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Abstract

Background Precipitation regimes in arid and semi-
arid regions are exhibiting a trend of increase in rainfall
intensity but reduction in frequency, affecting soil com-
munities and ecosystem functions. Soil nematodes are
essential components of soil communities, partaking
in multiple energy channels and underpinning various
crucial ecosystem functions. Understanding the impact
of precipitation regime changes on energy fluxes within
soil nematode food webs has a decisive impact on eco-
system function under global climate change.

Methods This study conducted a long-term field
experiment established in 2012 to simulate precipitation
regime changes (the total precipitation added was 80 mm
unchanged, but the size and frequency of applied pre-
cipitation events were varied) in a semi-arid grassland of
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Inner Mongolia. We quantified the metabolism and ener-
getic structure of soil nematodes. We further investigated
the responses of metabolic rate of trophic groups and
energy fluxes within soil nematode to changes in precipi-
tation regime, and how such changes in nematode energy
dynamics affect ecosystem multifunctionality (EMF).
Results We found that heavy precipitation intensity
increased the metabolic rates and energy fluxes of all
trophic groups, and the EMF index was maximized.
The EMF values were positively correlated with the
metabolic rates and energy fluxes of bacterivores and
omnivores/predators.

Conclusions These results suggest that a shift toward
higher-intensity and lower-frequency precipitation
events could lead to an increase in energy fluxes within
soil nematode food webs, thereby enhancing their con-
tributions to EMF. These findings provide insights into
the role of energy dynamics in affecting EMF under var-
ious scenarios of precipitation pattern changes.
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Introduction

Climate models predict variabilities in precipitation
regimes (IPCC 2013), potentially leading to variations
in precipitation volume, seasonal distribution, precipita-
tion frequency, and extreme rainfall events (O’Gorman
2012; Peng et al. 2013). Temperate regions experience
a general shift toward lower-frequency and higher-inten-
sity precipitation events, whereas the overall precipita-
tion amount remains largely unchanged (Easterling et al.
2000; Radu and Duval 2018). Such changes in precipita-
tion regimes can affect soil water dynamics and terres-
trial ecosystem functionality (Knapp et al. 2008). Most
studies have focused on the impacts of changes in pre-
cipitation amount and seasonal distribution (Peng et al.
2013; Wang et al. 2022; Zhang and Xi 2021), howeyver,
little is known about the impacts of the shift to larger but
fewer rainfall events on grassland ecosystems, especially
belowground communities.

Nematodes are dominant soil organisms dwelling
in water films (Neher 2010), which distribute across
multiple trophic levels and play key roles in ecosystem
functions (Zhang et al. 2024). Variations in precipita-
tion are likely significant determinants of alterations
in the composition and function of soil nematodes
(Landesman et al. 2011). For instance, greater precipi-
tation increases the abundance of predaceous nema-
todes that consume and limit the abundance of nema-
todes lower in the trophic structure in mesic grassland
(Franco et al. 2019). Furthermore, such water pulses
may enhance diversity by suppressing dominant spe-
cies in mesic grasslands (Song et al. 2016). Ecologists
are increasingly recognizing the importance of traits to
understand the responses of soil nematodes to environ-
mental changes, rather than abundance or/and diversity
(de Bello et al. 2021; Zhang et al. 2024). For example,
large bodied soil nematodes benefit from higher long-
term water availability (i.e. mesic conditions select for
larger-bodied taxa) (Andriuzzi et al. 2020). Differences
in nematode diversity, community structure and traits
have been proved that are related to changes in precipi-
tation. However, there is limited empirical evidence on
how the energy dynamics of the soil nematode food
web respond to changing precipitation regimes.
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Emerging evidence suggests that energy dynamic
across trophic levels serves as a vital descriptor of key
ecosystem processes (Barnes et al. 2018; Moore 2012).
For instance, the energy distributions across multiple
trophic groups directly affect the stability of soil food
webs and carbon flux between food resources/preys
and consumers/predators (Potapov 2022; Trap et al.
2016; Xing 2024). Generally, increased water avail-
ability may result in more energy fluxes channeling to
lower trophic groups and facilitate meeting top preda-
tors’ energy demands (Potapov et al. 2019, 2021).
Adequate energy supply for trophic groups can pro-
mote faunal metabolism and thereby increase their
contributions to soil total CO,flux (Liao et al. 2023).
Nematode metabolic rate is a physiological trait related
to growth rate and carbon cycling (Zhang et al. 2024)
and consists of production carbon and respiration car-
bon (Ferris 2010). By integrating metabolic theories
with assimilation efficiency and energy losses, the
energy flux from each resource node to the correspond-
ing consumer within soil nematode food web could
serve as a metric for assessing ecosystem-level impacts
(Barnes et al. 2014, 2018; Zhu et al. 2023). Ecosystem
multifunctionality (EMF) is the capacity of an ecosys-
tem to simultaneously provide multiple functions and
services, such as carbon and nutrient cycling(Garland
et al. 2020). Therefore, clarifying the connection
between energy dynamics of soil nematode food web
and EMFwill enhance our understanding of the conse-
quences of alterations in precipitation regimes on bio-
diversity and the energy flow within soil food web.

In this study, we conducted an 8-year precipita-
tion experiment in a temperate grassland to explore
the responses of soil nematode energy dynamics to
the precipitation regime changes and their impact on
ecosystem multifunctionality. We hypothesized that
higher-intensity precipitation regimes would promote
the energy dynamics of the soil nematode food web
by enhancing soil water availability, and such posi-
tive changes in nematode energy dynamics further
increase ecosystem multifunctionality.

Materials and methods

Site and experimental design

This study was conducted at the Duolun Restoration
Ecology Research Station of the Institute of Botany,
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Chinese Academy of Sciences, Inner Mongolia, China
(42°02" N, 116°17" E). The study area was located in
a semi-arid temperate steppe (Zhou et al. 2013). The
mean annual precipitation (MAP) was 383 mm, with
90% distributed from May to October. The mean
annual temperature (MAT) was 2.1 °C. The soil was
classified as Haplic Calcisols according to the FAO
classification. Soil bulk density was 1.31 g cm™3(Xia
et al. 2009). The nitrogen (N) and phosphorus (P) con-
tents were 0.17% and 0.028%, respectively. The plant
community at the site was dominated byStipa krylovii,
Agropyron cristatum, and Artemisia frigida.

The precipitation manipulative experiment began
in May 2012. A randomized block design with four
replicate blocks was adopted; each block consisted
of six randomly distributed treatment plots (3 X4 m).
Different precipitation intensities (the total precipi-
tation unchanged, but the size and frequency of pre-
cipitation varied) were selected to simulate the pre-
cipitation regime changes: 0 mm (control), 2 mm (40
times), 5 mm (16 times), 10 mm (8 times), 20 mm
(4 times) and 40 mm (2 times), totaling 24 experi-
mental plots. We considered the manipulation of the
degree of precipitation change was quite arbitrary,
ranging from 5 to 100%. In this study, 20% of aver-
age annual precipitation of the research station was
taken as intended precipitation, which is a magni-
tude mostly used (Beier et al. 2012; Wu et al. 2011).
And an increase in 20% makes the total annual pre-
cipitation near the 80th percentile of the past 40-year
record. Therefore, eighty millimeters of water were
evenly added to each plot from June to August, dur-
ing which period the grassland productivity is the
highest every year. Soil sampling was done at the end
of the growing season (September) in 2020. It has
undergone eight years since soil sampling, and we
can believe the responses caused mainly by the effects
of treatments.

Soil and plant sampling

Soil samples were collected in September 2020, at the
end of the growing season. Seven soil cores (2.5 cm
in diameter) were randomly collected from the sur-
face (0-10 cm) and mixed as one composite sample
per plot. Soil samples were stored at 4 °C before ana-
lyzing soil nutrients and nematodes.

Plant samples were collected in August 2020. The
number of plant species was recorded as plant species

richness in each plot. The vegetation clipped in each
quadrat (0.2 x 1.0 m) was oven-dried at 65 °C for 48 h
and weighted as aboveground biomass (AGB). After
removing the standing vegetation, the roots were
sampled (0-10 cm) by randomly mixing three soil
cores (5.0 cm in diameter) from each plot. The roots
that were separated from the soil by washing, oven-
dried at 65 °C and weighted as belowground biomass
(BGB).

Nematode energetic structure

Nematodes were extracted from 50 g fresh soil by
using a modified cotton-wool filter method (Oosten-
brink 1960). After counting, at least 100 individuals
were randomly selected from each sample and identi-
fied at the genus level. Nematodes are classified into
bacterivores, fungivores, herbivores, and omnivores/
predators according to their feeding habits (Yeates
et al. 1993). The fresh biomass of the nematodes was
estimated using data fromhttp://nemaplex.ucdavis.
edu. The individuals of nematodes (per m?) were cal-
culated as follows (Liao et al. 2023):

N=Dx 1x Gx 10°%x A

where D is the soil sampling depth (m), 1 repre-
sents 1 m?, G is the soil bulk density (g cm_3), 100 is
the conversion coefficient from m? to cm?, and A is
the individuals of nematodes per gram of soil sample.

Nematode metabolic rate is a physiological trait
related to growth rate and carbon cycling (Zhang
et al. 2024) and consists of production carbon and
respiration carbon (Ferris 2010). By combining the
production carbon (0.1W/12cp.;,) with respiration
carbon (0.0159Wi0'75) of an individual, the metabolic
rate of nematodes (mg C m~2 d7!) was calculated
using the following equation (Ferris 2010; van den
Hoogen et al. 2019):

M=) (N;x (0.1W,/12cp; + 0.0159W>7)

where N, is the number of individuals of genus i
(per m’), W, is the fresh biomass of genus i (mg), and
cp.; is the colonizer-persister value of genus i. Next,
the metabolic rate of each trophic group was calcu-
lated by summing the metabolic rates at the genus
level within the corresponding trophic group.

The energy flux of each trophic group (mg C m~>
d~") was calculated as follows:
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F=M;+L)/e,

where M is the total metabolic rate of all indi-
viduals in trophic group j (mg C m™2 d7"), L is the
energy loss to the corresponding consumer, and e,is
the assimilation efficiency (0.60, 0.38, 0.25 and 0.50
for bacterivores, fungivores, herbivores, and omni-
vores/predators, respectively) (De Ruiter et al. 1993;
Schwarz et al. 2017). First, the energy flux of omni-
vores/predators was calculated asF,p = Myple,,
because there is no predator of omnivores/predators
(i.e., the energy loss L was zero) in our study. Next,
the energy loss of each lower trophic group to omni-
vores/predators could be calculated as F,pXP; (where
P; is the proportional abundance to the total lower
trophic group abundance of trophic group j).

Ecosystem Multifunctionality

Ecosystem multifunctionality metrics potentially sum-
marize the ability of ecosystems to deliver multiple func-
tions and services simultaneously, and aim to understand
ecosystem functioning from multidimensional patterns
(Manning et al. 2018). In this study, the selection of func-
tions is based on their theoretical links with grassland
belowground ecosystem functions. We used 11 meas-
urements related to three key belowground ecosystem
functions: (a) water regulation (soil moisture), (b) soil
nutrient supply (total nitrogen, total phosphorus, avail-
able nitrogen, ammoniacal nitrogen, nitrate nitrogen,
microbial biomass carbon and microbial biomass nitro-
gen), and (c) vegetation properties (plant richness, above-
ground biomass, and belowground biomass). Detailed
measurements of these indicators and their importances
are provided in Supplementary information (TableS1).

The averaging approach is an intuitive and effec-
tive method to evaluate changes in several ecosys-
tem functions and enables the calculation of EMF
(Hooper and Vitousek 1998; Maestre et al. 2012).
The Z scores of the 11 functions under each treatment
were calculated first by the formula Z;= (x;~ ;)/0;,
where the Z; is the Z-score of function i under treat-
ment j, X is the value of function i under treatment j,
u; is the average of function i under six treatments and
o; is the standard deviation of function i within six
treatments. The EMF index under different precipita-
tion treatments was the average of the Z scores of the
11 functions.
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Data analysis

Data were analyzed using R 4.3.2 version. Linear
mixed-effects models were used to evaluate the effects
of precipitation regime changes on soil moisture, eco-
system multifunctionality (EMF) index, metabolic
rate, and energy flux of each nematode trophic group,
in which the precipitation intensity treatment was
fixed factor, and block was a random factor. Before
statistical analysis, all data were tested for normality
and homoscedasticity of variance. One-way analysis
of variance (ANOVA) followed by the least significant
difference (LSD) post hoc test (P <0.05) was used to
test the effect of precipitation regime changes on the
soil moisture, ecosystem multifunctionality (EMF)
index, metabolic rate, and energy flux of each nema-
tode trophic group. Linear regressions were used to
reveal the relationships between metabolic rate and
EMF index and the relationships between energy flux
and EMF indices of all trophic groups.

Results
Soil moisture and ecosystem multifunctionality

Heavy precipitation intensity (20 mm) significantly
increased the soil moisture (Fig. 1A, Table S2,
P<0.01), and changes in the precipitation inten-
sity significantly affected the EMF index (Fig. 1B,
Table S2, P<0.05). The EMF values were lower
under 0-, 2-, and 10-mm precipitation intensity treat-
ments than those under the other treatments. The
maximum EMF value of 0.46 was achieved under the
heavy precipitation treatment (20 mm).

Energetic structure of the soil nematode food web

Changes in precipitation intensity had significant effects
on the metabolic rates of all nematode trophic groups
(Fig. 2A, Table S2, P<0.01). The metabolic rates of
bacterivores under the heavy and extreme precipitation
treatments were higher than those under the other treat-
ments (P <0.01). The 10-, 20- and 40-mm precipitation
treatments significantly increased the metabolic rate
of fungivores, and herbivores compared with the other
precipitation intensity treatments (P <0.01). The meta-
bolic rate of omnivores/predators was the highest under
the heavy precipitation treatment (P <0.01).
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Fig.1 The response of soil moisture and ecosystem mul-
tifunctionality (EMF) index to the precipitation intensity
change. Vegetation was presented by a dominant species (Stipa
krylovii). SM, Soil moisture; TP, total phosphorus; TN, Total
nitrogen; AN, available nitrogen; MBC, Microbial biomass
carbon; MBN, Microbial biomass nitrogen; NH4+—N, Ammo-

Variations in precipitation regimes significantly
affected the energy flux from basal resources to
the nematode trophic groups (Fig. 2B, Table S2,
P <0.01). The energy flux of bacterivores was sig-
nificantly higher under 20 mm precipitation treatment
than those under the other treatments (P <0.01). The
energy fluxes of fungivores under 10-, 20- and 40-mm
precipitation treatments were higher than those under
the low precipitation treatments (P <0.01). Changes
in precipitation intensity significantly enhanced the
energy fluxes of herbivores and omnivores/predators
under 10 mm and 20 mm precipitation treatments
(P<0.01).

A. Soil moisture (%)
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127 ¢ P
8
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niacal nitrogen; NO;™-N, Nitrate nitrogen; AGB, aboveground
biomass; BGB, belowground biomass. Error bar means stand-
ard error (S.E.). Different letters indicate significant differences
among different precipitation intensities. The number of repli-
cates was 4 (n=4)

Changes in precipitation intensity altered nema-
tode biomass distribution and energy flux within the
soil nematode food web (Fig. 2C). Under the heavy
precipitation treatment (20 mm), more energy fluxes
flowed from basal resources to nematodes in lower
trophic level than those under the other treatments.
Additionally, there were more energy fluxes flowing
from each lower trophic group to omnivores/predators
under the 20 mm precipitation treatment than under
the other treatments. Correspondingly, the biomass
of omnivores/predators peaked under heavy precipi-
tation treatment, followed by those under moderate,
extreme, and low precipitation treatments.
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Fig. 2 The effects of precipitation intensity on metabolic rate
and energy flux of each trophic group (A and B). Changes in
energy flux and fresh biomass distribution between soil food-
web under different precipitation intensity (C). Values in nodes
indicate fresh biomass (mg m™2). Values in boxes indicate
energy fluxes (mg C m~2 d™"). For each precipitation intensity,
a five-node food web was constructed with bacterivores, fun-
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givores and herbivores, receiving energy from basal resources
(R), and omnivores/predators receiving energy from lower
trophic groups of nematodes. Error bar means standard error
(S.E.). Different letters indicate significant differences among
different precipitation intensities. The number of replicates was
4 (n=4)
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Relationships between the nematode energetical Discussion

structure and EMF

The EMF increased with the increasing meta-

Impact of precipitation regime changes on energy

bolic rate of bacterivores and omnivores/predators

(Fig. 3A, D, P<0.05), and the EMF indices were
positively correlated with the energy fluxes of bac-
terivores and omnivores/predators (Fig. 3E, H,

P <0.05).

Fig. 3 The relationships
between metabolic rate
and ecosystem multifunc-
tionality index (A-D).
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fluxes of nematodes by augmenting soil water avail-
ability, supporting our hypothesis. Studies have shown
that an increase in soil moisture due to low rainfall is
prone to evaporative loss, and heavy rainfall can effec-
tively replenish soil water availability more (Peng et al.
2013; Wythers et al. 1999). The reason for this is that
heavy rainfall can penetrate deeper into the soil layers,
reducing the proportion of evaporative loss and main-
taining soil moisture at a relatively high level (Heisler-
White et al. 2009). Many studies have demonstrated that
higher soil water availability potentially stimulates plant
growth in water-limited grasslands (Lin et al. 2024; Ren
et al. 2015). Our results also support that increased pre-
cipitation intensity promotes aboveground biomass and
provides more resource inputs for herbivores, improving
their energy fluxes. Increases in energy fluxes of micro-
bivorous nematodes under heavy-intensity and low-
frequency precipitation regime can be explained by the
two reasons. Firstly, increased root exudation caused by
increased soil water availability may favor rhizosphere
microorganisms, facilitating the flow of resources to
microbivorous nematodes (Bardgett and van der Putten
2014; Todd et al. 1999). Secondly, there was a sudden
release of easily available energy and carbon from cells
when the soil was rewetted (Schniirer et al. 1986). This
phenomenon potentially enhanced the carbon uptake of
microbivorous nematodes, further fostering the trans-
fer of energy to nematode food webs. A precipitation
regime shifting toward higher intensity and lower fre-
quency benefits soil nematode energy fluxes, and the
energy flux under 40 mm precipitation may deviate
from this trend. Extreme precipitation may intensify
the amplitude of soil moisture fluctuations and prolong
the water stress period between two consecutive rainfall
events (Knapp et al. 2002, 2008), potentially exerting
adverse effects on nematodes that are highly sensitive to
soil water availability.

Notably, omnivores/predatory nematodes exhibited
a significantly higher metabolic rate under 20 mm pre-
cipitation than under other precipitation conditions. Soil
nematodes live and movement through the water film
within soil pores (Neher 2010). When soils are satu-
rated, the flow of gravitational water toward tile drain-
age may ease the movement of soil nematodes (Neher
1999), which can improve the metabolic rate of the
nematode community by promoting their general activ-
ity. This effect is more pronounced for omnivores/preda-
tory nematodes because they are highly sensitive to
soil water availability (Vandegehuchte et al. 2015). The
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metabolic rates of microbivorous nematodes and herbi-
vores generally showed an increasing trend with increas-
ing precipitation intensity. However, this might not be
caused by the contingent effect of mean soil moisture
but by factors such as water fluctuations. Research has
shown that increases in rainfall intensity with concomi-
tant decreases in frequency amplify soil water fluctua-
tions in shallow soil layers (Knapp et al. 2008), chang-
ing the degree and duration of water stress. Different
trophic groups may have variable upper and lower water
stress thresholds for ecological processes, exhibiting dif-
ferent metabolic rates under soil fluctuation. In conclu-
sion, our findings demonstrate that heavy-intensity and
low-frequency rainfall events have a positive impact on
the energy flux of soil nematodes by altering soil water
availability. Furthermore, these results imply that energy
flux may serve as a more direct indicator of environmen-
tal changes than metabolic rate to some extent.

Impact of soil nematode energy dynamic change on
EMF

Emerging evidence indicates that the energy dynamic
of the soil food web can serve as a crucial tool to com-
prehend the impact of environmental change drivers on
EMF (Barnes et al. 2018; Wan et al. 2022), owing to
functions driven by trophic interactions underpinning a
spectrum of vital ecosystem functions (Wan et al. 2024).
Partially consistent with our hypothesis, there were sig-
nificant positive responses of EMF to metabolic rates of
bacterivores and omnivores/predators (Fig.3). This find-
ing agrees with a study that reported, the metabolism
of bacterivores improved with increasing precipitation,
possibly resulting in high rates of carbon and nutrients
mineralization (Franco et al. 2022). It can be explained
that bacterivores multiply most rapidly among the four
trophic groups, which accelerate their metabolic pro-
cesses and accumulations (Bongers 1990).

We also found significant positive responses of
EMF to energy fluxes of bacterivores and omnivores/
predators. The carbon flow through decomposers is
pivotal for carbon sequestration and nutrient turno-
ver rate (Morrién et al. 2017). Omnivores/predators
had higher metabolic rate in the present study, which
can explain why they played important roles in driv-
ing energy flux and EMF. Generally, individuals with
high biomass require more energy to sustain their life
activities (Potapov et al. 2021). In line with this, our
results showed that bacterivores with higher biomass
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have higher energy flux from basal level (Fig.2). Con-
sequently, the energy demands of omnivores/preda-
tors drive the energy flow of bacterial channel by
top-down control, because the feeding preference of
omnivores/predators for trophic groups depended on
community density (Cui et al. 2018). Although the
energy flux of fungivores contributed less to EMF
in our study, it is undeniable that fungivores help
lengthen the time nutrients are retained within the soil
food web, thereby protecting from loss (Whalen et al.
2013). Overall, our study indicated that the effect of
precipitation intensity on the energy dynamics of the
soil nematode food web is strongly determined by
water availability, which affects the metabolic rates
of trophic groups and energy flux within the soil food
web and ultimately altering multifunctionality.

Conclusions

In this study, we demonstrated that heavy precipita-
tion significantly enhanced the energy fluxes of all soil
nematode trophic groups and promoted ecosystem mul-
tifunctionality. Additionally, the EMF increased with
increasing metabolic rates and energy fluxes of bacte-
rivores and omnivores/predators. Our results imply that
a shift toward lower-frequency and higher-intensity pre-
cipitation events could increase the energy flux within
the soil nematode food web, thereby increasing their
contributions to EMF. These insights contribute to a
better understanding of the role of energy dynamics
within the soil nematode community in ecosystem mul-
tifunctionality under changing global scenarios.
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