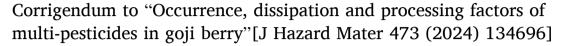
ELSEVIER


Contents lists available at ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Corrigendum

Wei Pan^{a,1}, Zenglong Chen^{b,1}, Xi Wang^b, Fuyun Wang^a, Jin Liu^a, Li Li^{a,*}

b State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China

The authors regret < that the detection residues of forchlorfenuron should be < 0.005 mg/kg (LOQ) in goji berry samples.

Consequently, there were 27 pesticides identified among analyzed compounds. Forchlorfenuron, as a plant growth regulator, was not included in the discussion of processing and calculation of risk, so the correction does not affect the description of the data and conclusions. The sentences involving detection rate and number of detectable pesticides should be corrected in the main body of text.

- 1. Highlight 1: Among 62 compounds analyzed in goji berry samples, 27 pesticides were identified.
- Abstract: In this study, a total of 75 dried goji berries were sampled from markets across China, and for the determination of 62 analytes, 27 pesticides were identified.
- Section 3.1: Twenty-seven pesticides, which accounted for 43.54% of analytes, were identified in at least one sample. These pesticides included nineteen insecticides and acaricides, and eight fungicides.

- 4. Section 3.4.1: Twenty-seven pesticides were detected in goji berry, and given that the detection rates of 16 pesticides were lower than 50%, it is recommended that the STMRs of these pesticides are maintained at 1/2 LOQ, which is 0.0025 mg/kg. The cumulative chronic dietary risks of 27 agrochemicals in dried goji berry with HI values far lower than 1 (1.61%—4.97%) can be ignored.
- 5. Conclusion: Moreover, the cumulative dietary risks of 27 pesticides for different populations in China were calculated using deterministic and probabilistic models, indicating that there were no unacceptable dietary risks with HI < 1.

A corrected version of Fig. 2 is provided.

The authors would like to apologise for any inconvenience caused.

The authors declare that the corrections don't affect the conclusions f this study.

DOI of original article: < https://doi.org/10.1016/j.jhazmat.2024. 134696> .

DOI of original article: https://doi.org/10.1016/j.jhazmat.2024.134696.

^{*} Correspondence to: No.81 Longcheng Street, Xiaodian District, Taiyuan 030031, China. E-mail address: sxaulili@sxau.edu.cn (L. Li).

¹ These authors contributed equally to this work.

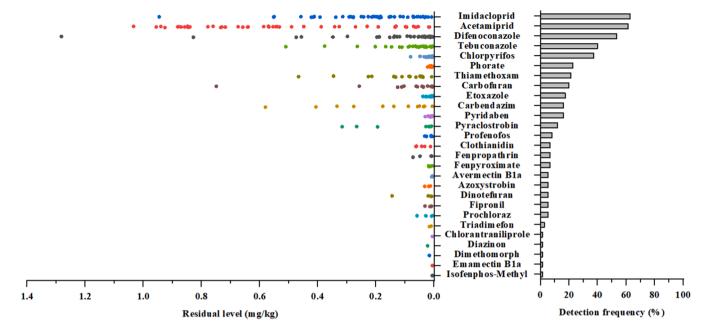


Fig. 2. Results for the 27 of 62 analytes found in 75 dried fruits. Scatter plot represents residual levels of samples, and bar chart represents the detection frequency.>.