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ABSTRACT

The mammalian olfactory system is one of the most precocious sensory systems during development and is innately endowed
with versatile functions distinct from other sensory systems. Perception of time-locked olfaction-related stimuli quickly from the
external environment and encoding them accurately via the olfactory system is paramount for the survival and reproduction in

the animal kingdom. The olfactory system of mammals encompasses the main and accessory parts. As one key component of the

ventral striatum, the olfactory tubercle (OT), is also an important as well as indispensable sub-region of the main olfactory sys-

tem and plays a crucial role in the central processing of odours. The OT also serves as a hub linking the olfactory system with the
reward system in the brain. Although extensive research has underscored the involvement of the ventral striatum in the reward
and punishment process as well as motivational behaviour, the encoding mechanism of neural circuits engaged in odour detec-
tion and recognition by the OT is still largely unknown. Herein, we make a brief overview of the olfactory system and underscore

the crucial role of olfactory receptors in odour detection. We also emphasize the structural and functional characterisations of

the OT and corresponding neural circuits involved in odour processing.

1 | The Olfactory System in Mammals

Mammals are able to identify and recognize chemical signals in
the environment via their olfactory system, which in turn affects
their behaviours and is essential for survival and reproduction
[1]. Compared to other sensory systems, the olfactory system is
one of the most precocious sensory systems developed in em-
bryos. In the past few decades, a wide array of breakthroughs

has been made in both the structure and function of the olfac-
tory system [2-4]. The olfactory system is mainly divided into
the peripheral and central parts. The peripheral olfactory sys-
tem includes the olfactory epithelium and nerve bundles. After
passing through the sieve plate, the axons of olfactory sensory
neurons converge to form olfactory nerves, one of the 12 pairs
of brain nerves in humans. The olfactory tract is bulbous and lo-
cates below the frontal lobe of each hemisphere and the olfactory
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nerve enters the olfactory bulb (OB), the primary centre of sen-
sory processing in the olfactory system. The OB belongs to the
telencephalon, with a layered structure composed of external
plexiform layer (EPL), granule cell layer (GCL), glomerular layer
(GL) and mitral cell layer (MCL) [5, 6]. In the OB, the main mi-
tral and tufted (M/T) cells belonging to a unique glomerulus are
activated by specific molecular features of individual odorants.

The olfactory system of mammals is endowed with comprehen-
sive functions including but not limited to physiological regu-
lation, emotional response (such as anxiety, fear and pleasure),
reproductive function (such as sexual and maternal behaviour)
and social behaviour [7-10]. For example, dysfunctions of the
olfactory system are closely related to mood disorders in mice,
which is supported by the finding that linalool had an anxiolytic
effect on normal mice, but no such effect on mice with anos-
mia [11]. In addition, there is evidence showing that the main
olfactory system (MOS) could also detect a wide array of volatile
odorants that functioned as pheromones to facilitate mate recog-
nition and activated the hypothalamic-pituitary-gonadal neuro-
endocrine axis [7]. Moreover, it has been reported that blocking
vasopressin-expressing interneurons in the OB impaired the so-
cial recognition abilities of rats, further supporting the undoubt-
edly important role of the olfactory system in social behaviour
[12]. The proper realization of these versatile functions relies on
both the main and the accessory olfactory system (AOS). In the
MOS of rodents, odorants enter the nasal cavity, where they are
first detected by olfactory sensory neurons (OSNs) located in
the main olfactory epithelium. Subsequently, axons from these
OSNs project to the main olfactory bulb (MOB), where informa-
tion pertaining to odorant molecules is converted into neuronal
signals and transmitted to various brain regions within the ol-
factory cortex, such as the anterior olfactory nucleus (AON), pir-
iform cortex (PCX), olfactory tubercle (OT), cortical amygdala
(CoA) and entorhinal cortex (ECX) [12]. Similar to the MOS,
in the AOS, once pheromone-related odours are detected by
the vomeronasal organ [13], a single axon is projected from the

Odorants

vomeronasal organ (VNO) to the accessory olfactory bulb (AOB)
where neuronal signals are filtered and then transmitted to
downstream regions including the bed nucleus of stria termina-
lis (BNST), the medial amygdala (MeA) and the posteromedial
cortical amygdala (PMCo) [14, 15] (Figure 1). The VNO or AOS
has been implicated in a wide range of studies on the processing
of sex pheromones and predator odours and it regulates mam-
malian sexual and avoidance behaviour through neuronal con-
nections to downstream brain regions [16]. One study on mouse
urine pheromones shows that male and female mice sense vol-
atile and non-volatile sex pheromones to generate sexual attrac-
tion through vomeronasal receptor type 1 and type 2 (V1R and
V2R) receptors in vomeronasal sensory neurons [17]. Another
study on mouse glandular secretions reveals that the exocrine
gland secreting peptide 1 (ESP1), which is secreted from the eyes
of male mice, was sensed by the vomeronasal organ of female
mice through physical contact. This stimulation activated V2R-
expressing neurons in the vomeronasal organ, leading to the
release of electrical signals [18]. It has also been reported that
c-fos expression in AOB significantly increased when rats were
exposed to objects with cat-like odours [19]. Additionally, after
undergoing a surgical procedure called ‘vomeronasal removal
surgery’, mice spent significantly more time exploring predator
odours compared to the sham-operation group [20]. Together,
these studies demonstrate the important role of both the MOS
and AOS in mammalian reproduction and survival.

The appropriate performance of olfaction-related behaviours
relies heavily on the accurate detection of external odours via
the olfactory epithelium. The olfactory epithelium is mainly
composed of three types of cells: OSNs, supporting cells (a type
of glial cell with microvilli on its apical surface) and stem cell
populations of basal cells (capable of producing new OSNs). The
exquisite performance of OSNs in odour detection relies on the
olfactory receptors (ORs). The ORs, also known as odour recep-
tors, are chemical receptors expressed in the cell membrane of
OSNs, responsible for detecting odour molecules that produce

FIGURE1 | Schematic illustrating the neural pathway of the main (green) and accessory (red) olfactory system of rodents. The olfactory system

of mice is divided into MOS and AOS. In the MOS, odours are received by olfactory receptors in the MOE and send neuronal axons to the MOB,
which then transmit neuronal signals to the olfactory cortex regions of the AON, OT, PCX, CoA and ECX [12]. In the AOS, after odours are sensed
by the VON, the vomeronasal organ sends neuronal axons to the AOB, after which the AOB transmits neuronal signals to the BNST, MeA and PMCo
[14, 15]. AOB, accessory olfactory bulb; AON, anterior olfactory nucleus; AOS, accessory olfactory system; BNST, bed nucleus of the stria terminalis;
CoA, cortical amygdala; ECX, entorhinal cortex; MeA, medial amygdala; MOB, main olfactory bulb; MOE, main olfactory epithelium; MOS, main
olfactory system; OT, olfactory tubercle; PCX, piriform cortex; PMCo, posteromedial cortical amygdala; VON, vomeronasal organ.
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smell. The ORs are located within the olfactory epithelium and
are distributed at the top of the nasal cavity, upper part of the
nasal septum and upper part of the upper turbinate. The ORs
are members of the A-class rhodopsin family of G protein-
coupled receptors (GPCRs). Once the ORs are activated, they
trigger nerve impulses to transmit information about odours to
the brain [1, 21-25]. The olfactory receptor forms a multi-gene
family consisting of approximately 400 genes from humans and
1200 genes from mice [26, 27]. In vertebrates, ORs are in the
cilia and synapses of OSNs, as well as in the epithelial cells of
human airways. In insects, ORs are located on the antennae
and other chemical sensory organs. It has been reported that
humans can distinguish as many as 1012 types of odours, while
visual perception can only distinguish 107 types of colours [28].
Due to the undoubtedly crucial role of ORs, the Nobel Prize in
Physiology or Medicine of 2004 was awarded to Linda B Buck
and Richard Axel for their pioneered and enormous contribu-
tions to studies related to ORs [29]. Interestingly, two years later
after the announcement of the Nobel Prize to the olfactory re-
search, another study discovered a second receptor family in the
olfactory epithelium of mice. The genes encoding these receptors
are called trace amine-associated receptors (TAARs), which are
evolutionally conserved and also exist in humans, mice and fish
and can be used to detect volatile amines. Except for TAAR], all
functional TAARs in humans are expressed in olfactory epithe-
lial cells [30]. The third type of olfactory receptor, known as the
vomeronasal receptor, has also been identified. The function of
the vomeronasal receptor is presumed to be one kind of pher-
omone receptor [31, 32]. Like many other GPCRs, the current
structural information of ORs is based on homology modelling
methods and still lacks atomic-level structural information. ORs
do not bind to specific ligands but exhibit varying degrees of af-
finity towards a range of odour molecules. It is noteworthy that
a single odour molecule can bind to many ORs with different
affinities, depending on the physical and chemical properties of
the molecule [33-36]. Once the odour agent binds to the OR, the
receptor undergoes structural changes and binds to activate the
olfactory G protein inside the olfactory receptor-expressing neu-
rons. G protein activates adenylyl cyclases to convert ATP into
cyclic AMP (cAMP) [37]. cAMP opens cyclic nucleotide-gated

10T

ion channels, allowing calcium and sodium ions to enter cells,
depolarizing olfactory receptor-expressing neurons and gener-
ating action potentials, transmitting information to the central
nervous system [38, 39], such as the OT.

2 | Anatomical and Functional Characterization
of the OT

The OT, also called tubular striatum [40-42], is a sub-region
of the ventral striatum, which directly receives information in-
puts from the OB and other brain regions. OT brain regions are
enriched in the expression of dopamine receptor 1 (D1R), do-
pamine receptor 2 (D2R) and dopamine receptor 3 (D3R), with
D3R mainly expressed in Islands of Calleja (IC) [43-48]. The IC
is also known as ‘interface islands’ and ‘granular islands’, which
are characterised by the dense core of small ‘glial like’ granular
cells belonging to the smallest neurons in the OT [49, 50]. In gen-
eral, 90%-95% of the neurons in the OT are D1R/D2R medium
spiny neurons (MSNs), most of which express the inhibitory
neurotransmitter gamma-aminobutyric acid (GABA) [51, 52].
The structure of the OT can be roughly divided into three layers
(layers 1, 2 and 3) from the outside to the inside [53]. In the layer
1, also referred as the molecular layer, there are dendrites of do-
pamine receptor 1 or 2-expressing medium spiny neurons (D1
or D2 MSNs) present. In general, cell bodies of D1 and D2 MSNs
predominantly compose the secondary dense cell layer (DCL,
layer 2). The multiform layer (layer 3), situated below the DCL,
is characterized by a substantial abundance of densely packed
clusters comprising granular cells, the Islands of Calleja (IC).
Interestingly, D1 and D2 MSNs, more or less, are also present in
the multiform layer [52, 54] (Figure 2).

Compared to the fruitful anatomical of the OT, its functional role
is relatively limited. Our recent study reveals that the OT was an
important factor in the regulation of self-grooming (one typical
asocial behaviour), social attraction and depressive phenotypes
in mice [55]. Additionally, there is evidence showing that OT
plays a crucial role in odour perception in the anterior piriform
cortex (aPCX)-OT pathway [48]. The OT is also involved in the
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FIGURE2 | Schematic illustrating the olfactory tubercle (OT) in rodents. (A) A ventral view of the anatomical location of the OT in the brain. (B)
A coronal view of local anatomy and structure of the OT. The OT is one sub-region of the ventral striatum and is located below the VP and NAc, close
to the PCX and LOT. The OT can be roughly divided into three layers from the ventral to the dorsal. There are 90%-95% of neurons in the OT are D1
and D2 MSNs [52]. There are also ICs with dense granule cells with rich expression of D3 receptor. D1 or D2 MSNs, dopamine receptor 1 or 2 (D1R/

D2R)-expressing medium spiny neurons; DC, dwarf cell; GC, granule cell; LOT, lateral olfactory tract; 10T, lateral olfactory tubercle; mOT, medial

olfactory tubercle; NAc, nucleus accumbens; OB, olfactory bulb; PCX, piriform cortex; VP, ventral pallidum.
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VTA-OT pathway mediating odour preference and a variety of
naturalistic reward processes [56]. Furthermore, it has also been
demonstrated that OT-projecting Fezf2B2 neurons provide pos-
itive valence or motivation information [57]. Though these great
progresses have been made, research on the function of OT-
related neural circuits still remains much to be explored. Thus,
in light of the relatively limited studies aforementioned, more
physiological roles of OT and corresponding neural circuits are
warranted to be further unveiled.

3 | The Role of OT in Odour Processing

The OT plays a pivotal role in odour recognition and regu-
lation in rodents and actively participates in odour-induced
motivational responses [58, 59]. Specific odours could elicit
distinct behavioural motivations in mice. The odorants emit-
ted from predators can induce fear and avoidance responses in
rodents. For example, both rats and mice displayed avoidance
behaviour towards the biogenic amine 2-phenylethylamine
identified from bobcat urine [60]. The trimethyl-thiazoline
(TMT), a volatile substance secreted from the anal glands
of mice's natural predator, the fox, elicited pronounced fear
responses and avoidance behaviours in both mice and rats
[61-63]. The 4-methylthiazol (4MT), as a structural analogue
of TMT, was also an innate aversive odour in mice [64]. The
valeraldehyde and 2-methylbutyric acid (2 MB), which are pun-
gent odours produced by rotting food, induced concentration-
dependent distinct behaviours in mice. Higher concentrations
of 2MB produced aversive behaviour while lower concentra-
tions triggered neutral behaviour [61, 65]. This is probably due
to the fact that the odours produced by rotting food include
fatty acids, fatty aldehydes and alkylamines, all of which
are undesirable to mice [61]. In contrast, the limonene and
heptaldehyde have been demonstrated to trigger a distinct
preference for specific locations in mice [66, 67]. In fact, the
odorant preferences of mice exhibit plasticity and could be
manipulated via modulating the OT neural activity. It has
been reported that bilateral stimulations of the OT region by
electrodes changed mice's initial preference for their favourite
peanut odour [68]. Moreover, the preference of female mice in
estrus towards male mice urine was abolished following the
inhibition of neuronal activity in the mOT via chemogenetic
manipulations [69]. In addition, local administration of the
17 beta-estradiol (E2) inhibitor letrozole into the OT resulted
in gonadectomised female mice exhibiting a remarkable pref-
erence for intact female mouse urine, while not significantly
affecting their recognition of other odours [70]. Altogether,
these studies suggest that the mOT is involved in the recog-
nition and processing of both social- and non-social-related
odours in mice.

The OT exhibits region-dependent variances in odour process-
ing and related behaviours. Odour regulation varies across dif-
ferent sub-regions of the OT. The D1 MSNs in the mOT were
implicated in regulating attractive, eating and reward-related
motivational behaviours, while D2 MSNs exhibited contrasting
effects. Conversely, the 10T was involved in modulating aver-
sive behaviour elicited by odour stimuli, with D1 and D2 MSNs
playing opposing roles to those in the mOT [59, 71, 72]. 1t is
noteworthy that D1 MSNs exhibited heightened sensitivity to

odour concentrations, while D2 MSNs demonstrated a greater
propensity for discriminating between different types of odours.
Consequently, D1 and D2 MSNs manifested distinct responses
when exposed to olfactory stimuli [72, 73]. The proper and
exquisite function of the OT in odour processing and odour-
guided behaviours depends on a plethora of neurotransmitters
produced locally or released from other OT-projecting brain
areas. Dopamine, a neurotransmitter in the OT, plays a cru-
cial role in regulating reward-induced motivational behaviour.
Previous studies employing the 6-hydroxydopamine (6-OHDA),
a catecholaminergic neuronal toxin causing dopaminergic de-
nervation, have successfully induced bilateral mOT lesions in
mice, resulting in the complete elimination of preference for at-
tractive odours [67, 74-76]. These findings provide compelling
evidence that dopamine release within the OT modulates odour
preference in mice. Moreover, one study showed that the per-
ception of some attractive odorants was declined in older mice
while the appreciation of unattractive odorants did not change.
Intriguingly, neural activity in the OT of older mice was consis-
tently altered when attraction to pleasant odorants was impaired
while maintained when the odorants kept their attractivity, fur-
ther strengthening the pivotal role of the OT in odour process-
ing and regulation and indicating the neural plasticity of OT in
odour processing during ageing in rodents [77].

4 | OT-Related Neural Circuits Involved in Odour
Processing

The OB serves as the primary sensory structure responsible
for receiving and transmitting olfactory information. Upon
the arrival of perceived odour molecules, they undergo con-
version into neuronal signals within the axons located in the
OB before being transmitted to various brain regions associ-
ated with olfaction [78]. The OT can function as intermediate
relay stations for processing diverse odour information, re-
ceiving neuronal inputs from both the MOB and the auxiliary
olfactory pathway of the OB. In mice, odour information is
conveyed to the OT via mitral cells (MC) and tufted cells (TC)
in the OB [79]. The robust behavioural responses to odours
in rodents heavily rely on intricate interactions among neural
circuits formed between specific brain regions. Several olfac-
tory and reward-related brain areas, including the OB, PCX,
AON, OT, amygdala, ventral tegmental area (VTA), lateral ol-
factory tract (LOT), ventral pallidum (VP), NAc and other ol-
factory cortices, all play pivotal roles in odour recognition and
processing. Additionally, some other brain regions that have
connections with the OT, such as the prefrontal cortex (PFC)
and ECX, are also involved in odour processing which is po-
tentially realized through the modulation of OT [53, 80, 81].
The following descriptions will elucidate the formation of
neural circuitry between these aforementioned brain regions
implicated in odour processing and their interactions with the
OT [74]. Among these neuronal pathways, the pathway con-
necting the amygdala to the striatum, including the OT, was
implicated in the recognition and attraction of mammalian
sex pheromones [82]. Both anterograde and retrograde tracer
techniques were leveraged to ascertain that the posteromedial
cortical amygdaloid nucleus projected to the OT [83]. The pro-
cessing of sex pheromone odours played a crucial role in the
courtship and reproduction in rats, particularly in females,
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wherein the amygdala was assumed to play a pivotal func-
tion [84]. During this process, efferents from the amygdala
projected to various regions of the ventral striatum, includ-
ing the nucleus accumbens core (AcbC) and shell (AcbSh),
VP, mOT and IC [74]. Another study demonstrated the pivotal
role of the OT in processing olfactory information, with a par-
ticular focus on the extensive projection of neurons from the
amygdala into the mOT, as confirmed via Fluoro-Gold injec-
tion into this specific region [85]. It is also suggested that the
neural circuits involved in both indirect and direct synaptic
connections between the anteromedial amygdala and OT may
potentially contribute to the investigation of these odours in
female mice [86]. Rodents process odour information not only
through sex pheromones but also via other non-pheromonal
cues, which can be broadly categorized into pleasant and un-
pleasant odour processing. In addition, the OT also served as
a pivotal hub for dopamine signalling in the midbrain, thereby
playing a crucial role in odour processing and reward-related
behaviours [87, 88].

The anterior and posterior parts of the OB (aOB and pOB, re-
spectively) could exert distinct effects via projections to dif-
ferent regions of the OT. Optogenetic activation of neurons
in the pOB to mOT pathway enhanced mice's attraction to
unpleasant odours, indicating a reversal in their odour pref-
erence [66]. However, optogenetic activation of the aOB to
10T pathway did not elicit corresponding changes. As a com-
ponent of the olfactory sensory cortex, the PCX served as a
primary centre for olfaction and received direct inputs from
the OB [89, 90]. The PCX transmitted odour-related informa-
tion to the downstream OT in the striatum [47]. Consequently,
the neural pathway connecting the PCX to OT played a cru-
cial role in processing olfactory information. Intriguingly, a
substantial population of neurons in the PCX projected to the
OT, whereas reciprocal projections from the OT to the PCX
were absent. Optogenetic activating neuronal fibres originat-
ing from the aPCX could modulate neuronal activity within
the OT and influenced odour-evoked responses. Notably, both
D1 and D2 MSNs in the OT received direct synaptic inputs
from glutamatergic neurons originating from aPCX [48].

Interestingly, the activation of neuronal fibres projecting from
aPCX to different regions of the OT elicited distinct effects.
The activation of neuronal fibres projecting from the aPCX to
the mOT induced both rewarding and attractive behaviours,
whereas the activation of neuronal fibres originating from the
aPCX and targeting the 10T was associated with aversive be-
haviours [91]. Moreover, neuronal projections from the VTA
to OT primarily involved VTA's medial neurons projecting to
the anteromedial region of the OT, while its lateral neurons
projected to the lateral region of the OT [92]. The mOT was
implicated in reward and olfactory information processing,
whereas dopaminergic neurons in the VTA were believed
to play a role in reward and motivation. Optogenetic activa-
tion of VTA-mOT projections elicited preference for spatial,
positional and neutral odours in mice [56]. In addition, neu-
ronal projections from specific brain regions to the OT could
modulate olfactory information recognition. For example, the
LOT is projected to dwarf cell cap regions of the OT and the
LOT-OT pathway is potentially involved in non-pheromonal
processes such as feeding [93, 94]. Besides, mice exhibited in-
nate fear and stress responses towards natural predators, such
as the scent of cat and fox urine, due to their heightened sen-
sitivity to olfactory cues from these enemies. Upon detection
of predator odours, odour ORs in the olfactory epithelium and
TAARs received the olfactory signals, which were then trans-
mitted to the MOB. Subsequently, the MOB conveyed input
signals from olfactory neurons to the aPCX for perception and
encoding of odour information [30, 95-97]. Additionally, the
PCX encoded familiarity and similarity of odours while facili-
tating recognition of mixed odours [98, 99]. The bed nucleus of
the stria terminalis (BNST) and amygdala were also involved
in fear stress behaviour elicited by natural enemy odour
[99, 100]. Upon detection of natural enemy odour, olfactory
information was perceived by the MOS and transmitted to the
MOB, which then projects to the medial BNST via the medial
amygdala and to the lateral BNST via the central amygdala
[97] (Figure 3). Furthermore, exposure to predator odour acti-
vated the trigeminal nervous system, autonomic nervous sys-
tem and neuroendocrine stress system in rodents [101], which
could also potentially involve the OT during odour processing.

FIGURE3 | Schematic illustrating the OT-related neural circuits involved in odour processing in rodents. When rodents engage in courtship, sex
pheromone odour messages are sent by receptor neurons to the OB, then project to the amygdala and from the amygdala to the OT and NAc. The
OB-PCX pathway was activated when mice smelled predators [30, 95-97]. Optogenetic activating the pOB-mOT pathway made mice be attractive
to unpleasant odours [89]. Activation of the aPCX-mOT pathway triggered attractive behaviour, while activation of the aPCX-10T pathway induced

aversive behaviour [48]. Optogenetic activation of the VTA-mOT pathway induced neutral odour preference in mice [56]. In addition, some brain

regions also project OT, such as the LOT [93, 94]. LOT, lateral olfactory tract; MeA, medial amygdala; NAc, nucleus accumbens; OB, olfactory bulb;

OT, olfactory tubercle; PCX, piriform cortex; VTA, ventral tegmental area.
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5 | Concluding Remarks and Perspectives

The mammalian olfactory system is one of the most precocious
systems during development and is endowed with versatile func-
tions distinct from other sensory systems. As the key component
of both the olfactory system and the ventral striatum, the OT
and related neural pathways play paramount roles in olfactory
transmission and odour-guided behaviours that are crucial for
the survival and production of animals. Though great progresses
have been made regarding the function of the OT in the past few
decades, information pertaining to unappreciated physiological
roles of the OT and corresponding neural circuits is still lacking,
for example, (1) What is the role of OT and the underlying neural
mechanisms responsible for feeding? (2) How the OT integrates
peripheral olfactory inputs with midbrain rewarding information
to affect emotion-related behaviours? (3) How the local neural cir-
cuits work compatibly in the OT during odour processing? and etc.
More delineated work focusing on OT is warranted in the future.
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