual information to select the best
checkpoint, which was consistent with CAME. To evaluate the cell-type
annotation performance, we adopted accuracy and macro-f1 as a metric.
Each dataset pair underwent 20 distinct experiments using different seeds,
and the average results from these experiments were used for comparison.
Details of the cross-species datasets used in our study can be found in the
Supplementary Methods.

GRN inference. This task involved the prediction of relationships among
genes to gain insights into how genes work together to control cellular
processes. We employed the DeepSEM framework32 as baseline in this
task and then tested whether gene embeddings from the pre-defined
models (GeneCompass, Geneformer, and scGPT) could benefit the
output GRNs of DeepSEM. We applied each pre-trained model on
Immune Human dataset14 to obtain gene embeddings. With similar
tuning process above, we adjusted the learning rate and the number of
training epochs in this task. We set the learning rate to 1e–4, the batch
size to 64 and epochs to 40. We calculated the cosine similarity of gene
embeddings as follows:

cos sim ¼ xi � xj
xik k xj

�� ��

where xi and xj were gene-embedding vector and ||·|| denoted the
Euclidean norm. We got gene–gene relationship based on cosine
similarity by setting threshold to 0.4, which was optimized from 0 to 1. If
the cosine similarity was above the threshold, there existed a relation-
ship between the pair of genes. Then, we fed the log-transformed
scRNA-seq expression data derived from the BEELINE framework52 after
Z-normalization into DeepSEM. Moreover, we initialized MLPs by using
the “kaiming_uniform”4 and initialized W by setting the matrix diagonal
as zeros and the others following a Gaussian distribution N 1

m�1 ; ε
2

� �
, in
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which m stands for a number of genes and ε denotes a small value to
avoid being trapped in the local optimal. We applied ChIP-Seq data with
variable TFs (Supplementary information, Table S5), generated from
BEELINE framework52 as ground truth, and the values on the diagonal
were fixed as zero in the entire training process to guarantee that W
could obtain the regulatory network from learning procedure. Finally, we
applied the gene relationships learned from the pre-defined models to
update DeepSEM and then drew final GRNs. (Supplementary informa-
tion, Fig. S6a).

Drug dose response prediction. This task referred to the relationship
between drug dosage and the expression response of a gene. On the
dataset provided by Srivatsan et al.,53 it could be described as
D ¼ xi; di; cif gNi¼1, where each xi 2 RG described the expression of G
genes from cell i, if did;i ¼ 0, perturbation j was not applied to cell i.
Unless stated otherwise, the sequel assumed the column vectors.
Similarly, the vector of vectors ci ¼ ci:1 ¼ :::ci:Kð Þ comprised additional
discrete covariates such as cell types or species, where each covariate
was itself a vector. Specifically, ci;j was a Kj-dimensional one-hot vector.
We loaded the pre-trained CPA model and implemented CPA to predict
the expression changes of specific gene (as an example, MDM2) in
different drugs and dosage by following steps: (1) encoding the gene
expression xi into an estimated basal state �zbasali that did not contain any
information about di; cið Þ, (2) combining �zbasali with learnable embed-
dings about di; cið Þ, (3) employing gene embeddings generated by the
pre-defined models (GeneCompass, Geneformer, and scGPT) to the
Compositional Perturbation Autoencoder (CPA)33 model. (Supplemen-
tary information, Fig. S6b).

Gene expression profiling prediction. This task involved estimating the
levels of gene expression based on various biological conditions. We
employed the DeepCE34 model designed for phenotype-based compound
screening to assess the impact of gene embeddings generated by the pre-
defined models (GeneCompass, Geneformer, and scGPT) in gene expres-
sion profiles. The framework of this task consisted of three components:
the first component included the feature transformation component
(GCN), pre-trained network (human protein–protein interaction network,
extracted from the STRING database52), and feed-forward neural network;
the second component comprised an interaction network (multi-head
attention); and the last component included a prediction network (two-
layer feed-forward neural network with a rectified linear unit activation
function).34 In the task, we set the learning rate to 2e–4, the batch size to
32 and epochs to 120. DeepCE captured features from the chemical
compounds, L1000 genes,54 cells, dosage and then concatenated with
gene embeddings collected from each pre-trained model in the first
component. Moreover, high-level feature associations (features from L1000
genes and chemical compound) were generated in the second compo-
nent. Furthermore, in the last component, all features learned from the
previous components were concatenated as high-level features. Finally, we
predicted the drug-induced changes in gene expression profiles (Supple-
mentary information, Fig. S6c).

Gene dosage sensitivity predictions. Distinguishing between dosage-
sensitive and dosage-insensitive transcription factors is critical for
explaining CNVs in gene diagnosis. Traditional approaches used conserva-
tion and allele frequencies to predict dosage sensitivity. However, these
characteristics did not vary with cell state and cannot capture specific
tissues that would be influenced by dosage changes in the gene. Following
the protocol of Geneformer,15 10,000 random single-cell transcriptomes
were used to fine-tune GeneCompass to distinguish between the dosage-
sensitive and dosage-insensitive TFs.

In silico perturbation. GEARS learns gene embedding from a gene co-
expression knowledge graph. This embedding was then combined with
perturbation embedding from a GO-derived knowledge graph to predict
post-perturbation expression. In our study, we replaced the GEARS gene
embedding with GeneCompass gene embedding (Fig. 5a). We finetuned
the model (epoch= 10) using the Norman36 dataset to predict
gene expression on one- and two-gene perturbations. Since most genes
do not exhibit significant variation between unperturbed and perturbed
states, we utilized the MSE of the top 20 DEGs as the loss function for fine-
tuning.
We evaluated the effect of GeneCompass on both one- and two-gene

perturbations by holding out data of specific conditions during training. The
mean expression changes of the experimental data were taken as the

ground truth. We calculated the absolute difference between the predicted
values and the ground-truth and selected top 20 genes with the most
significant changes in the perturbed experiment to calculate the sum of the
differences, which was defined as top 20 DEGs deviation as follows:

Top20DEGs0 deviation ¼
X20
i¼1

jPi � T i j

where Pi was the predicted post-perturbation expression change for gene
i, and T i was the ground truth of the mean expression change.

In silico quantitative perturbation. This task was designed to simulate cell
reprogramming and differentiation. The perturbation state was char-
acterized by cell and gene embeddings. The in silico quantitative
knockout was performed by decreasing the target gene expression value
in the single-cell transcriptome. The in silico overexpression was
achieved by increasing the expression of the target gene to a specific
level. Both in silico overexpression and knockout were performed as
the preprocessing procedure before forwarding the single-cell tran-
scriptome to GeneCompass. Notably, our method is capable of
quantitative in silico overexpression or knockout by increasing or
reducing gene expression to any value. Considering the batch effect of
original and perturbed cells, a random cell sampling was employed to
construct gene pairs for perturbation analysis. Especially for in silico
knockout experiments, we only retained the original cells where the
target genes were ranked in the top 50%, in order to guarantee the
feasibility of in silico knockout.
After the manipulation of gene expression, the single-cell transcrip-

tome was re-ranked based on the gene expression value. The post-
perturbation cell embeddings were obtained from GeneCompass. The
effect of in silico quantitative perturbation was measured by calculating
the cosine similarity between the post-perturbation and ground-truth
cell embeddings, which was defined as follows:

sim ¼ 1
n

Xn
i¼1

cos sim S0i ; T i
� �� cos sim Si ; T ið Þ� �

where Si and S0i denoted the source and in silico perturbed cell embedding,
and T i denoted the ground-truth cell embedding.

Immunostaining of TF-overexpressing cells
Reprogramming of hESC and cultivation of gonadal progenitor-like cell
HESCs were cultured on Matrigel-coated dishes in mTeSR plus (Stemcell
Techonologies #100-0276). Y27623 was removed 24 h after passaging
using ReLeSRTM (Stemcell Techonologies #100-0483), and the lentiviral
infection was prepared after an additional 24 h. All overexpressed
genes carrying EF1α promoter were constructed on lentiviral vectors
purchased from VectorBuilder Inc. After overnight infection, mTeSR 1
fresh medium (Stemcell Techonologies #85850) was replaced daily. After
72 h, Minimum Essential Medium alpha (α-MEM, Invitrogen) containing
10% KSR (Gibco), 55 µM 2-mercaptoethanol (Gibco), and 100 U/mL
penicillin/streptomycin (Gibco) was used for long-term cultivation. Other
factors such as hSCF and GDNF should be added appropriately if
necessary.
Cells stably overexpressing TFs were seeded on Matrigel-coated

chamber slides (ThermoFisher Scientific #154534pk), and immunofluores-
cence was performed on day 3 after plating. The slides of cells with
appropriate fusion degree were fixed with 4% PFA for 10min at room
temperature and washed with PBS three times for 5 min each time. Then
TBST containing 10% of normal secondary antibody host serum was used
to block unspecific antigens at room temperature for 1 h. According to the
instructions, the primary antibody was diluted to an appropriate
proportion with cell holding buffer (BioLegend #420201), and the cells
were incubated at room temperature for 1 h. After PBS washing for three
times with 5min each, the secondary antibody was diluted to a
concentration of 1:500 using cell holding buffer, and the cells were
incubated at room temperature for 1 h. Then the cells were washed with
PBS three times for five min each and sealed with an antifade mounting
medium with DAPI (Beyotime #p0131). Leica Stellaris was used for
shooting, and the saved LIF file was converted to TIF format for display by
Leica application suite X.
To be noted, both homologous and non-homologous genes in the

pretraining and full panel of gene-level tasks were encoded into the
models for a fair comparison of GeneCompass with other models.
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DATA AND CODE AVAILABILITY
The raw sequence data reported in this paper have been deposited in the Genome
Sequence Archive in the National Genomics Data Center, China National Center for
Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (GSA-
Human: HRA008557) that are publicly accessible at https://ngdc.cncb.ac.cn/gsa-
human. All codes including data preprocessing, model pre-training, multiple
downstream tasks fine-tuning, and the corresponding examples were uploaded to
GitHub repository: https://github.com/xCompass-AI/GeneCompass.
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