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Abstract 

Natural selection is believed to shape amino acid usage of the proteome by minimizing the energy cost of protein biosynthesis. 
Although this hypothesis explains well the amino acid frequency (AAfrequency) difference among the 20 common amino acids within 
a given genome (species), whether it is applicable to cross-species difference remains to be inspected. Here, we proposed and tested 
a “metabolic rate hypothesis,” which suggests that metabolic rate impacts genome-wide AAfrequency, considering that the energy allo-
cated to protein biosynthesis is under selection pressure due to metabolic rate constraint. We performed integrated phylogenetic 
comparative analyses on proteomic sequence and metabolic rate data of 166 species covering 130 eumetazoan orders. We showed 
that resting metabolic rate (RMR) was significantly linked to AAfrequency variation across animal lineages, with a contribution com-
parable to or greater than genomic traits such as GC content and codon usage bias. Consistent with the metabolic rate hypothesis, 
low-energy-cost amino acids are observed to be more likely at higher frequency in animal species with high (residual) metabolic 
rate. Correlated evolution of RMR and AAfrequency was further inferred being driven by adaptation. The relationship between RMR and 
AAfrequency varied greatly among amino acids, most likely reflecting a trade-off among various interacting factors. Overall, there exists 
no “one-size-fits-all” predictor for AAfrequency, and integrated investigation of multilevel traits is indispensable for a fuller understand-
ing of AAfrequency variation and evolution in animal.
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Lay Summary 

Natural selection has previously been proposed to underlie compositional differences of amino acids within a given animal species: 
to minimize the energy cost of protein biosynthesis, selection should result in an increased abundance of energy-cheap amino acids 
and a decreased abundance of energy-expensive ones in the proteome. However, amino acid composition varies greatly among 
species, yet the underlying evolutionary processes are largely unclear. Here, we propose that interspecific variations in metabolic 
rate exert an effect on amino acid composition due to natural selection, which is referred to as the “metabolic rate hypothesis.” The 
present study intended to test this hypothesis by examining the relationship between molecular-level amino acid frequency and 
organism-level metabolic rate (as a proxy for energy cost) in an evolutionary framework. Phylogeny-based analysis revealed signifi-
cant connection of these two traits, indicating they have evolved most likely in concert, and metabolic rate is an important confining 
factor to the compositional variation of amino acid in animal. Consistent with the metabolic rate hypothesis, low-energy-cost amino 
acids are observed to be more likely at higher frequency in animal species with high residual metabolic rate.

Introduction
Proteins are among the most fundamental molecules of life and 
evolved under natural selection. Signatures of selection on pro-
teins have been identified at various levels, such as the conser-
vation of specific amino acid residue(s), secondary and tertiary 
structures, as well as compositional patterns of amino acids 
(i.e., the relative abundance or frequency of amino acids making 
up the entire proteome) (Akashi & Gojobori, 2002; Chen et al., 
2022; de Jong et al., 2023; Liu et al., 2008; Suzuki & Gojobori, 

1999; Yang et al., 2000). The last characteristic bears some inter-
esting peculiarities: while for a given species there exist up to 
dozens of folds of difference in the relative abundance among 
amino acids (e.g., from 0.39% for Cys to 14.5% for Leu; Krick et 
al., 2014), the compositional patterns vary greatly among spe-
cies (Chen & Nielsen, 2022; Knight et al., 2001; Krick et al., 2014; 
Moura et al., 2013). This suggests that complex interwinding fac-
tors exist, shaping the amino acid compositional patterns dur-
ing evolution.
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Two major hypotheses have been proposed (Krick et al., 2014) 
for explaining the observed compositional patterns within a 
given species (genome) in particular. The “genetic code hypoth-
esis” suggests that amino acid residues distribute according to 
the permutation of genetic code, which is largely a random-drift 
explanation, predicting a positive relationship between amino 
acid frequency (hereafter AAfrequency) and the permutation of 
genetic code (Dyer, 1971; King & Jukes, 1969). The “synthesis 
cost hypothesis” suggests that bias in amino acid usage arises 
from cost-minimization of protein biosynthesis, which is a nat-
ural selection explanation, predicting a universal negative rela-
tionship between AAfrequency and the energy (ATP) cost of amino 
acid synthesis (Akashi & Gojobori, 2002; Seligmann, 2003; Swire, 
2007). Compared with genetic code permutation, synthesis cost 
appears to better explain the variance of AAfrequency within a given 
proteome, since synthesis cost shows higher correlation with 
AAfrequency for species from all three domains of life (Krick et al., 
2014). However, the current “synthesis cost hypothesis” faced dif-
ficulties in explaining the great interspecific variation of amino 
acids, because the energy cost for a given amino acid is generally 
considered constant across species due to the highly conserved 
biochemical nature of metabolic pathways (Krick et al., 2014; 
Smith & Morowitz, 2004; Swire, 2007; Zhang et al., 2018).

We noticed that the physiological trait metabolic rate, which is 
related to energy cost, also manifests great interspecific variation. 
Metabolic rate, representing the rate at which organisms obtain, 
allocate, and expend energy, is the fundamental measure of the 
energy cost of life functions and biological activities (Brandl et al., 
2023; Brown et al., 2004; Burger et al., 2019). Metabolic rate is well-
known to differ substantially among species (Brown et al., 2004; 
White & Kearney, 2013). Among the many factors contributing 
to the metabolic rate variations among animals, body mass and 
body temperature are the two best-known and most remarkable 
ones, which together can explain more than 90% of the metabolic 
rate variations (Brown et al., 2004; Gillooly et al., 2001; White & 
Kearney, 2013). Nevertheless, after accounting for body mass and 
temperature effects, several-fold differences are still observed 
in the residual metabolic rate (i.e., body mass and temperature-
independent metabolic rate) among animals (e.g., Giacometti et 
al., 2022; Gillooly et al., 2001; Hayssen & Lacy, 1985; Lighton et al., 
2001). It is recognized that residual metabolic rate is associated 
with ecological and evolutionary processes (Carter et al., 2023; 
Giacometti et al., 2022; McNab, 2015), thus being a good trait for 
inspecting evolutionary adaptation. So far, it remains unknown 
whether metabolic rate, the residual metabolic rate in particular, 
is linked with AAfrequency in animals.

Unlike plants, animals are heterotrophs that cannot produce 
their own food and must obtain energy from other organisms 
to support various physiological processes for survival, devel-
opment, and reproduction. Since energy resources are generally 
neither cost-free nor unlimited for animals (McCue, 2010), the 
energy budget that can be devoted to specific metabolic path-
ways (including protein biosynthesis) is basically under strong 
selection pressure (Akashi & Gojobori, 2002; Heizer et al., 2006; 
Seligmann, 2003). Notably, a considerable amount of energy is 
allocated to protein biosynthesis, e.g., about 20% of total oxygen 
consumption (a proxy for metabolic rate) is used by protein syn-
thesis in mammals (Rolfe & Brown, 1997), and there exists great 
variation among amino acids in the energy expended to their 
biosynthesis (Craig & Weber, 1998; Heizer et al., 2006); protein 
biosynthesis itself thus can be optimized by natural selection 
(Akashi & Gojobori, 2002; Heizer et al., 2006) under the constraint 
of the overall metabolic rate adopted during evolution. Therefore, 

energy-cheap amino acids should have been preferred in the pro-
cess of protein biosynthesis by natural selection during animal 
evolution (Krick et al., 2014; Seligmann, 2003; Swire, 2007). We can 
then conjecture that the energy-cheaper amino acids would be 
more frequently employed in proteins and thus present at higher 
frequency in high-energy-expenditure species. Namely, where 
possible, the biosynthetic cost of proteins should have been min-
imized in order to maximize the total reproductive output of an 
animal by safeguarding the essential high-energy-expenditure 
function(s) (such as flying in insects). Interspecific variation in 
AAfrequency among animals is thus expected as a result of diversi-
fying evolution in energy budget and metabolic rate in different 
lineages. For convenience, we refer hereafter this conjecture as 
to the “metabolic rate hypothesis” on interspecific compositional 
variation in amino acids, while acknowledging that a metabolic 
rate hypothesis has been proposed for explaining variation in 
the rates of nucleotide substitution among evolutionary lineages 
(Martin & Palumbi, 1993).

In the present report, we intend to use an integrated phyloge-
netic comparative analysis on proteomic and metabolic rate data 
to test the “metabolic rate hypothesis” by examining whether there 
exists any interconnection between metabolic rate (as a proxy for 
organism-level energetic cost) and the AAfrequency across animal 
lineages. Note that the “metabolic rate hypothesis” assumed that 
metabolic rate affects the amino acid composition rather than vice 
versa. Many well-known observations support this argument. For 
example, amino acid composition itself is influenced by numerous 
factors (e.g., codon usage bias, functional constraint, genome com-
positional bias, environment) (Baeza et al., 2021; Berthelot et al., 
2019; Cutter et al., 2006; Tekaia et al., 2002), and thus shows great 
variation at almost all levels: within a genome, within an individual 
(between genomes), within and between species (Knight et al., 2001; 
Krick et al., 2014; Moura et al., 2013). This thus leaves great room 
for the optimization of energetic costs in protein synthesis by natu-
ral selection (Akashi & Gojobori, 2002; Heizer et al., 2006), on which 
the metabolic rate of an animal adopted during evolution would 
impose serious constraints. Furthermore, molecular mechanisms 
connected to AAfrequency are indirectly affected by metabolic rate; for 
instance, metabolic rate can influence mutation rate by affecting 
DNA damage (Gillooly et al., 2007; Martin & Palumbi, 1993), and 
mutation process is known to be a major determinant of amino 
acid composition (Akashi & Gojobori, 2002; King & Jukes, 1969). 
Similarly, small cell and small genome size could be favored phys-
iologically (Hessen et al., 2013; Szarski, 1983), while genome size is 
correlated with the use of amino acids (Du et al., 2018; Seligmann, 
2003). By dissecting the metabolic rate into three components (i.e., 
the body mass component, body temperature component, residual 
component) and using proteomic sequence data from 166 animal 
species representing 130 eumetazoan (“true animal”) orders, we 
examined the “metabolic rate hypothesis” focusing on the follow-
ing two questions: (1) Does the metabolic rate (an organism-level 
phenotype) influence the AAfrequency (a molecular-level phenotype)? 
(2) What are the evolutionary drivers underlying the relationship 
between metabolic rate and AAfrequency?

Methods
Compilation of the amino acid data: Proteome 
sequences, AAfrequency, and energy costs of amino 
acid biosynthesis
Proteomic sequence data were chosen with the aim to cover 
more animal groups at the order level and to reduce data imbal-
ance among taxa, e.g., more proteomes from mammals and 

D
ow

nloaded from
 https://academ

ic.oup.com
/evlett/advance-article/doi/10.1093/evlett/qrae061/7887678 by Institute of Zoology, C

AS user on 13 D
ecem

ber 2024



Evolution Letters (2024), Vol. XX  |  3

less from other vertebrates. First, all proteomes available for 
Eumetazoa (“true animal”) were retrieved from NCBI RefSeq data-
base. Second, one species (proteome) was selected within each 
order, according to the following data-selection criteria: species 
with metabolic rate data available were selected first, then spe-
cies with chromosome-level genome, and finally species whose 
genome has higher contig N50. This procedure yielded an initial 
dataset containing 130 species. Third, because there exists seri-
ous taxonomic sampling bias in the initial dataset (about two 
thirds of the 130 species are vertebrates), 36 invertebrate species 
(covering 35 families) and their corresponding proteomes were 
supplemented into the dataset, following a similar data-selection 
criteria as described above. This yielded a proteomic sequence 
dataset that included 84 vertebrate and 82 invertebrate species 
covering 130 orders in Eumetazoa (see Supplementary Table S1).

AAfrequency was calculated as the percentage of the number of 
each of the 20 common amino acids divided by the count of all 
amino acids in the non-redundant proteome after redundancy 
removal in proteomic sequences using CD-HIT (Li & Godzik, 2006) 
following the similar procedures in previous studies (Akashi & 
Gojobori, 2002; Heizer et al., 2006). AAfrequency was estimated sepa-
rately for each species.

The energy cost of amino acid biosynthesis was measured as 
the ATP molecules per amino acid molecule needed during amino 
acid biosynthesis. These synthesis cost values were obtained 
from previous studies with correction for decay rate and assum-
ing similar energy choices of essential and non-essential amino 
acids (Krick et al., 2014; Swire, 2007; Zhang et al., 2018).

Compilation of the resting metabolic rate data
Resting metabolic rate (RMR) and the RMR-related data were 
compiled for each of the above 166 animal species. The RMR, body 
mass (M), and body temperature (T) were collected by literature 
search (Supplementary Table S1). When multiple RMR units were 
available for the same species, the raw RMR data expressed in 
carbon dioxide production (VCO2) or oxygen consumption (VO2) 
was preferred (e.g., in μl CO2 per hour). Generally, RMR data meas-
ured with animals under stressed conditions were not consid-
ered. The respiratory quotient (equal to VCO2/VO2) values were 
also compiled if available. All RMR data were ultimately trans-
formed to microwatts (μW) based on respiratory quotient values 
(Lighton, 2008). Body mass and body temperature were trans-
formed to gram (g) of wet body mass and Kelvin (K), respectively. 
Dry body mass was transformed to wet body mass assuming a 
ratio of 3 (unless otherwise specified by the primary literature) 
between the latter and the former according to previous study 
(Makarieva et al., 2008).

Phylogenetic tree and phylogenetic signal
For the studied animals, an initial phylogenetic tree was con-
structed, with both tree topology and branch length obtained 
from the TimeTree database (www.timetree.org). To deal with sev-
eral unresolved branches, the initial tree was manually updated 
according to phylogenies reported by Blaxter (2009), Delsuc et 
al. (2018), and Arribas et al. (2020). For instance, tunicate species 
Styela clava was currently not included in the TimeTree database, 
and thus this species was manually added as sister lineage to the 
vase tunicate Ciona intestinalis (which was included in TimeTree 
database), while their divergence time was estimated as 388.5 
million years ago (Mya) (Delsuc et al., 2018). The updated time 
tree was utilized for all subsequent analyses unless otherwise 
clarified.

The phylogenetic signal of studied traits (e.g., RMR) was eval-
uated by Pagel’s λ (Pagel, 1999), which was estimated using the 
maximum-likelihood method implemented in the package phy-
tools (Revell, 2012) in R environment (version 4.1.2). Compared 
with other indices of phylogenetic signal, Pagel’s λ appeared to 
perform better especially for discriminating between complex 
models of traits evolution (Münkemüller et al., 2012). This index 
was introduced as a phylogeny transformation parameter, which 
measures the phylogenetic dependence of trait data by a value 
varying between 0 and 1. Generally, λ closer to 1 indicates strong 
phylogenetic signal and thus close relatives are more likely to 
have similar traits than distant relatives; λ closer to 0 indicates 
low phylogenetic signal and close relative are not more similar. 
Statistical significance of λ was evaluated by a likelihood-ratio 
test (p < 0.05) by comparing the observed λ with the null hypothe-
sis (no phylogenetic signal).

Genomic traits
Several genomic traits (characteristics) have been proposed 
to affect the amino acid composition (e.g., Akashi & Gojobori, 
2002; Cutter et al., 2006; Moura et al., 2013; Seligmann, 2003; 
Sueoka, 1961). Six potential traits were closely inspected here, 
viz: the genomic GC content (GC-genome), GC content of genomic 
protein-coding sequences (GC-CDS), genome size, protein expres-
sion level, protein evolutionary rate, and the genetic code per-
mutation. The last three traits will be described in detail in the 
following paragraphs.

Protein expression level: CAI-based codon usage bias and 
experiment-based proteome abundance
It is known that amino acid usage can be influenced by differ-
ences in protein/gene expression levels (Akashi & Gojobori, 2002). 
Herein two types of expression data were used. The first one is 
codon usage bias, which can be used to predict protein expres-
sivity given their association (Carbone et al., 2003; Sharp & Li, 
1987). To quantitatively measure the extent of codon usage bias, 
the widely used Codon Adaptation Index (CAI) was calculated 
(Carbone et al., 2003; Sharp & Li, 1987). CAI values were first esti-
mated for each individual gene. The gene CAI value ranges from 0 
to 1, with low values suggesting biased codon usage and high val-
ues similar codon usage. As the present study focused mainly on 
interspecific variations, species-level CAI values were then esti-
mated by calculating the average of CAIs of all genes in a species 
(genome). Species with low CAI imply biased protein expression 
and species with high CAI unbiased protein expression (Botzman 
& Margalit, 2011; Sharma et al., 2023). In this respect, variations 
in species-level CAI signal differences in gene/protein expression 
across species.

The second type of expression data was the experiment-based 
proteome abundance, which was obtained from the PaxDB data-
base (Huang et al., 2023). We chose the abundance data from the 
whole organism unless it was unavailable (see Supplementary 
Table S2). Because such data were only available in 15 species 
(Supplementary Table S2), we did not include them in subsequent 
dimension reduction analysis (see below) due to the small sam-
ple size. To evaluate the effect of experiment-based proteome 
abundance on RMR-AAfrequency relationship, we divided the pro-
teomes into two subdatasets, namely, the high-expression pro-
teins and the low-expression proteins, and then tested whether 
they yielded different results under the analysis. To identify the 
low- and high-expression proteins for a given species, we pooled 
all quantified proteins together and computed the 1st, 2nd, and 
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3rd quartiles of the overall distribution. Proteins with abundance 
below the 1st quartile and above the 3rd quartile were determined 
as low-expression and high-expression proteins, respectively. The 
high-expression proteins showed abundance about 10–10,000-
fold greater (depending on the species) than the low-expression 
ones. Limitation in sample size did not allow us to further con-
trast the two subdatasets.

Protein evolutionary rate (Evol Rate)
The rate of protein evolution was estimated in absolute term 
(i.e., amino acid substitutions per site per million years). First, 
single-copy orthologous (SCO) genes across studied species were 
inferred using the BUSCO metazoan_odb10 database (Simão et 
al., 2015). Protein sequences of the identified SCO genes were 
then aligned by MUSCLE (Edgar, 2004), and the yielded align-
ments were trimmed by BMGE to select phylogenetic informa-
tive regions (Criscuolo & Gribaldo, 2010). Second, for each SCO 
gene, the gene tree was reconstructed using maximum-likelihood 
method with IQ-TREE (Nguyen et al., 2015) based on the trimmed 
alignments. IQ-TREE analysis was performed with the afore-
mentioned time tree topology acting as a backbone constraint. 
Evolutionary model of protein sequence evolution was deter-
mined by ModelFinder (Kalyaanamoorthy et al., 2017). Third, for 
each SCO gene, its protein evolutionary rate was estimated as 
terminal lengths (expressed in amino acid substitutions per site) 
in gene tree divided by their lengths (expressed in million years) 
in time tree. Finally, the species-level protein evolutionary rates 
were obtained by calculating the average of evolutionary rates of 
all SCO genes identified in a species (36–56 SCO genes per species, 
with the mean being 52 SCO genes per species).

Genetic code permutation as suggested by the “genetic code 
hypothesis”
The genetic code effect was quantified as the expected AAfrequency 
due to random permutations of genetic codon bases. By multiply-
ing the frequency of bases (A, G, C, U) to obtain codon frequency, 
the expected AAfrequency was equal to the sum of frequencies of 
amino acid codons (Dyer, 1971; King & Jukes, 1969). This was done 
separately for each of the studied species.

Modeling the relationship between AAfrequency and 
RMR
Prior to the inference of the relationship between RMR and 
AAfrequency, RMR was dissected into three parts to clarify its sources 
(see Introduction section). Additionally, due to the obvious inter-
actions among the six genomic traits mentioned above (e.g., 
between GC-genome and GC-CDS), principal component analysis 
(PCA) was conducted to reduce the data dimensions of genomic 
traits.

Disentangling the components of metabolic rate
The present study dissected the RMR into three parts: the body 
mass component, the body temperature component, and the 
component independent of body mass and temperature (i.e., 
residual component; see Introduction section). To estimate these 
components, a mathematical model was fitted by modifying the 
fundamental equation of the metabolic theory of ecology (MTE) 
(Brown et al., 2004; Gillooly et al., 2001):

lnR = a+ b lnM+ c(
1
kT

) (1)

where R is RMR; a is a constant; b is the mass-scaling exponent 
(in the unmodified MTE equation the b is fixed to 0.75); M is body 

mass (in g); c is the negative value of activation energy (in eV); k 
is Boltzmann constant (0.0000862 eV K−1); and T is body temper-
ature (in K). To make it more readable, the above equation was 
written as:

lnR = Rmass + Rtemperature + Rresidual (2)

where Rmass is the body mass component of RMR and equal to 
blnM; Rtemperature is the temperature component of RMR and equal 
to c(1/kT); Rresidual is equal to ln(RM−be−c/kT) that represents the RMR 
component independent of body mass and temperature (Brown 
et al., 2004; Gillooly et al., 2001). Parameters a, b, and c were 
inferred from the phylogenetic generalized least squares (PGLS) 
method (Grafen, 1989) in the nlme package to control for phyloge-
netic non-independence across species (see paragraphs below).

Dimension reduction of genomic traits by PCA
For the genomic traits investigated (GC-genome, GC-CDS, genome 
size, CAI, protein evolutionary rate, and genetic code permuta-
tion), PCA was employed to reduce their complexity before sub-
sequent analyses. Because the genetic code permutations varied 
not only across species but also among amino acids, PCA was run 
for each of the 20 common amino acids separately. PC1~3 were 
selected for subsequent analyses. These PCs together can explain 
most (>86%) of variances of the studied genomic traits (see Results 
section). PCA was performed via the stats and FactoMineR pack-
ages in R.

Modeling the relationship between AAfrequency and 
metabolic rate
Relationships were modeled between the AAfrequency and the three 
RMR components (Rmass, Rtemperature, Rresidual) and three principal com-
ponents (PC1~3 of six genomic traits, see above): “ln(AAfrequency) ~ 
Rmass + Rtemperature + Rresidual + PC1 + PC2 + PC3.” Because PC1~3 varied 
among different amino acids, it was modeled for each of the 20 
amino acids, respectively. We fitted the model using both ordi-
nary least squares (OLS) and PGLS methods. Compared with OLS, 
PGLS can convert phylogeny to a variance–covariance matrix. The 
phylogenetic correlation structure (variance–covariance matrix) 
was constructed with five evolutionary models using corBrown-
ian, corPagel, corGrafen, corBlomberg, and corMartins in the ape 
package (Paradis & Schliep, 2019). Fitting performance of OLS and 
different PGLS models was evaluated by the corrected value of 
Akaike information criterion (AICc): lower AICc indicating better 
fit and difference in AICc (ΔAICc) > 4 indicating strong support 
(Burnham & Anderson, 2002).

The normality and homogeneity assumptions of OLS and 
PGLS regressions were checked by investigating the distribution 
of quantile against quantile and the trend of residuals against 
fitted values, respectively (Garamszegi, 2014; Quinn & Keough, 
2002). Assumption of lack of collinearity was tested by the 
Variance Inflation Factor (VIF) value, with VIF <10 indicating no 
collinearity among variables (Quinn & Keough, 2002). The inde-
pendence assumption is often violated in trait data across spe-
cies due to their shared evolutionary history (phylogeny), and 
PGLS method was implemented to deal with such a phylogenetic 
non-independence problem (Garamszegi, 2014). Since some PGLS 
regressions violated the normality/homogeneity assumptions, 
non-parametric bootstrap approach (with 1,000 replicates) was 
performed via the car package, and 95% CIs of estimates were cal-
culated by the bias corrected and accelerated method (or percen-
tile method if the bias-corrected and accelerated method failed).

Regression slopes of predictors Rmass, Rtemperature, and Rresidual were 
used to describe how the AAfrequency responded to the body mass 
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component of RMR, body temperature component of RMR, and 
RMR component independent of body mass and temperature. 
For example, significantly positive (or negative) slopes of Rmass and 
Rtemperature indicated positive (or negative) relationships between 
the AAfrequency with body mass and body temperature, respectively. 
Statistical significance was determined when the slope 95% CIs 
calculated by the bootstrap approach (see above) did not overlap 
with zero (p < 0.05).

Inferring the contribution of RMR to AAfrequency

To estimate how much variance of the AAfrequency was explained 
by RMR, we calculated the likelihood-based square value of the 
correlation coefficient (hereafter r2

lik) via package rr2 (Ives, 2019). 
In contrast to r2 (square of Pearson’s r) and other modifications 
of r2, r2

lik is particularly appropriate when the question is to iden-
tify the relative contribution of a specific factor within a given 
model (Ives, 2019). While r2 was estimated directly under OLS 
model, r2

lik was estimated by comparing a full PGLS model with a 
reduced PGLS model that removes a specific variable. For instance, 
r2

lik for RMR was inferred from comparing the full PGLS model  
“ln(AAfrequency) ~ Rmass + Rtemperature + Rresidual + Phylogeny” and the 
reduced model “ln(AAfrequency) ~ Phylogeny.” Similarly, r2

lik for genomic 
trait, e.g., CAI, was estimated from comparing the full model  
“ln(AAfrequency) ~ CAI + Phylogeny” and the reduced model  
“ln(AAfrequency) ~ Phylogeny.” In these models, phylogeny was included 
as the covariance in the residual variation of the PGLS fitting (Ives, 
2019; Wang et al., 2022). Comparisons of r2

lik values for RMR and 
the six genomic traits were done via the Wilcoxon signed-rank test 
(two tailed) in the stats package. Statistical significance was adopted 
when the Wilcoxon test p-value was below 0.05 (i.e., p < 0.05).

Great heterogeneities exist among the studied taxa in the six 
genomic traits aforementioned. This will certainly exert an influ-
ence on the relative contribution of RMR to AAfrequency. Therefore, 
it is essential to filter the data to reduce the confounding inter-
nal variation so that the general relative contribution of RMR can 
be estimated. Preliminary analyses showed that GC content of 
genomic protein-coding sequences (GC-CDS) bears the greatest 
confounding influence among the studied species; hence, we fac-
tored out the species with highly biased GC-CDS (i.e., the GC-CDS-
biased species, see below) and analyzed the r2

lik for RMR based on 
the remaining species. To identify species with biased GC-CDS, we 
pooled all species together and calculated the 1st, 2nd, and 3rd 
quartiles of the overall distribution. Species with GC-CDS below 
1st quartile and above 3rd quartile was identified as low-GC-
CDS and high-GC-CDS species, respectively. Both low- and high-
GC-CDS species were considered as GC-CDS-biased species and 
excluded.

Testing correlated evolution and evolutionary 
adaptation
Theoretically, there are at least two kinds of evolutionary mech-
anisms in causing the relationship between two traits (Blomberg 
et al., 2003; Prinzing et al., 2001; Wang et al., 2022). The first one is 
correlated evolution due to evolutionary adaptation. The second 
one is phylogenetic constraint, in which two traits have evolved 
independently of each other, and their seeming “relationship” 
is a reflection that both traits are constrained by their shared 
phylogenetic history (i.e., legacy from their common ancestors) 
(Blomberg et al., 2003; Wang et al., 2022). Hence, only when the 
frequency of a given amino acid was significantly related to at 
least one of the three RMR components under PGLS rather than 
OLS approach (p < 0.05), can correlated evolution be considered 
responsible for the RMR-AAfrequency relationship.

Adaptive and non-adaptive random-drift processes of trait 
evolution were described by the Ornstein–Uhlenbeck (OU) and 
Brownian motion (BM) model, respectively (Felsenstein, 1985; 
Hansen, 1997; Ingram & Mahler, 2013). The BM model assumes 
that trait changes are random events and trait may evolve indef-
initely to any value, while the OU model assumes trait changes 
toward either single adaptive optimum (single-regime OU, 
OU1) or multiple adaptive optima (multiple-regime OU, OUM). 
Therefore, adaptive evolution can be monitored by OU process 
in which different lineages evolved to either same or different 
optima (Hansen, 1997; Ingram & Mahler, 2013). Three evolution-
ary models (adaptive OU1, adaptive OUM, and non-adaptive BM 
model) were fitted separately on RMR components and AAfrequency 
data, using package geiger (Pennell et al., 2014) and the SURFACE 
method implemented in package surface (Ingram & Mahler, 2013). 
Model comparison was evaluated by ΔAICc (see above). Selection 
was considered as the potential driver of the correlated evolution 
of RMR and AAfrequency only when all of the following conditions 
were satisfied: (1) For a given amino acid, its frequency should 
be correlated significantly (p < 0.05) with at least one of the three 
RMR components under PGLS approach; (2) For a given amino 
acid, the evolution of its frequency should follow OU rather than 
BM model; (3) For a given amino acid, the evolution of its relevant 
RMR component(s) should follow OU rather than BM model.

Calculating Z-score values for each variable for 
heatmap visualization
Z-score values were used just for the heatmap visualization to 
present the interspecific variations in variables studied herein 
(AAfrequency, RMR components, genomic traits). With AAfrequency as 
an example, its Z-score was calculated by taking the difference 
between a species and the overall mean of all species and then 
dividing the difference by standard deviation (resulting in each 
amino acid having zero mean and standard deviation of one).

Results
Sources of interspecific variations in RMR and 
dimension reduction of genomic traits
As expected, RMR positively covaried with both body mass and 
body temperature (Figure 1A and B; note that in Figure 1B, the 
body temperature T was contained in the denominator in the 
1/kT term of x-axis), with more than 95% of the interspecific RMR 
variance being explained by the two factors (not shown). Body 
mass manifested a higher correlation to RMR than body temper-
ature (r2 = 0.956, p < 2.2e–16 versus r2 = 0.561, p < 2.2e–16; Figure 
1A and B). The mass-scaling exponent (b) was estimated to be 
0.805 and activation energy (–c) 0.583 eV. These two parameters 
were used for the calculation of the three RMR components Rmass, 
Rtemperature, and Rresidual (see Methods section).

PCA results (Figure 1C and D) showed that (1) more than 
86% of the variance in the six genomic traits can be explained 
by the first three principal components (i.e., PC1~3), and (2) PC1 
was highly correlated with the following three genomic traits: 
GC-CDS, GC-genome, and CAI (|r| ≥ 0.84). Both observations held 
true regardless of the amino acid concerned (note that we per-
formed PCA separately for each of the 20 common amino acids, 
see Methods section). PC2 and PC3 were mainly correlated with 
protein evolutionary rate and genome size, and also with genetic 
code permutation for several amino acids (Asp, Cys, Gln, Glu, Ser, 
Thr, and Val; note that this genomic trait was highly correlated 
to PC1 in the remaining amino acids; |r| ≥ 0.78). PC1~3, which was 
independent of each other, can thus largely represent the studied 
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genomic traits, and was then included as confounding factors in 
the model describing the relationship between AAfrequency and RMR 
components (see Methods section).

Phylogenetic patterns of AAfrequency and RMR 
across major animal lineages
The animal species studied here covered the major lineages of 
extant Eumetazoa (“true animal”), including vertebrates such 
as fishes, frogs, birds, and mammals, as well as invertebrates 
such as crustaceans, insects, arachnids, and mollusks (Figure 2). 
As shown in Figure 2, AAfrequency and RMRs appeared to be more 
conserved in vertebrates than in invertebrates (Figure 2), and we 
acknowledged that the invertebrate lineages studied here covered 
a much greater phylogenetic depth.

With all species as a whole, significant strong phylogenetic 
signals (Pagel’s λ close to one) were detected for both AAfrequency 
(λ = 0.95–1.00, p < 2.1e–29) and RMR components (λ = 0.84–0.91, 
p < 3.1e–25). This suggested that compared with distantly related 

animals, closely related ones had more similar RMR and AAfrequency 
in their proteomes, regardless of the RMR components and amino 
acid types concerned (Figure 2). The maximum difference in 
AAfrequency ranged from 1.25 (Leu) to 2.66 folds (Asn) in pairwise 
species comparisons.

Evolutionary relationship between RMR and 
AAfrequency across animals
In fitting the relationship between the AAfrequency with RMR com-
ponents (with PC1~3 of six genomic traits as confounding fac-
tors, see above), PGLS outperformed OLS approach for each of 
the 20 common amino acids (ΔAICc > 33). Results showed that 
there was no general relationship: the regression slopes under 
PGLS approach varied and could be positive, negative, or non-
significant among different amino acids and different RMR com-
ponents (Rmass, Rtemperature, Rresidual) (Figure 3; Supplementary Table S3). 
For instance, the frequency of amino acid Pro had positive slope 
with Rmass (Figure 3A) and Rresidual (Figure 3C), yet non-significant 

Figure 1.  Evaluation of sources of variations in resting metabolic rate (RMR) and dimension reduction of six genomic traits. (A) Correlation of RMR 
with body mass. The ln(RMR) is a measure of RMR corrected for the effect of body temperature with controlling for phylogenetic non-independence 
across species. The r2 is square value of Pearson’s correlation coefficient. *** indicates p < 0.001. (B) Correlation of RMR with body temperature. The 
ln(RMR) is a measure of RMR corrected for the effect of body mass with controlling for phylogenetic non-independence across species. The parameter 
k is Boltzmann constant (0.0000862 eV K−1), and T is body temperature (see Equation 1 in main text). (C) Principal component analysis shows variances 
of the six genomic traits that are explained by principal components (PC1~6). Shown is an example with all data pooled together. The six genomic 
traits are the codon adaptation index (CAI), genomic GC content (GC-genome), GC content of genomic protein-coding sequences (GC-CDS), protein 
evolutionary rate, amino acid frequency expected from random permutations of genetic codon bases (Genetic code permutation), and the genome 
size. (D) The correlation coefficient between six genomic traits with PC1~3 was extracted by principal component analysis. Shown is an example with 
all data pooled together. The x-, y-, and z-axis values indicate the correlation coefficient.
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(95% CIs overlapped with zero) slope with Rtemperature (Figure 3B), 
whereas that of the amino acid Ile had significantly negative slope 
with each of the three RMR components (Figure 3). Overall, under 
the PGLS approach, significant relationship between AAfrequency 
with RMR components (95% CIs did not overlap with zero) existed 
in eight amino acids including Ala, Arg, Gly, Ile, Lys, Met, Phe, and 
Pro (Figure 3).

To further explore why the interspecific relationship var-
ied and was not consistent, we analyzed the interrelation-
ship between amino acid synthesis cost and each of the three 
RMR components (displayed as regression slopes in Figure 3). 
The results were shown in Figure 4. It indicated that although 
there was no significant correlation between the synthesis cost 
and either Rmass (r = −0.16, p = 0.50) (Figure 4A) or Rtemperature slope 
(r = 0.18, p = 0.44) (Figure 4B), there did exist a significant negative 
correlation between synthesis cost and slope of Rresidual (r = −0.55, 
p = 0.01) (Figure 4C). This leads to a pattern that low-energy-cost 
amino acids were more likely to be at higher frequency in animal 
species with high residual metabolic rate (see Discussion section). 
Hence, the inconsistent Rresidual-AAfrequency relationship was at least 
partially due to difference in amino acid synthesis cost.

We also tested whether protein abundance (experiment-based 
expression level) influenced the above observations by exam-
ining comparatively low- and high-expression proteins (see 
Methods section). Our results indicated that in most cases the 
slopes (85%) were similar (95% CIs overlapped) in both subdata-
sets, with only 15% of slopes differing significantly (95% CIs did 
not overlap). Likewise, a similar correlation (95% CIs overlapped) 
existed between amino acid synthesis cost and the slopes in both 
sub-datasets (Supplementary Figure S1). These observations 
thus indicated that protein abundance did not appear to signif-
icantly shape the observed RMR-AAfrequency relationship, while we 
acknowledged that limitation in sample size due to the lack of 
enough expression data in animals did not allow us to conduct 
further test.

Quantitative contribution of RMR to AAfrequency 
across animals
In terms of r2

lik values, the studied predictors (RMR and six genomic 
traits) together explained up to 81.2% of variations in AAfrequency 
across animals. To mitigate the confounding influence of genomic 
traits on the relative contribution of RMR to AAfrequency, species 

Figure 2.  Interspecific variations and phylogenetic patterns of amino acid frequencies, resting metabolic rate (RMR), and six genomic traits 
among 166 animal species. Upper panel: evolutionary tree with branch lengths equal to time. Mya: million years ago. Lower panel: heatmap 
showing variations in amino acid frequencies, RMR, and six genomic traits expressed as Z-score values (see Methods section). One-letter amino 
acid abbreviations are shown in parentheses. RMR-1, RMR-2, and RMR-3 represent the body mass component of RMR (Rmass), the body temperature 
component of RMR (Rtemperature), and the residual RMR (Rresidual; the RMR component independent of body mass and temperature), respectively. The six 
genomic traits are codon adaptation index (CAI), protein evolutionary rate (Evol Rate), genetic code permutation as suggested by the “genetic code 
hypothesis” (Genetic code), GC content of genomic protein-coding sequences (GC-CDS), genomic GC content (GC-genome), and genome size. Right 
panel: barplot showing the phylogenetic signal (Pagel’s λ) for each trait. The λ generally ranges between 0 and 1, with λ close to 1 indicating strong 
phylogenetic signal (phylogenetic dependence of the trait value).
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with biased GC-CDS were excluded (see Methods section), yielding 
a dataset with 82 species (52 vertebrates and 30 invertebrates). 
On average, RMR made a relative contribution of 27.7% (r2

lik for 
RMR = 2.0%–69.2%) to AAfrequency (Figure 5). This level of contribu-
tion was significantly greater (Wilcoxon test p < 0.05) than those of 
GC-genome (mean r2

lik = 11.9%), genome size (mean 2.9%), and pro-
tein evolutionary rate (mean 2.8%), and comparable to (p = 0.48–
0.88) the remaining three genomic traits including GC-CDS, genetic 
code permutation, and CAI (mean 27.2%–33.2%) (Figure 5).

Evolution of RMR and AAfrequency was adaptive
To examine whether the RMR-AAfrequency relationship was driven 
by selection or random drift and to infer the evolutionary pat-
terns, three evolutionary models (BM, OU1, and OUM) were com-
pared. The BM model describes a random process, whereas OU 
model describes the adaptive process with either single (OU1) or 

multiple (OUM) adaptive optima caused by selection pressure. For 
each of the 20 amino acids and the three RMR components, OUM 
model was always the best fit among the three models (ΔAICc > 57) 
(Table 1). This indicated that these variables had evolved follow-
ing adaptive rather than random-drift process, and there existed 
multiple rather than a single adaptive optima across different 
evolutionary lineages. Selection was further suggested to under-
line the significant AAfrequency-RMR relationships observed for eight 
amino acids (Ala, Arg, Gly, Ile, Lys, Met, Phe, Pro; Figure 3).

Discussion
Connection between metabolic rate and AAfrequency 
across animal lineages
Our results indicate that RMR played an important role in the 
variation of AAfrequency across animal lineages, with a contribution 
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Figure 3.  Results of the linear regressions between the frequencies of 20 common amino acids (in log unit) and the resting metabolic rate (RMR) 
using the phylogenetic generalized least squares (PGLS) approach. (A) Slopes of PGLS regressions between the body mass component of RMR (Rmass) 
and amino acid frequency (AAfrequency) of the 20 common amino acids. The error bar indicates the 95% CIs calculated by bootstrap approach. (B) Slopes 
of PGLS regressions between the body temperature component of RMR (Rtemperature) and AAfrequency of the 20 common amino acids. (C) Slopes of PGLS 
regressions between the residual RMR (Rresidual; see Methods section) and AAfrequency of the 20 common amino acids. * indicates significant slope, for which 
the 95% CIs did not overlap with zero. Estimates of the regression intercepts and slopes of other predictors are displayed in Supplementary Table S3.
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comparable to or even much greater than the genomic traits 
investigated here. We showed that RMR explains on average 27.7% 
of the variance among animal lineages where the confounding 
effects of nucleotide compositional biases were controlled (Figure 
5). Our comparative analysis of the experiment-based proteome 
abundance data indicated that protein abundance did not appear 
to significantly shape the observed RMR-AAfrequency relationship, 
although this preliminary conclusion deserves further testing 
when more expression data become available.

Nevertheless, the RMR-AAfrequency relationship varies greatly in 
different amino acids, even with an account of the differences 
from several genomic traits. For example, high RMR appears 

to exert a positive influence on the amino acid Pro (hence at 
high frequency) but a negative influence on Ile (hence at low 
frequency) in the proteomes. That is, no general significant 
relationship can be detected, as shown by the regression slopes 
under PGLS approach, which varied among amino acids and RMR 
components and can be positive, negative, or non-significant 
(Figure 3). Such a varying influencing pattern of RMR was in 
parallel with the effect of GC content observed by Moura et al. 
(2013). They reported that higher level of GC content resulted in 
increased AAfrequency for several amino acids such as Gly and Val, 
but decreased AAfrequency for some other ones such as Ile and Lys 
(Moura et al., 2013). Taken together, these observations signal 
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Figure 4.  Effects of the energy cost of amino acid biosynthesis on regression slope between resting metabolic rate (RMR) and amino acid frequency. 
(A) The effect of biosynthetic energy cost on the regression slope between amino acid frequency and body mass component of RMR (i.e., the slope 
of Rmass). Values of regression slopes are obtained from Figure 3 and Supplementary Table S3. r: Pearson’s correlation coefficient. The 20 common 
amino acids are indicated as one-letter amino acid abbreviations, i.e., A: Ala; C: Cys; D: Asp; E: Glu; F: Phe; G: Gly; H: His; I: Ile; K: Lys; L: Leu; M: Met; 
N: Asn; P: Pro; Q: Gln; R: Arg; S: Ser; T: Thr; V: Val; W: Trp; Y: Tyr. (B) The effect of biosynthetic energy cost on the slope of regression between amino 
acid frequency and body temperature component of RMR (the slope of Rtemperature). (C) The effect of biosynthetic energy cost on the slope of regression 
between amino acid frequency and residual RMR (the slope of Rresidual; see Methods section for details about Rresidual). * indicates statistical significance 
(p < 0.05).

Figure 5.  Contributions of predictors to variations in the frequency of 20 common amino acids among 82 species with similar GC content. 
Contributions are quantified by the likelihood-based square values of the correlation coefficient (r2

lik). Predictors shown here include the resting 
metabolic rate (RMR highlighted in the graph) as well as six genomic traits: GC content of genomic protein-coding sequences (GC-CDS), genetic 
code permutation as suggested by the “genetic code hypothesis” (Genetic code), codon adaptation index (CAI), genomic GC content (GC-genome), 
genome size, and protein evolutionary rate (Evol Rate). The r2

lik values are inferred from animal species with exclusion of those showing biased 
GC-CDS content. See Methods section for details on how the GC-CDS-biased species are identified. Predictors are ordered according to their mean r2

lik 
values, which were shown as colored dots in the boxplot (with their values also shown on the top of the boxplot). * indicates Wilcoxon test p < 0.05 
in comparison between RMR with one of the genomic traits; *** indicates p < 0.001; - indicates p > 0.05. The 20 common amino acids are indicated as 
one-letter amino acid abbreviations, i.e., A: Ala; C: Cys; D: Asp; E: Glu; F: Phe; G: Gly; H: His; I: Ile; K: Lys; L: Leu; M: Met; N: Asn; P: Pro; Q: Gln; R: Arg; S: 
Ser; T: Thr; V: Val; W: Trp; Y: Tyr.
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that interspecific AAfrequency variations are shaped by multiple 
interacting factors during evolution, and the observed outcomes 
reflect the trade-off among these factors in a specific evolution-
ary context conforming to the physiology and ecology of the 
organisms under consideration (see below).

The mechanisms for the aforementioned evolutionary trade-
off are likely functioning hierarchically. Namely, while RMR can 
significantly affect AAfrequency via the optimization of energy allo-
cation to protein biosynthesis, other factors acting at some other 
levels could dim this effect in the course of evolution. The synthe-
sis cost of amino acid is one of them (see the next section; Figure 
4C), and another crucial factor could be the requirement to max-
imize the protein sequence entropy to enable protein function 
diversity (Krick et al., 2014). The trade-off between optimization 
in energy utilization and diversification in protein sequence/func-
tion may help to reconcile the varying RMR-AAfrequency relation-
ships observed here. Taking the amino acid Leu as an example, 
decreased Leu content in numerous proteins is favored by many 
organisms that have adapted to the low-temperature environ-
ment (Berthelot et al., 2019). Meanwhile, the low environmental 
temperature would increase the metabolic rate (Rresidual) of many 
animals (Addo-Bediako et al., 2002; Kovac et al., 2022; White et al., 
2012). Therefore, low environmental temperature became con-
nected with low Leu frequency and high Rresidual in these situations, 
thereby resulting in a negative relationship between these two 
traits. Such a negative relationship due to low-temperature adap-
tation masked the positive effect of RMR, hence ultimately lead-
ing to the observed non-significant slope between Leu frequency 
and Rresidual in Figure 3C. Our observations thus provide evidence 
for the supposition that effects of minimizing protein synthesis 
cost at molecular level usually vary with different ecological and 
metabolic strategies at the whole-organism level (Seligmann, 
2003).

The above analyses lead to a general conclusion that there 
does not exist a universally applicable “one-size-fits-all” predic-
tor for the frequencies of the 20 common amino acids (Figure 5; 
Knight et al., 2001; Figure 1B therein; Moura et al., 2013, Table 3 
therein), and integrated investigations on interacting traits across 
different levels of biological hierarchy of organization are indis-
pensable, so that the evolution of AAfrequency can be both qualita-
tively and quantitatively elucidated.

Relationship between RMR and AAfrequency was the 
evolutionary consequence of adaptation
Our data demonstrated that the Rresidual-AAfrequency relationship 
(the regression slope) is significantly and negatively associated 
with the energy cost of amino acid biosynthesis (Figure 4C). This 
means that low-energy-cost amino acids are more likely to dis-
play a positive response (i.e., slope > 0) to Rresidual than high-energy-
cost amino acids. The logic is as follows. Species with high Rresidual 
will have more energy allocated to amino acid biosynthesis and 
thus may show high AAfrequency. However, given the cost variations 
in amino acid biosynthesis, there exist two possible strategies 
on the energy allocation: (1) more energy allocated to high-cost 
amino acids, or alternatively (2) more energy allocated to low-cost 
amino acids. Because energy resources are generally limited for 
animals, energy allocation to protein biosynthesis has to be opti-
mized (Akashi & Gojobori, 2002; Heizer et al., 2006; Seligmann, 
2003) given the adaptive nature of metabolic rate. Therefore, if 
natural selection exerts influence on AAfrequency via the optimiza-
tion of energy utilization, the second rather than the first strategy 
is expected, since more low-cost amino acids can be biosynthe-
sized than high-cost ones with a given amount of energy flux. 
Consequently, less energetically costly amino acids are favored 
and thus have higher frequency in proteomes of high-Rresidual 
species. This is exactly what we have observed in the analysis 

Table 1.  Model-fitting results showing that the evolution of amino acid frequency and resting metabolic rate (RMR) follows adaptive 
evolution.

Amino acid and 
RMR

BM model OU1 model OUM model

AICc ΔAICc AICc ΔAICc AICc
ΔAICc

Ala −326.15 98.71 −324.07 100.78 −424.86 0
Arg −444.06 144.41 −441.99 146.48 −588.47 0
Asn −311.25 134.24 −309.17 136.31 −445.48 0
Asp −735.93 128.93 −733.86 131.00 −864.86 0
Cys −616.26 156.05 −614.18 158.13 −772.31 0
Gln −646.43 212.75 −644.36 214.82 −859.18 0
Glu −711.55 156.66 −709.48 158.74 −868.22 0
Gly −459.46 134.24 −457.39 136.32 −593.70 0
His −701.33 116.91 −699.25 118.98 −818.24 0
Ile −345.38 107.28 −343.30 109.35 −452.66 0
Leu −767.66 143.01 −765.59 145.08 −910.67 0
Lys −416.07 163.65 −414.00 165.73 −579.72 0
Met −609.24 153.57 −609.74 153.06 −762.81 0
Phe −552.66 87.09 −550.58 89.17 −639.75 0
Pro −451.04 100.18 −448.97 102.26 −551.22 0
Ser −696.79 134.39 −694.71 136.47 −831.18 0
Thr −650.89 96.07 −649.12 97.85 −746.96 0
Trp −558.83 203.09 −566.94 194.98 −761.92 0
Tyr −551.51 103.51 −549.44 105.59 −655.03 0
Val −650.79 214.68 −648.72 216.76 −865.47 0
Rmass 896.99 156.25 877.54 136.81 740.74 0
Rtemperature 303.50 231.47 274.55 202.53 72.02 0
Rresidual 414.97 72.53 400.07 57.63 342.44 0

Note. The R represents the resting metabolic rate (RMR). Rmass is the body mass component of RMR; Rtemperature is the body temperature component of RMR; Rresidual 
is the RMR component independent of body mass and temperature. BM = Brownian motion model; OUM = multiple-regime Ornstein–Uhlenbeck (OU) model; 
OU1 = single-regime OU model. OUM and OU1 are adaptive models, whereas BM is non-adaptive model. The lower the AICc value, the better the model. The ΔAICc 
value is calculated relative to the lowest AICc (in bold); ΔAICc > 4 indicates good support. OUM is thus determined as the best model with strong support.
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(Figure 4C), which is consistent with the pattern proposed by 
the “synthesis cost hypothesis” (see Introduction section). Our 
finding has hence provided evidence to earlier observation that 
the energy-cheap amino acids should have been preferred due 
to selection pressure (Krick et al., 2014; Seligmann, 2003; Swire, 
2007) and importantly, extended it to among-species scenarios. 
Therefore, natural selection serves as a general explanation for 
both intraspecific and interspecific variations in AAfrequency.

Our analyses of the evolutionary model fitting further sup-
port that the observed RMR-AAfrequency relationship is the outcome 
of correlated evolution driven by adaptation. While in compara-
tive analyses across species, two traits can be seemingly related 
because they are a legacy from the ancestors (i.e., due to shared 
phylogenetic history) rather than truly correlated as a result of cor-
related evolution (Blomberg et al., 2003; Prinzing et al., 2001; Wang 
et al., 2022), the PGLS approach adopted here took into account of 
the influence of phylogenetic relatedness. Our results showed that 
correlated evolution is responsible for the correlations between 
RMR and the frequencies of eight amino acids (Ala, Arg, Gly, Ile, Lys, 
Met, Phe, and Pro), as shown by their significant slopes under PGLS 
(Figure 3). Our evolutionary model-fitting analyses furthermore 
showed that the adaptive OUM model fitted the data best than 
other models (including the random-drift model), regardless of 
which RMR component or amino acid is concerned (Table 1). These 
results indicate that evolutionary adaptation is the driving force 
of the observed correlated evolution. This is not unexpected given 
that both metabolic rate and AAfrequency have been documented to 
manifest adaptive response to variables such as environmental 
temperature and resources (Addo-Bediako et al., 2002; Arnqvist et 
al., 2022; McNab, 2015; Moura et al., 2013; Tekaia et al., 2002).

Conclusions
The results of our exploratory investigation on the relationship 
between the organism-level RMR and molecular-level AAfrequency 
were in line with the "metabolic rate hypothesis" of AAfrequency evo-
lution in animals. We revealed that RMR makes a non-negligible 
contribution to the variance of AAfrequency (mean 27.7%, 2.0%–
69.2%) across animal lineages, with an effect not less than any 
of the genomic traits studied when the nucleotide compositional 
bias was controlled. We found that low-energy-cost amino acids 
are more likely to be at higher frequency in animal species with 
high residual metabolic rate. We further showed that the rela-
tionship between RMR and AAfrequency varies greatly among amino 
acids, and such a variation is most likely an outcome of trade-offs 
among various interacting factors (e.g., metabolic optimum and 
protein sequence diversity) in an evolutionary context conform-
ing to the physiology/ecology of the lineages under consideration. 
We also demonstrated that the significant RMR-AAfrequency corre-
lations observed were driven by adaptation rather than random 
drift. Clearly, given that there is unlikely any universally appli-
cable “one-size-fits-all” predictor, integrated investigations on 
various interacting factors across multiple levels of biological 
hierarchy of organization are vital for a fuller understanding of 
the mechanisms of interspecific AAfrequency variations in animals. 
In particular, more data of metabolic rate and proteome expres-
sion from phylogenetically diverse animal species will greatly 
promote a better understanding of the RMR-AAfrequency relationship 
and thus allow to further test the “metabolic rate hypothesis.”
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