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Abstract

Natural selection is believed to shape amino acid usage of the proteome by minimizing the energy cost of protein biosynthesis.
Although this hypothesis explains well the amino acid frequency (AA,.,.,) difference among the 20 common amino acids within
a given genome (species), whether it is applicable to cross-species difference remains to be inspected. Here, we proposed and tested
a “metabolic rate hypothesis,” which suggests that metabolic rate impacts genome-wide AA__ .., considering that the energy allo-
cated to protein biosynthesis is under selection pressure due to metabolic rate constraint. We performed integrated phylogenetic
comparative analyses on proteomic sequence and metabolic rate data of 166 species covering 130 eumetazoan orders. We showed
that resting metabolic rate (RMR) was significantly linked to AA; . . variation across animal lineages, with a contribution com-
parable to or greater than genomic traits such as GC content and codon usage bias. Consistent with the metabolic rate hypothesis,
low-energy-cost amino acids are observed to be more likely at higher frequency in animal species with high (residual) metabolic
rate. Correlated evolution of RMR and AA, . was further inferred being driven by adaptation. The relationship between RMR and

frequeney VaI1€d greatly among amino acids, most likely reflecting a trade-off among various interacting factors. Overall, there exists
no “one-size-fits-all” predictor for AA;__ . ., and integrated investigation of multilevel traits is indispensable for a fuller understand-
ingof AA__ ., variation and evolution in animal.
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Lay Summary

Natural selection has previously been proposed to underlie compositional differences of amino acids within a given animal species:
to minimize the energy cost of protein biosynthesis, selection should result in an increased abundance of energy-cheap amino acids
and a decreased abundance of energy-expensive ones in the proteome. However, amino acid composition varies greatly among
species, yet the underlying evolutionary processes are largely unclear. Here, we propose that interspecific variations in metabolic
rate exert an effect on amino acid composition due to natural selection, which is referred to as the “metabolic rate hypothesis.” The
present study intended to test this hypothesis by examining the relationship between molecular-level amino acid frequency and
organism-level metabolic rate (as a proxy for energy cost) in an evolutionary framework. Phylogeny-based analysis revealed signifi-
cant connection of these two traits, indicating they have evolved most likely in concert, and metabolic rate is an important confining
factor to the compositional variation of amino acid in animal. Consistent with the metabolic rate hypothesis, low-energy-cost amino
acids are observed to be more likely at higher frequency in animal species with high residual metabolic rate.

Introduction 1999; Yang et al., 2000). The last characteristic bears some inter-
esting peculiarities: while for a given species there exist up to
dozens of folds of difference in the relative abundance among
amino acids (e.g., from 0.39% for Cys to 14.5% for Leu; Krick et
al., 2014), the compositional patterns vary greatly among spe-
cies (Chen & Nielsen, 2022; Knight et al., 2001; Krick et al., 2014;
Moura et al., 2013). This suggests that complex interwinding fac-
tors exist, shaping the amino acid compositional patterns dur-

Proteins are among the most fundamental molecules of life and
evolved under natural selection. Signatures of selection on pro-
teins have been identified at various levels, such as the conser-
vation of specific amino acid residue(s), secondary and tertiary
structures, as well as compositional patterns of amino acids
(i.e., the relative abundance or frequency of amino acids making
up the entire proteome) (Akashi & Gojobori, 2002; Chen et al., ; .
2022; de Jong et al., 2023; Liu et al,, 2008; Suzuki & Gojobori, ~ 118 evolution.
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Two major hypotheses have been proposed (Krick et al., 2014)
for explaining the observed compositional patterns within a
given species (genome) in particular. The “genetic code hypoth-
esis” suggests that amino acid residues distribute according to
the permutation of genetic code, which is largely a random-drift
explanation, predicting a positive relationship between amino
acid frequency (hereafter AA,_ ) and the permutation of
genetic code (Dyer, 1971; King & Jukes, 1969). The “synthesis
cost hypothesis” suggests that bias in amino acid usage arises
from cost-minimization of protein biosynthesis, which is a nat-
ural selection explanation, predicting a universal negative rela-
tionship between AA_ . and the energy (ATP) cost of amino
acid synthesis (Akashi & Gojobori, 2002; Seligmann, 2003; Swire,
2007). Compared with genetic code permutation, synthesis cost
appears to better explain the variance of AA,_ _ within a given
proteome, since synthesis cost shows higher correlation with

frequeney 10T Species from all three domains of life (Krick et al,,
2014). However, the current “synthesis cost hypothesis” faced dif-
ficulties in explaining the great interspecific variation of amino
acids, because the energy cost for a given amino acid is generally
considered constant across species due to the highly conserved
biochemical nature of metabolic pathways (Krick et al., 2014;
Smith & Morowitz, 2004; Swire, 2007; Zhang et al., 2018).

We noticed that the physiological trait metabolic rate, which is
related to energy cost, also manifests great interspecific variation.
Metabolic rate, representing the rate at which organisms obtain,
allocate, and expend energy, is the fundamental measure of the
energy cost of life functions and biological activities (Brandl et al.,
2023; Brown et al., 2004; Burger et al., 2019). Metabolic rate is well-
known to differ substantially among species (Brown et al., 2004;
White & Kearney, 2013). Among the many factors contributing
to the metabolic rate variations among animals, body mass and
body temperature are the two best-known and most remarkable
ones, which together can explain more than 90% of the metabolic
rate variations (Brown et al., 2004; Gillooly et al., 2001; White &
Kearney, 2013). Nevertheless, after accounting for body mass and
temperature effects, several-fold differences are still observed
in the residual metabolic rate (i.e., body mass and temperature-
independent metabolic rate) among animals (e.g., Gilacometti et
al., 2022; Gillooly et al., 2001; Hayssen & Lacy, 1985; Lighton et al.,
2001). It is recognized that residual metabolic rate is associated
with ecological and evolutionary processes (Carter et al., 2023;
Giacometti et al., 2022; McNab, 2015), thus being a good trait for
inspecting evolutionary adaptation. So far, it remains unknown
whether metabolic rate, the residual metabolic rate in particular,
is linked with AA;_  _ in animals.

Unlike plants, animals are heterotrophs that cannot produce
their own food and must obtain energy from other organisms
to support various physiological processes for survival, devel-
opment, and reproduction. Since energy resources are generally
neither cost-free nor unlimited for animals (McCue, 2010), the
energy budget that can be devoted to specific metabolic path-
ways (including protein biosynthesis) is basically under strong
selection pressure (Akashi & Gojobori, 2002; Heizer et al., 2006;
Seligmann, 2003). Notably, a considerable amount of energy is
allocated to protein biosynthesis, e.g., about 20% of total oxygen
consumption (a proxy for metabolic rate) is used by protein syn-
thesis in mammals (Rolfe & Brown, 1997), and there exists great
variation among amino acids in the energy expended to their
biosynthesis (Craig & Weber, 1998; Heizer et al., 2006); protein
biosynthesis itself thus can be optimized by natural selection
(Akashi & Gojobori, 2002; Heizer et al., 2006) under the constraint
of the overall metabolic rate adopted during evolution. Therefore,

energy-cheap amino acids should have been preferred in the pro-
cess of protein biosynthesis by natural selection during animal
evolution (Krick et al., 2014; Seligmann, 2003; Swire, 2007). We can
then conjecture that the energy-cheaper amino acids would be
more frequently employed in proteins and thus present at higher
frequency in high-energy-expenditure species. Namely, where
possible, the biosynthetic cost of proteins should have been min-
imized in order to maximize the total reproductive output of an
animal by safeguarding the essential high-energy-expenditure
function(s) (such as flying in insects). Interspecific variation in
AA ey @MMONE animals is thus expected as a result of diversi-
fying evolution in energy budget and metabolic rate in different
lineages. For convenience, we refer hereafter this conjecture as
to the “metabolic rate hypothesis” on interspecific compositional
variation in amino acids, while acknowledging that a metabolic
rate hypothesis has been proposed for explaining variation in
the rates of nucleotide substitution among evolutionary lineages
(Martin & Palumbi, 1993).

In the present report, we intend to use an integrated phyloge-
netic comparative analysis on proteomic and metabolic rate data
to test the “metabolic rate hypothesis” by examining whether there
exists any interconnection between metabolic rate (as a proxy for
organism-level energetic cost) and the AA; - across animal
lineages. Note that the “metabolic rate hypothesis” assumed that
metabolic rate affects the amino acid composition rather than vice
versa. Many well-known observations support this argument. For
example, amino acid composition itself is influenced by numerous
factors (e.g., codon usage bias, functional constraint, genome com-
positional bias, environment) (Baeza et al., 2021; Berthelot et al.,
2019; Cutter et al., 2006; Tekaia et al., 2002), and thus shows great
variation at almost all levels: within a genome, within an individual
(between genomes), within and between species (Knight et al., 2001;
Krick et al., 2014; Moura et al., 2013). This thus leaves great room
for the optimization of energetic costs in protein synthesis by natu-
ral selection (Akashi & Gojobori, 2002; Heizer et al., 2006), on which
the metabolic rate of an animal adopted during evolution would
impose serious constraints. Furthermore, molecular mechanisms
connected to AA,_ . are indirectly affected by metabolic rate; for
instance, metabolic rate can influence mutation rate by affecting
DNA damage (Gillooly et al., 2007; Martin & Palumbi, 1993), and
mutation process is known to be a major determinant of amino
acid composition (Akashi & Gojobori, 2002; King & Jukes, 1969).
Similarly, small cell and small genome size could be favored phys-
iologically (Hessen et al., 2013; Szarski, 1983), while genome size is
correlated with the use of amino acids (Du et al., 2018; Seligmann,
2003). By dissecting the metabolic rate into three components (i.e.,
the body mass component, body temperature component, residual
component) and using proteomic sequence data from 166 animal
species representing 130 eumetazoan (“true animal”) orders, we
examined the “metabolic rate hypothesis” focusing on the follow-
ing two questions: (1) Does the metabolic rate (an organism-level
phenotype) influence the AA¢ oy (& Molecular-level phenotype)?
(2) What are the evolutionary drivers underlying the relationship
between metabolic rate and AA

frequency *

Methods

Compilation of the amino acid data: Proteome
sequences, AA; .., and energy costs of amino
acid biosynthesis

Proteomic sequence data were chosen with the aim to cover
more animal groups at the order level and to reduce data imbal-
ance among taxa, e.g., more proteomes from mammals and
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less from other vertebrates. First, all proteomes available for
Eumetazoa (“true animal”) were retrieved from NCBI RefSeq data-
base. Second, one species (proteome) was selected within each
order, according to the following data-selection criteria: species
with metabolic rate data available were selected first, then spe-
cies with chromosome-level genome, and finally species whose
genome has higher contig N50. This procedure yielded an initial
dataset containing 130 species. Third, because there exists seri-
ous taxonomic sampling bias in the initial dataset (about two
thirds of the 130 species are vertebrates), 36 invertebrate species
(covering 35 families) and their corresponding proteomes were
supplemented into the dataset, following a similar data-selection
criteria as described above. This yielded a proteomic sequence
dataset that included 84 vertebrate and 82 invertebrate species
covering 130 orders in Eumetazoa (see Supplementary Table S1).

frequeney Was calculated as the percentage of the number of
each of the 20 common amino acids divided by the count of all
amino acids in the non-redundant proteome after redundancy
removal in proteomic sequences using CD-HIT (Li & Godzik, 2006)
following the similar procedures in previous studies (Akashi &
Gojobori, 2002; Heizer et al., 2006). AA, was estimated sepa-
rately for each species.

The energy cost of amino acid biosynthesis was measured as
the ATP molecules per amino acid molecule needed during amino
acid biosynthesis. These synthesis cost values were obtained
from previous studies with correction for decay rate and assum-
ing similar energy choices of essential and non-essential amino
acids (Krick et al., 2014; Swire, 2007; Zhang et al., 2018).

frequency

Compilation of the resting metabolic rate data

Resting metabolic rate (RMR) and the RMR-related data were
compiled for each of the above 166 animal species. The RMR, body
mass (M), and body temperature (T) were collected by literature
search (Supplementary Table S1). When multiple RMR units were
available for the same species, the raw RMR data expressed in
carbon dioxide production (VCO,) or oxygen consumption (VO,)
was preferred (e.g., in pl CO, per hour). Generally, RMR data meas-
ured with animals under stressed conditions were not consid-
ered. The respiratory quotient (equal to VCO,/VO,) values were
also compiled if available. All RMR data were ultimately trans-
formed to microwatts (uW) based on respiratory quotient values
(Lighton, 2008). Body mass and body temperature were trans-
formed to gram (g) of wet body mass and Kelvin (K), respectively.
Dry body mass was transformed to wet body mass assuming a
ratio of 3 (unless otherwise specified by the primary literature)
between the latter and the former according to previous study
(Makarieva et al., 2008).

Phylogenetic tree and phylogenetic signal

For the studied animals, an initial phylogenetic tree was con-
structed, with both tree topology and branch length obtained
from the TimeTree database (www.timetree.org). To deal with sev-
eral unresolved branches, the initial tree was manually updated
according to phylogenies reported by Blaxter (2009), Delsuc et
al. (2018), and Arribas et al. (2020). For instance, tunicate species
Styela clava was currently not included in the TimeTree database,
and thus this species was manually added as sister lineage to the
vase tunicate Ciona intestinalis (which was included in TimeTree
database), while their divergence time was estimated as 388.5
million years ago (Mya) (Delsuc et al., 2018). The updated time
tree was utilized for all subsequent analyses unless otherwise
clarified.

Evolution Letters (2024), Vol. XX | 3

The phylogenetic signal of studied traits (e.g., RMR) was eval-
uated by Pagel’'s A (Pagel, 1999), which was estimated using the
maximume-likelihood method implemented in the package phy-
tools (Revell, 2012) in R environment (version 4.1.2). Compared
with other indices of phylogenetic signal, Pagel’s N appeared to
perform better especially for discriminating between complex
models of traits evolution (Miinkemtiller et al., 2012). This index
was introduced as a phylogeny transformation parameter, which
measures the phylogenetic dependence of trait data by a value
varying between 0 and 1. Generally, A closer to 1 indicates strong
phylogenetic signal and thus close relatives are more likely to
have similar traits than distant relatives; A closer to 0 indicates
low phylogenetic signal and close relative are not more similar.
Statistical significance of A was evaluated by a likelihood-ratio
test (p < 0.05) by comparing the observed A with the null hypothe-
sis (no phylogenetic signal).

Genomic traits

Several genomic traits (characteristics) have been proposed
to affect the amino acid composition (e.g., Akashi & Gojobori,
2002; Cutter et al., 2006; Moura et al., 2013; Seligmann, 2003;
Sueoka, 1961). Six potential traits were closely inspected here,
viz: the genomic GC content (GC-genome), GC content of genomic
protein-coding sequences (GC-CDS), genome size, protein expres-
sion level, protein evolutionary rate, and the genetic code per-
mutation. The last three traits will be described in detail in the
following paragraphs.

Protein expression level: CAl-based codon usage bias and
experiment-based proteome abundance

It is known that amino acid usage can be influenced by differ-
ences in protein/gene expression levels (Akashi & Gojobori, 2002).
Herein two types of expression data were used. The first one is
codon usage bias, which can be used to predict protein expres-
sivity given their association (Carbone et al., 2003; Sharp & Li,
1987). To quantitatively measure the extent of codon usage bias,
the widely used Codon Adaptation Index (CAI) was calculated
(Carbone et al., 2003; Sharp & Li, 1987). CAI values were first esti-
mated for each individual gene. The gene CAI value ranges from 0
to 1, with low values suggesting biased codon usage and high val-
ues similar codon usage. As the present study focused mainly on
interspecific variations, species-level CAI values were then esti-
mated by calculating the average of CAls of all genes in a species
(genome). Species with low CAI imply biased protein expression
and species with high CAI unbiased protein expression (Botzman
& Margalit, 2011; Sharma et al., 2023). In this respect, variations
in species-level CAI signal differences in gene/protein expression
across species.

The second type of expression data was the experiment-based
proteome abundance, which was obtained from the PaxDB data-
base (Huang et al., 2023). We chose the abundance data from the
whole organism unless it was unavailable (see Supplementary
Table S2). Because such data were only available in 15 species
(Supplementary Table S2), we did not include them in subsequent
dimension reduction analysis (see below) due to the small sam-
ple size. To evaluate the effect of experiment-based proteome
abundance on RMR-AA;_ relationship, we divided the pro-
teomes into two subdatasets, namely, the high-expression pro-
teins and the low-expression proteins, and then tested whether
they yielded different results under the analysis. To identify the
low- and high-expression proteins for a given species, we pooled
all quantified proteins together and computed the 1st, 2nd, and
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3rd quartiles of the overall distribution. Proteins with abundance
below the 1st quartile and above the 3rd quartile were determined
as low-expression and high-expression proteins, respectively. The
high-expression proteins showed abundance about 10-10,000-
fold greater (depending on the species) than the low-expression
ones. Limitation in sample size did not allow us to further con-
trast the two subdatasets.

Protein evolutionary rate (Evol Rate)

The rate of protein evolution was estimated in absolute term
(i.e., amino acid substitutions per site per million years). First,
single-copy orthologous (SCO) genes across studied species were
inferred using the BUSCO metazoan_odb10 database (Sim&o et
al., 2015). Protein sequences of the identified SCO genes were
then aligned by MUSCLE (Edgar, 2004), and the yielded align-
ments were trimmed by BMGE to select phylogenetic informa-
tive regions (Criscuolo & Gribaldo, 2010). Second, for each SCO
gene, the gene tree was reconstructed using maximum-likelihood
method with IQ-TREE (Nguyen et al., 2015) based on the trimmed
alignments. IQ-TREE analysis was performed with the afore-
mentioned time tree topology acting as a backbone constraint.
Evolutionary model of protein sequence evolution was deter-
mined by ModelFinder (Kalyaanamoorthy et al., 2017). Third, for
each SCO gene, its protein evolutionary rate was estimated as
terminal lengths (expressed in amino acid substitutions per site)
in gene tree divided by their lengths (expressed in million years)
in time tree. Finally, the species-level protein evolutionary rates
were obtained by calculating the average of evolutionary rates of
all SCO genes identified in a species (36-56 SCO genes per species,
with the mean being 52 SCO genes per species).

Genetic code permutation as suggested by the “genetic code
hypothesis”

The genetic code effect was quantified as the expected AA;_
due to random permutations of genetic codon bases. By multiply-
ing the frequency of bases (A, G, C, U) to obtain codon frequency,
the expected AA,_ . was equal to the sum of frequencies of
amino acid codons (Dyer, 1971; King & Jukes, 1969). This was done
separately for each of the studied species.

Modeling the relationship between AA;_ . . and
RMR

Prior to the inference of the relationship between RMR and
AAeneyy RMR was dissected into three parts to clarify its sources
(see Introduction section). Additionally, due to the obvious inter-
actions among the six genomic traits mentioned above (e.g.,
between GC-genome and GC-CDS), principal component analysis
(PCA) was conducted to reduce the data dimensions of genomic

traits.

Disentangling the components of metabolic rate

The present study dissected the RMR into three parts: the body
mass component, the body temperature component, and the
component independent of body mass and temperature (i.e.,
residual component; see Introduction section). To estimate these
components, a mathematical model was fitted by modifying the
fundamental equation of the metabolic theory of ecology (MTE)
(Brown et al., 2004; Gillooly et al., 2001):

1
lnR:a—i—blnM—l—c(ﬁ) (1)

where R is RMR; a is a constant; b is the mass-scaling exponent
(in the unmodified MTE equation the b is fixed to 0.75); M is body

mass (in g); c is the negative value of activation energy (in eV); k
is Boltzmann constant (0.0000862 eV K); and T is body temper-
ature (in K). To make it more readable, the above equation was
written as:

InR= Rmass + Rtempemtwe + Rresidual (2)

where R is the body mass component of RMR and equal to
bInM; R, o 1S the temperature component of RMR and equal
toc(1/kT); R, is equal to In(RM~Pe~</¥") that represents the RMR
component independent of body mass and temperature (Brown
et al., 2004; Gillooly et al., 2001). Parameters a, b, and ¢ were
inferred from the phylogenetic generalized least squares (PGLS)
method (Grafen, 1989) in the nlme package to control for phyloge-
netic non-independence across species (see paragraphs below).

Dimension reduction of genomic traits by PCA

For the genomic traits investigated (GC-genome, GC-CDS, genome
size, CAI, protein evolutionary rate, and genetic code permuta-
tion), PCA was employed to reduce their complexity before sub-
sequent analyses. Because the genetic code permutations varied
not only across species but also among amino acids, PCA was run
for each of the 20 common amino acids separately. PC1~3 were
selected for subsequent analyses. These PCs together can explain
most (>86%) of variances of the studied genomic traits (see Results
section). PCA was performed via the stats and FactoMineR pack-
agesinR.

Modeling the relationship between AAfrequency and
metabolic rate

Relationships were modeled between the AA and the three

frequenc;

RMR components (R, . R, oo Riesaua) @04 th?ree yplrincipal com-
ponents (PC1~3 of six genomic traits, see above): “In(AA,_ ) ~
R + Riporatire + Rt + PCT + PC2 + PC3.” Because PC1~3 varied
among different amino acids, it was modeled for each of the 20
amino acids, respectively. We fitted the model using both ordi-
nary least squares (OLS) and PGLS methods. Compared with OLS,
PGLS can convert phylogeny to a variance-covariance matrix. The
phylogenetic correlation structure (variance-covariance matrix)
was constructed with five evolutionary models using corBrown-
ian, corPagel, corGrafen, corBlomberg, and corMartins in the ape
package (Paradis & Schliep, 2019). Fitting performance of OLS and
different PGLS models was evaluated by the corrected value of
Akaike information criterion (AIC): lower AIC_ indicating better
fit and difference in AIC, (AAIC)>4 indicating strong support
(Burnham & Anderson, 2002).

The normality and homogeneity assumptions of OLS and
PGLS regressions were checked by investigating the distribution
of quantile against quantile and the trend of residuals against
fitted values, respectively (Garamszegi, 2014; Quinn & Keough,
2002). Assumption of lack of collinearity was tested by the
Variance Inflation Factor (VIF) value, with VIF <10 indicating no
collinearity among variables (Quinn & Keough, 2002). The inde-
pendence assumption is often violated in trait data across spe-
cies due to their shared evolutionary history (phylogeny), and
PGLS method was implemented to deal with such a phylogenetic
non-independence problem (Garamszegi, 2014). Since some PGLS
regressions violated the normality/homogeneity assumptions,
non-parametric bootstrap approach (with 1,000 replicates) was
performed via the car package, and 95% Cls of estimates were cal-
culated by the bias corrected and accelerated method (or percen-
tile method if the bias-corrected and accelerated method failed).

Regression slopes of predictors R | R and R were

‘mass’ * “temperature’ residual
used to describe how the AA responded to the body mass

frequency
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component of RMR, body temperature component of RMR, and
RMR component independent of body mass and temperature.
For example, significantly positive (or negative) slopes of R, and
R peanre INdicated positive (or negative) relationships between
the AA ey with body mass and body temperature, respectively.
Statistical significance was determined when the slope 95% Cls
calculated by the bootstrap approach (see above) did not overlap
with zero (p < 0.05).

Inferring the contribution of RMR to AA

frequency

To estimate how much variance of the AA,_ . Was explained
by RMR, we calculated the likelihood-based square value of the
correlation coefficient (hereafter ) via package 112 (Ives, 2019).
In contrast to r? (square of Pearson’s r) and other modifications
of r?, ., 1s particularly appropriate when the question is to iden-
tify the relative contribution of a specific factor within a given
model (Ives, 2019). While r* was estimated directly under OLS
model, 1, was estimated by comparing a full PGLS model with a
reduced PGLS model that removes a specific variable. For instance,
r?, for RMR was inferred from comparing the full PGLS model
Hln(AAﬁrequency) ~ R ¥ Reperawre + Resia + Phylogeny” and the
reduced model “In(AA, )~ Phylogeny” Similarly, r*,, for genomic
trait, e.g., CAI, was estimated from comparing the full model
“In(AA CAI + Phylogeny” and the reduced model
“In(AA; ney) ~ Phylogeny.” In these models, phylogeny was included
as the covariance in the residual variation of the PGLS fitting (Ives,
2019; Wang et al., 2022). Comparisons of r?,, values for RMR and
the six genomic traits were done via the Wilcoxon signed-rank test
(two tailed) in the stats package. Statistical significance was adopted
when the Wilcoxon test p-value was below 0.05 (i.e., p < 0.05).

Great heterogeneities exist among the studied taxa in the six
genomic traits aforementioned. This will certainly exert an influ-
ence on the relative contribution of RMR to AAﬁequemy. Therefore,
it is essential to filter the data to reduce the confounding inter-
nal variation so that the general relative contribution of RMR can
be estimated. Preliminary analyses showed that GC content of
genomic protein-coding sequences (GC-CDS) bears the greatest
confounding influence among the studied species; hence, we fac-
tored out the species with highly biased GC-CDS (i.e., the GC-CDS-
biased species, see below) and analyzed the r?, for RMR based on
the remaining species. To identify species with biased GC-CDS, we
pooled all species together and calculated the 1st, 2nd, and 3rd
quartiles of the overall distribution. Species with GC-CDS below
1st quartile and above 3rd quartile was identified as low-GC-
CDS and high-GC-CDS species, respectively. Both low- and high-
GC-CDS species were considered as GC-CDS-biased species and
excluded.

frcqucncy)

Testing correlated evolution and evolutionary
adaptation

Theoretically, there are at least two kinds of evolutionary mech-
anisms in causing the relationship between two traits (Blomberg
et al,, 2003; Prinzing et al., 2001; Wang et al., 2022). The first one is
correlated evolution due to evolutionary adaptation. The second
one is phylogenetic constraint, in which two traits have evolved
independently of each other, and their seeming “relationship”
is a reflection that both traits are constrained by their shared
phylogenetic history (i.e., legacy from their common ancestors)
(Blomberg et al., 2003; Wang et al., 2022). Hence, only when the
frequency of a given amino acid was significantly related to at
least one of the three RMR components under PGLS rather than
OLS approach (p <0.05), can correlated evolution be considered
responsible for the RMR-AA relationship.

frequency
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Adaptive and non-adaptive random-drift processes of trait
evolution were described by the Ornstein-Uhlenbeck (OU) and
Brownian motion (BM) model, respectively (Felsenstein, 1985;
Hansen, 1997; Ingram & Mahler, 2013). The BM model assumes
that trait changes are random events and trait may evolve indef-
initely to any value, while the OU model assumes trait changes
toward either single adaptive optimum (single-regime OU,
OU1) or multiple adaptive optima (multiple-regime OU, OUM).
Therefore, adaptive evolution can be monitored by OU process
in which different lineages evolved to either same or different
optima (Hansen, 1997; Ingram & Mahler, 2013). Three evolution-
ary models (adaptive OU1, adaptive OUM, and non-adaptive BM
model) were fitted separately on RMR components and AA;_ .
data, using package geiger (Pennell et al., 2014) and the SURFACE
method implemented in package surface (Ingram & Mahler, 2013).
Model comparison was evaluated by AAIC_(see above). Selection
was considered as the potential driver of the correlated evolution
of RMR and AA. . only when all of the following conditions
were satisfied: (1) For a given amino acid, its frequency should
be correlated significantly (p < 0.05) with at least one of the three
RMR components under PGLS approach; (2) For a given amino
acid, the evolution of its frequency should follow OU rather than
BM model; (3) For a given amino acid, the evolution of its relevant
RMR component(s) should follow OU rather than BM model.

Calculating Z-score values for each variable for
heatmap visualization

Z-score values were used just for the heatmap visualization to
present the interspecific variations in variables studied herein
(AAg ey RMR components, genomic traits). With AA, - as
an example, its Z-score was calculated by taking the difference
between a species and the overall mean of all species and then
dividing the difference by standard deviation (resulting in each

amino acid having zero mean and standard deviation of one).

Results

Sources of interspecific variations in RMR and
dimension reduction of genomic traits

As expected, RMR positively covaried with both body mass and
body temperature (Figure 1A and B; note that in Figure 1B, the
body temperature T was contained in the denominator in the
1/kT term of x-axis), with more than 95% of the interspecific RMR
variance being explained by the two factors (not shown). Body
mass manifested a higher correlation to RMR than body temper-
ature (r? = 0.956, p < 2.2e-16 versus r? = 0.561, p < 2.2e-16; Figure
1A and B). The mass-scaling exponent (b) was estimated to be
0.805 and activation energy (—) 0.583 eV. These two parameters
were used for the calculation of the three RMR components R
R peanre @04 R, (S€€ Methods section).

PCA results (Figure 1C and D) showed that (1) more than
86% of the variance in the six genomic traits can be explained
by the first three principal components (i.e., PC1~3), and (2) PC1
was highly correlated with the following three genomic traits:
GC-CDS, GC-genome, and CAI (|r] > 0.84). Both observations held
true regardless of the amino acid concerned (note that we per-
formed PCA separately for each of the 20 common amino acids,
see Methods section). PC2 and PC3 were mainly correlated with
protein evolutionary rate and genome size, and also with genetic
code permutation for several amino acids (Asp, Cys, Gln, Glu, Ser,
Thr, and Val; note that this genomic trait was highly correlated
to PC1 in the remaining amino acids; |r| > 0.78). PC1~3, which was
independent of each other, can thus largely represent the studied

mass’
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Figure 1. Evaluation of sources of variations in resting metabolic rate (RMR) and dimension reduction of six genomic traits. (A) Correlation of RMR
with body mass. The In(RMR) is a measure of RMR corrected for the effect of body temperature with controlling for phylogenetic non-independence
across species. The 17 is square value of Pearson’s correlation coefficient. *** indicates p < 0.001. (B) Correlation of RMR with body temperature. The
In(RMR) is a measure of RMR corrected for the effect of body mass with controlling for phylogenetic non-independence across species. The parameter
k is Boltzmann constant (0.0000862 eV K*), and T is body temperature (see Equation 1 in main text). (C) Principal component analysis shows variances
of the six genomic traits that are explained by principal components (PC1~6). Shown is an example with all data pooled together. The six genomic
traits are the codon adaptation index (CAI), genomic GC content (GC-genome), GC content of genomic protein-coding sequences (GC-CDS), protein
evolutionary rate, amino acid frequency expected from random permutations of genetic codon bases (Genetic code permutation), and the genome
size. (D) The correlation coefficient between six genomic traits with PC1~3 was extracted by principal component analysis. Shown is an example with
all data pooled together. The x-, y-, and z-axis values indicate the correlation coefficient.

genomic traits, and was then included as confounding factors in

the model describing the relationship between AA; . and RMR
components (see Methods section).
Phylogenetic patterns of AA_ and RMR

quency

across major animal lineages

The animal species studied here covered the major lineages of
extant Eumetazoa (“true animal”), including vertebrates such
as fishes, frogs, birds, and mammals, as well as invertebrates
such as crustaceans, insects, arachnids, and mollusks (Figure 2).
As shown in Figure 2, AA,_ _ and RMRs appeared to be more
conserved in vertebrates than in invertebrates (Figure 2), and we
acknowledged that the invertebrate lineages studied here covered
a much greater phylogenetic depth.

With all species as a whole, significant strong phylogenetic
signals (Pagel’s A close to one) were detected for both AA___
(A\=0.95-1.00, p<2.1e-29) and RMR components (A =0.84-0.91,
p < 3.1e-25). This suggested that compared with distantly related

animals, closely related ones had more similar RMR and AAgeney
in their proteomes, regardless of the RMR components and amino
acid types concerned (Figure 2). The maximum difference in
AA( ey Tanged from 1.25 (Leu) to 2.66 folds (Asn) in pairwise

species comparisons.

Evolutionary relationship between RMR and
AA across animals

frequency
In fitting the relationship between the AA, . with RMR com-
ponents (with PC1~3 of six genomic traits as confounding fac-
tors, see above), PGLS outperformed OLS approach for each of
the 20 common amino acids (AAIC_>33). Results showed that
there was no general relationship: the regression slopes under
PGLS approach varied and could be positive, negative, or non-
significant among different amino acids and different RMR com-
ponents (R Ry e Reina) (FiguUre 3; Supplementary Table S3).

For instance, the frequency of amino acid Pro had positive slope
with R (Figure 3A) and R (Figure 3C), yet non-significant

mass Tesidual
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Figure 2. Interspecific variations and phylogenetic patterns of amino acid frequencies, resting metabolic rate (RMR), and six genomic traits
among 166 animal species. Upper panel: evolutionary tree with branch lengths equal to time. Mya: million years ago. Lower panel: heatmap
showing variations in amino acid frequencies, RMR, and six genomic traits expressed as Z-score values (see Methods section). One-letter amino
acid abbreviations are shown in parentheses. RMR-1, RMR-2, and RMR-3 represent the body mass component of RMR (R__ ), the body temperature
component of RMR (R, ...), and the residual RMR (R ,,,; the RMR component independent of body mass and temperature), respectively. The six
genomic traits are codon adaptation index (CAI), protein evolutionary rate (Evol Rate), genetic code permutation as suggested by the “genetic code
hypothesis” (Genetic code), GC content of genomic protein-coding sequences (GC-CDS), genomic GC content (GC-genome), and genome size. Right
panel: barplot showing the phylogenetic signal (Pagel’s A) for each trait. The A generally ranges between 0 and 1, with A close to 1 indicating strong

phylogenetic signal (phylogenetic dependence of the trait value).

(95% Cls overlapped with zero) slope with R, . (Figure 3B),
whereas that of the amino acid Ile had significantly negative slope
with each of the three RMR components (Figure 3). Overall, under
the PGLS approach, significant relationship between AA__
with RMR components (95% Cls did not overlap with zero) existed
in eight amino acids including Ala, Arg, Gly, Ile, Lys, Met, Phe, and
Pro (Figure 3).

To further explore why the interspecific relationship var-
iled and was not consistent, we analyzed the interrelation-
ship between amino acid synthesis cost and each of the three
RMR components (displayed as regression slopes in Figure 3).
The results were shown in Figure 4. It indicated that although
there was no significant correlation between the synthesis cost
and either R (r=-0.16, p=0.50) (Figure 4A) or R, slope
(r=0.18, p = 0.44) (Figure 4B), there did exist a significant negative
correlation between synthesis cost and slope of R ., . (r=-0.55,
p =0.01) (Figure 4C). This leads to a pattern that low-energy-cost
amino acids were more likely to be at higher frequency in animal
species with high residual metabolic rate (see Discussion section).
Hence, the inconsistent R, AA relationship was at least

residual frequency

partially due to difference in amino acid synthesis cost.

We also tested whether protein abundance (experiment-based
expression level) influenced the above observations by exam-
ining comparatively low- and high-expression proteins (see
Methods section). Our results indicated that in most cases the
slopes (85%) were similar (95% Cls overlapped) in both subdata-
sets, with only 15% of slopes differing significantly (95% Cls did
not overlap). Likewise, a similar correlation (95% Cls overlapped)
existed between amino acid synthesis cost and the slopes in both
sub-datasets (Supplementary Figure S1). These observations
thus indicated that protein abundance did not appear to signif-
icantly shape the observed RMR-AA, __ _ relationship, while we
acknowledged that limitation in sample size due to the lack of
enough expression data in animals did not allow us to conduct
further test.

Quantitative contribution of RMR to AA
across animals

In terms of 2, values, the studied predictors (RMR and six genomic
traits) together explained up to 81.2% of variations in AA_ .
across animals. To mitigate the confounding influence of genomic
traits on the relative contribution of RMR to AA species

frequency
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Figure 3. Results of the linear regressions between the frequencies of 20 common amino acids (in log unit) and the resting metabolic rate (RMR)

using the phylogenetic generalized least squares (PGLS) approach. (A) Slopes
and amino acid frequency (AA,, ...,)
of PGLS regressions between the body temperature component of RMR (R,
regressions between the residual RMR (R ., .; see Methods section) and AA
the 95% CIs did not overlap with zero. Estimates of the regression intercepts

with biased GC-CDS were excluded (see Methods section), yielding
a dataset with 82 species (52 vertebrates and 30 invertebrates).
On average, RMR made a relative contribution of 27.7% (r?,, for
RMR =2.0%-69.2%) to AA,__ .. (Figure 5). This level of contribu-
tion was significantly greater (Wilcoxon test p < 0.05) than those of
GC-genome (mean r?, = 11.9%), genome size (mean 2.9%), and pro-
tein evolutionary rate (mean 2.8%), and comparable to (p =0.48-
0.88) the remaining three genomic traits including GC-CDS, genetic
code permutation, and CAI (mean 27.2%-33.2%) (Figure 5).

Evolution of RMR and AA;_ ... Was adaptive

To examine whether the RMR-AA,_  _ relationship was driven
by selection or random drift and to infer the evolutionary pat-
terns, three evolutionary models (BM, OU1, and OUM) were com-
pared. The BM model describes a random process, whereas OU
model describes the adaptive process with either single (OU1) or

temperature:

frequency

of PGLS regressions between the body mass component of RMR (R

ass)

of the 20 common amino acids. The error bar indicates the 95% Cls calculated by bootstrap approach. (B) Slopes

)and AA .., of the 20 common amino acids. (C) Slopes of PGLS
of the 20 common amino acids. * indicates significant slope, for which
and slopes of other predictors are displayed in Supplementary Table S3.

multiple (OUM) adaptive optima caused by selection pressure. For
each of the 20 amino acids and the three RMR components, OUM
model was always the best fit among the three models (AAIC, > 57)
(Table 1). This indicated that these variables had evolved follow-
ing adaptive rather than random-drift process, and there existed
multiple rather than a single adaptive optima across different
evolutionary lineages. Selection was further suggested to under-
line the significant AA, . -RMR relationships observed for eight
amino acids (Ala, Arg, Gly, Ile, Lys, Met, Phe, Pro; Figure 3).

Discussion

Connection between metabolic rate and AA
across animal lineages

Our results indicate that RMR played an important role in the
variation of AA across animal lineages, with a contribution

frequency

frequency
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Figure 4. Effects of the energy cost of amino acid biosynthesis on regression slope between resting metabolic rate (RMR) and amino acid frequency.
(A) The effect of biosynthetic energy cost on the regression slope between amino acid frequency and body mass component of RMR (i.e., the slope
of R, ). Values of regression slopes are obtained from Figure 3 and Supplementary Table S3. r: Pearson’s correlation coefficient. The 20 common

amino acids are indicated as one-letter amino acid abbreviations, i.e., A: Ala; C: Cys; D: Asp; E: Glu; F: Phe; G: Gly; H: His; I: Ile; K: Lys; L: Leu; M: Met;
N: Asn; P: Pro; Q: Gln; R: Arg; S: Ser; T: Thr; V: Val; W: Trp; Y: Tyr. (B) The effect of biosynthetic energy cost on the slope of regression between amino

acid frequency and body temperature component of RMR (the slope of R,
between amino acid frequency and residual RMR (the slope of R
(p < 0.05).
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Figure 5. Contributions of predictors to variations in the frequency of 20 common amino acids among 82 species with similar GC content.
Contributions are quantified by the likelihood-based square values of the correlation coefficient (r?,). Predictors shown here include the resting
metabolic rate (RMR highlighted in the graph) as well as six genomic traits: GC content of genomic protein-coding sequences (GC-CDS), genetic
code permutation as suggested by the “genetic code hypothesis” (Genetic code), codon adaptation index (CAI), genomic GC content (GC-genome),
genome size, and protein evolutionary rate (Evol Rate). The 1%, values are inferred from animal species with exclusion of those showing biased

GC-CDS content. See Methods section for details on how the GC-CDS-biased species are identified. Predictors are ordered according to their mean r?,
values, which were shown as colored dots in the boxplot (with their values also shown on the top of the boxplot). * indicates Wilcoxon test p < 0.05

in comparison between RMR with one of the genomic traits; ** indicates p < 0.001; - indicates p > 0.05. The 20 common amino acids are indicated as
one-letter amino acid abbreviations, i.e., A: Ala; C: Cys; D: Asp; E: Glu; F: Phe; G: Gly; H: His; I: Ile; K: Lys; L: Leu; M: Met; N: Asn; P: Pro; Q: Gln; R: Arg; S:

Ser; T: Thr; V: Val; W: Trp; Y: Tyr.

comparable to or even much greater than the genomic traits
investigated here. We showed that RMR explains on average 27.7%
of the variance among animal lineages where the confounding
effects of nucleotide compositional biases were controlled (Figure
5). Our comparative analysis of the experiment-based proteome
abundance data indicated that protein abundance did not appear
to significantly shape the observed RMR-AA; - relationship,
although this preliminary conclusion deserves further testing
when more expression data become available.

Nevertheless, the RMR-AA,_ _ relationship varies greatly in
different amino acids, even with an account of the differences
from several genomic traits. For example, high RMR appears

to exert a positive influence on the amino acid Pro (hence at
high frequency) but a negative influence on Ile (hence at low
frequency) in the proteomes. That is, no general significant
relationship can be detected, as shown by the regression slopes
under PGLS approach, which varied among amino acids and RMR
components and can be positive, negative, or non-significant
(Figure 3). Such a varying influencing pattern of RMR was in
parallel with the effect of GC content observed by Moura et al.
(2013). They reported that higher level of GC content resulted in
increased AA;__ . for several amino acids such as Gly and Val,
but decreased AA for some other ones such as Ile and Lys

frequency

(Moura et al., 2013). Taken together, these observations signal

$20Z Jaquieoa( ¢ uo Jasn Sy9 ‘ABojooz jo aynnsul Aq §79/88//1909BI0/M8IAS/€601 "0 | /I0P/3]|01IB-80UBAPE/1IS|AS/WO00 dNO dIWapEIe//:Sd)ly WOl PaPEOjUMO(]


http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrae061#supplementary-data

10 | Wangand Zhang

Table 1. Model-fitting results showing that the evolution of amino acid frequency and resting metabolic rate (RMR) follows adaptive

evolution.

Amino acid and BM model OU1 model OUM model

RMR AlC, AAIC, AIC, AAIC, AIC, AAIC,
Ala -326.15 98.71 -324.07 100.78 -424.86 0
Arg -444 06 144.41 —441.99 146.48 -588.47 0
Asn -311.25 134.24 -309.17 136.31 —445.48 0
Asp -735.93 128.93 —-733.86 131.00 -864.86 0
Cys -616.26 156.05 -614.18 158.13 -772.31 0
Gln -646.43 212.75 -644.36 214.82 -859.18 0
Glu -711.55 156.66 -709.48 158.74 -868.22 0
Gly -459.46 134.24 —457.39 136.32 -593.70 0
His -701.33 116.91 -699.25 118.98 -818.24 0
Ile —345.38 107.28 —343.30 109.35 -452.66 0
Leu -767.66 143.01 -765.59 145.08 -910.67 0
Lys -416.07 163.65 —414.00 165.73 -579.72 0
Met -609.24 153.57 -609.74 153.06 -762.81 0
Phe -552.66 87.09 -550.58 89.17 -639.75 0
Pro -451.04 100.18 -448.97 102.26 -551.22 0
Ser -696.79 134.39 -694.71 136.47 -831.18 0
Thr -650.89 96.07 -649.12 97.85 -746.96 0
Trp -558.83 203.09 -566.94 194.98 -761.92 0
Tyr -551.51 103.51 -549.44 105.59 -655.03 0
Val -650.79 214.68 -648.72 216.76 -865.47 0
R s 896.99 156.25 877.54 136.81 740.74 0

emperature 303.50 231.47 274.55 202.53 72.02 0

414.97 72.53 400.07 57.63 342.44 0

residual

Note. The R represents the resting metabolic rate (RMR). R

‘mass

is the body mass component of RMR; R

is the body temperature component of RMR; R

residual

is the RMR component independent of body mass and temperature. BM = Brownian motion model; UM< multiple-regime Ornstein-Uhlenbeck (OU) model;
OU1 = single-regime OU model. OUM and OU1 are adaptive models, whereas BM is non-adaptive model. The lower the AIC_value, the better the model. The AAIC,
value is calculated relative to the lowest AIC_(in bold); AAIC_ > 4 indicates good support. OUM is thus determined as the best model with strong support.

that interspecific AA,_ _  variations are shaped by multiple
interacting factors during evolution, and the observed outcomes
reflect the trade-off among these factors in a specific evolution-
ary context conforming to the physiology and ecology of the
organisms under consideration (see below).

The mechanisms for the aforementioned evolutionary trade-
off are likely functioning hierarchically. Namely, while RMR can
significantly affect AA, via the optimization of energy allo-
cation to protein biosynthesis, other factors acting at some other
levels could dim this effect in the course of evolution. The synthe-
sis cost of amino acid is one of them (see the next section; Figure
4C), and another crucial factor could be the requirement to max-
imize the protein sequence entropy to enable protein function
diversity (Krick et al., 2014). The trade-off between optimization
in energy utilization and diversification in protein sequence/func-
tion may help to reconcile the varying RMR-AA, . relation-
ships observed here. Taking the amino acid Leu as an example,
decreased Leu content in numerous proteins is favored by many
organisms that have adapted to the low-temperature environ-
ment (Berthelot et al., 2019). Meanwhile, the low environmental
temperature would increase the metabolic rate (R, ) of many
animals (Addo-Bediako et al., 2002; Kovac et al., 2022; White et al.,
2012). Therefore, low environmental temperature became con-
nected with low Leu frequency and high R, in these situations,
thereby resulting in a negative relationship between these two
traits. Such a negative relationship due to low-temperature adap-
tation masked the positive effect of RMR, hence ultimately lead-
ing to the observed non-significant slope between Leu frequency
and R, . in Figure 3C. Our observations thus provide evidence
for the supposition that effects of minimizing protein synthesis
cost at molecular level usually vary with different ecological and
metabolic strategies at the whole-organism level (Seligmann,
2003).

The above analyses lead to a general conclusion that there
does not exist a universally applicable “one-size-fits-all” predic-
tor for the frequencies of the 20 common amino acids (Figure 5;
Knight et al.,, 2001; Figure 1B therein; Moura et al., 2013, Table 3
therein), and integrated investigations on interacting traits across
different levels of biological hierarchy of organization are indis-
pensable, so that the evolution of AA can be both qualita-
tively and quantitatively elucidated.

frequency

Relationship between RMR and AA; . Wwas the

evolutionary consequence of adaptation

Our data demonstrated that the R . -AA,_ - relationship
(the regression slope) is significantly and negatively associated
with the energy cost of amino acid biosynthesis (Figure 4C). This
means that low-energy-cost amino acids are more likely to dis-
play a positive response (i.e., slope > 0) toR ., . than high-energy-
cost amino acids. The logic is as follows. Species with high R _, .
will have more energy allocated to amino acid biosynthesis and
thus may show high AA, . However, given the cost variations
in amino acid biosynthesis, there exist two possible strategies
on the energy allocation: (1) more energy allocated to high-cost
amino acids, or alternatively (2) more energy allocated to low-cost
amino acids. Because energy resources are generally limited for
animals, energy allocation to protein biosynthesis has to be opti-
mized (Akashi & Gojobori, 2002; Heizer et al., 2006; Seligmann,
2003) given the adaptive nature of metabolic rate. Therefore, if
natural selection exerts influence on AA;_ . via the optimiza-
tion of energy utilization, the second rather than the first strategy
is expected, since more low-cost amino acids can be biosynthe-
sized than high-cost ones with a given amount of energy flux.
Consequently, less energetically costly amino acids are favored
and thus have higher frequency in proteomes of high-R . .
species. This is exactly what we have observed in the analysis
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(Figure 4C), which is consistent with the pattern proposed by
the “synthesis cost hypothesis” (see Introduction section). Our
finding has hence provided evidence to earlier observation that
the energy-cheap amino acids should have been preferred due
to selection pressure (Krick et al., 2014; Seligmann, 2003; Swire,
2007) and importantly, extended it to among-species scenarios.
Therefore, natural selection serves as a general explanation for
both intraspecific and interspecific variations in AA _ .

Our analyses of the evolutionary model fitting further sup-
port that the observed RMR-AA, _ _ relationship is the outcome
of correlated evolution driven by adaptation. While in compara-
tive analyses across species, two traits can be seemingly related
because they are a legacy from the ancestors (i.e., due to shared
phylogenetic history) rather than truly correlated as a result of cor-
related evolution (Blomberg et al., 2003; Prinzing et al., 2001; Wang
et al., 2022), the PGLS approach adopted here took into account of
the influence of phylogenetic relatedness. Our results showed that
correlated evolution is responsible for the correlations between
RMR and the frequencies of eight amino acids (Ala, Arg, Gly, Ile, Lys,
Met, Phe, and Pro), as shown by their significant slopes under PGLS
(Figure 3). Our evolutionary model-fitting analyses furthermore
showed that the adaptive OUM model fitted the data best than
other models (including the random-drift model), regardless of
which RMR component or amino acid is concerned (Table 1). These
results indicate that evolutionary adaptation is the driving force
of the observed correlated evolution. This is not unexpected given
that both metabolic rate and AA; . have been documented to
manifest adaptive response to variables such as environmental
temperature and resources (Addo-Bediako et al., 2002; Arngvist et
al., 2022; McNab, 2015; Moura et al., 2013; Tekaia et al., 2002).

Conclusions

The results of our exploratory investigation on the relationship
between the organism-level RMR and molecular-level AA,_
were in line with the "metabolic rate hypothesis” of AA__ . evo-
lution in animals. We revealed that RMR makes a non-negligible
contribution to the variance of AA__ . (mean 27.7%, 2.0%-
69.2%) across animal lineages, with an effect not less than any
of the genomic traits studied when the nucleotide compositional
bias was controlled. We found that low-energy-cost amino acids
are more likely to be at higher frequency in animal species with
high residual metabolic rate. We further showed that the rela-
tionship between RMR and AA,_ .  varies greatly among amino
acids, and such a variation is most likely an outcome of trade-offs
among various interacting factors (e.g., metabolic optimum and
protein sequence diversity) in an evolutionary context conform-
ing to the physiology/ecology of the lineages under consideration.
We also demonstrated that the significant RMR-AA, - corre-
lations observed were driven by adaptation rather than random
drift. Clearly, given that there is unlikely any universally appli-
cable “one-size-fits-all” predictor, integrated investigations on
various interacting factors across multiple levels of biological
hierarchy of organization are vital for a fuller understanding of
the mechanisms of interspecific AA; . variations in animals.
In particular, more data of metabolic rate and proteome expres-
sion from phylogenetically diverse animal species will greatly
promote a better understanding of the RMR-AA, _ _ relationship
and thus allow to further test the “metabolic rate hypothesis.”
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