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Abstract
1.	 Recent advances in DNA barcoding have immeasurably advanced global biodi-

versity research in the last two decades. However, inherent limitations in barcode 
sequences, such as hybridization, introgression or incomplete lineage sorting can 
lead to misidentifications when relying solely on barcode sequences.

2.	 Here, we propose a new Niche-model-Based Species Identification (NBSI) method 
based on the idea that species distribution information is a potential complement 
to DNA barcoding species identifications. NBSI performs species membership 
inference by incorporating niche modelling predictions and traditional DNA bar-
coding identifications.

3.	 Systematic tests across diverse scenarios show significant improvements in spe-
cies identification success rates under the newly proposed NBSI framework, 
where the largest increase is from 4.7% (95% CI: 3.51%–6.25%) to 94.8% (95% CI: 
93.19%–96.06%). Additionally, obvious improvements were observed when using 
NBSI on potentially ambiguous sequences whose genetic nearest neighbours be-
longs to another species or more than two species, which occurs commonly with 
species represented by single or short DNA barcodes.

4.	 These results support our assertion that environmental factors/variables are val-
uable complements to DNA sequence data for species identification by avoiding 
potential misidentifications inferred from genetic information alone. The NBSI 
framework is currently implemented as a new R package, ‘NicheBarcoding’, that is 
open source under GNU General Public Licence and freely available from https://​
CRAN.​R-​proje​ct.​org/​packa​ge=​Niche​Barco​ding.
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1 | INTRODUCTION

DNA barcoding has evolved over two decades and is now widely 
recognized as the optimal solution for large-scale, species-level iden-
tification. It has greatly expanded in use from its origins in taxonomy 
to become a standard tool in ecological and evolutionary research 
(Fiser Pečnikar & Buzan, 2014; Joly et al., 2014). Following innova-
tions in DNA sequencing (Taylor & Harris, 2012), nearly sixteen mil-
lion (15,824,647) barcodes from over three-hundred fifty thousand 
(351,521) species have been accumulated in BOLD Systems (The 
Barcode of Life Data, http://​www.​bolds​ystems.​org; Ratnasingham & 
Hebert, 2007) as of February 2024. Information gathered from DNA 
barcodes has proven invaluable for understanding interspecies inter-
actions (García-Robledo et al., 2013; Kamo et al., 2018; Pfenninger 
et al., 2007; Santos et al., 2011; Zhang et al., 2020); assessing bio-
diversity in species-rich, difficult-to-access and poorly catalogued 
ecosystems (Ashfaq et al., 2018; Chen et al., 2016; Hao et al., 2020; 
Mora et al., 2011; Wu et al., 2023); monitoring illegal trade in animal 
byproducts (Asis et al., 2016; Domingo-Roura et al., 2006; Sultana 
et al., 2018); identifying exotic species reliably and quickly (Ficetola 
et al., 2008; Pejovic et al., 2016; Porco et al., 2012); verifying the 
identity of medicinal plants (Chen et  al.,  2014; Gong et  al.,  2018; 
Yang et al., 2020); and more.

However, challenges persist due to the inherent limitations of 
mitochondrial DNA (mtDNA) sequences (Chesters et  al.,  2015; 
Rubinoff & Holland, 2005). Studies have shown that identical COI 
sequences do not guarantee species concordance, with a 6% chance 
of misidentification (Meier et al., 2006). Non-monophyly among bar-
code genes, reflecting discordance between gene tree and species 
tree, further complicates identification (Chesters et al., 2015; Funk 
& Omland, 2003; Ross, 2014). These are often linked to mitochon-
drial hybrid introgression, incomplete lineage sorting, and male-
biased gene flow (e.g. Despres, 2019; McGuire et al., 2007; Moritz 
& Cicero,  2004; Talavera et  al.,  2013; Wallis et  al.,  2017), but can 
also stem from human factors such as tree inference methods, in-
accurate reference taxonomy, under-sampling, or other operational 
factors (Bergsten et al., 2012; Lim et al., 2012; Meier et al., 2008; 
Mutanen et al., 2016; Wiemers & Fiedler, 2007). The development 
of integrative taxonomy concepts and techniques serves to improve 
the issue of species misidentification caused by reliance on single 
data sources (Borges et al., 2016; Collins & Cruickshank, 2013; Orr 
et al., 2022; Spiers et al., 2022; Will et al., 2005; Wright et al., 2019). 
For example, Yang et al. (2022) has presented a convolutional neural 
network method (MMNet) that integrates morphological and molec-
ular data for species identification with high accuracy across various 
taxa. However, Yang et al. (2022)'s method may also encounter big 
challenges when morphological data are limited due to the lack of 
photographs, the presence of tiny or damaged specimens.

In such cases, instead of morphology, geospatial data, with its 
generality, accessibility, quantifiability and high species specificity, 
may serve as an additional source of information to complement 
barcode sequence data for species identification. The increased 
volume of geotagged DNA barcoding samples (e.g. BOLD Systems) 
offer valuable reference data, rendering niche model analysis an 

ideal aspect for integrative species identification without mor-
phological information (Ballesteros & Hormiga,  2018; Leaché 
et  al.,  2009; Raxworthy et  al.,  2007; Ruiz-Sanchez & Sosa,  2010; 
Scriven et al., 2016). However, niche modelling is rarely used for spe-
cies identification at present, typically employed as supplementary 
evidence in the delineation of closely related species (Ballesteros 
& Hormiga,  2018; Duran et  al.,  2019; Leaché et  al.,  2009; Orr 
et  al.,  2014; Rissler & Apodaca,  2007; Wijayathilaka et  al.,  2018; 
Wilson et  al.,  2012). Although ecological information reflects the 
long-term adaption of species to certain environments, it may pro-
vide useful information for species identifications to avoid potential 
assignment errors encountered when solely basing identification on 
barcode sequences.

Here, we propose a Niche-model-Based Species Identification 
(NBSI) framework to reinforce species identifications in traditional 
DNA barcoding by incorporating both information from DNA bar-
codes and niche model-based species distribution. Systematic tests 
under different scenarios using both simulated and empirical data-
sets are performed to show that environmental factors/variables 
could be valuable complements to DNA sequence data for species 
identification. We also provide an R package ‘NicheBarcoding’, to en-
able free and easy use of this framework by researchers worldwide.

2  |  A NE WLY PROPOSED FR AME WORK: 
NBSI

Integrating data from different types is a complex and challenging 
task that requires careful consideration and progressive develop-
ment (Orr et al., 2022). Our novel framework proceeds as follows: 
Initially, we employ DNA barcoding identification to determine a 
potential species k for an unknown sample, and derive the member-
ship probabilities Pb,k based on the barcode sequence. Subsequently, 
we construct an ecological niche model and make a prediction for 
that potential species to estimate the membership probabilities Pe,k 
for the unknown sample based on ecological variables. Finally, con-
sidering the topological monophyly of the barcode sequences (i.e. 
whether intraspecific genetic distances are smaller than interspe-
cific ones), we assign weights to the probabilities derived from both 
the sequence model and the ecological niche model according to 
their confidence levels (SRb and SRe,k), resulting in the final integrated 
outcome of NBSI. The notation table of the parameters involved in 
the NBSI framework can be found in Table S1.

2.1  |  Probability based on barcode sequence

To determine the intrinsic discriminative capacity of barcode se-
quence data for different species, we calculate the topological 
monophyly of the reference sequence dataset (Refb). The nj function 
from the ‘ape’ package (Paradis et al., 2004; Popescu et al., 2012) 
in R-4.2.1 is used to estimate phylogenetic structure based on 
genetic distances, and the monophyly function from the ‘spider’ 
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package (Brown et  al.,  2012) is applied to identify a list of spe-
cies with sequence monophyly MonoListb. In this context, species 
with only one sequence (i.e. singleton) in the dataset are treated as 
non-monophyletic.

Then, for the identification of DNA barcoding, we choose a 
non-tree-based Bayesian approach (Jin et  al.,  2013; Nielsen & 
Matz,  2006; Zhang et  al.,  2017) to establish a naiveBayes model 
B using the ‘e1071’ package (https://​CRAN.​R-​proje​ct.​org/​packa​
ge=​e1071​). The trained model B is then queried with Refb, and the 
identification results for each sample in Refb are tallied. When the 
identified species matches the actual species and the Bayesian pos-
terior probability of species membership is ≥ 0.99, it is recorded as 
a true positive (TP); whereas the probability is < 0.99, it is a false 
negative (FN). Conversely, if the identified species does not match 
the actual species but the probability is ≥ 0.99, it is a false positive 
(FP); whereas if the probability is < 0.99, it is a true negative (TN). 
The confidence of model B (Success Rate, SR) is calculated as (Yang 
et al., 2022; Zhang et al., 2012):

Using the query sequence Queb in model B, we can obtain the potential 
target species k for Queb and the membership probability of Queb be-
longing to species k, denoted as Pb,k.

2.2  |  Probability based on ecological niche

For the identification procedure of the ecological niche, the model 
Nichek of species k (k = 1, 2, … , n) is built by a nonlinear method with 
good performance, MAXENT (Phillips et al., 2006), using environmental 
variables dataset Refe. According to the ROC curve, we can obtain the 
model evaluation parameters, including specificity, sensitivity, thresh-
old (Te,k), and accuracy (SRe,k). The threshold value here represents the 
predicted probability of the modelled species Refe,k belongs to the cor-
responding species k when self-inquiring to the model Nichek.

Using the query environmental variables Quee, we infer the 
ecological niche model constructed for species k and then obtain 
Êque,k. To ensure the comparability of results from different spe-
cies' models, we employ the Fuzzy method (Shi et al., 2018; Zhang 
et al., 2012) for standardization by calculating the following three 
parameters:

The probability Pe,k that the query environment variable Quee belongs 
to the potential target species k is obtained by the following fuzzy-set 
function (Shi et al., 2018; Zhang et al., 2012):

2.3  |  Calculation of the final integrated outcome

Following the setting of threshold value in Shi et al. (2018)'s study 
(these values could also be set by users), when Pb,k ≥ 0.95 and 
Pe,k = 1 , both information sources confirm the potential species k 
as correct, resulting in NBSI = 1; while Pb,k < 0.90 and Pe,k = 0, both 
sources indicate the potential species k as incorrect, resulting in 
NBSI = 0. In cases where the results do not match either of the 
above scenarios, it may suggest a discrepancy between the two 
sources or an ambiguous situation that requires further investiga-
tion. We should consider whether the species k is included in the 
list of species with sequence monophyly MonoListb. If yes, then 
based on the model averaging algorithm (Buckland et  al.,  1997; 
Burnham & Anderson, 2004; Liu et al., 2023), weights are assigned 
to the probability results from both sources according to their con-
fidence levels:

If not, the species k is considered non-monophyletic, indicating a low 
reliability of the barcode result Pb,k. In this case, the ecological niche 
model result is directly used, with NBSI = Pe,k.

3  |  MATERIAL S AND METHODS

To explore the performance of this approach, we tested the 
NBSI framework in both simulated and empirical datasets across 
a range of geographic scales while varying genetic diversity, to 
comprehensively compare the integrated use of both distribution 
and barcode data to the use of traditional DNA barcoding meth-
ods in isolation. All datasets involved in this study are given in 
Appendices S1 and S2.

3.1  |  Generation of simulated datasets

In the simulations, we considered two factors that may influence the 
success rate of species identification in NBSI: (1) the number of in-
dividuals of each species in the reference dataset; and (2) the mono-
phyly of the gene tree compared with its true species tree. These are 
main factors affecting the reliability of reference libraries built using 
barcode information. The detailed simulation strategy is described 
as follows.

SRb =
TP + TN

TP + TN + FP + FN
× 100% .

x = 1 − Êque,k ,

�1 = 1 − Te,k ,

�2 = 1 −max
{
Êi,k | 1 ≤ i ≤ n; i ≠ k

}
.

Pe,k = f
�
x, 𝜃1, 𝜃2

�
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, x≤𝜃1

1−2×

�
x−𝜃1

𝜃2−𝜃1

�2

, 𝜃1<x≤
𝜃1+𝜃2

2

2×

�
x−𝜃2

𝜃2−𝜃1

�2

,
𝜃1+𝜃2

2
<x≤𝜃2

0, x>𝜃2

.

NBSI =
SRb

SRb + SRe,k

× Pb,k +
SRe,k

SRb + SRe,k

× Pe,k =
SRb × Pb,k + SRe,k × Pe,k

SRb + SRe,k

.
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3.1.1  |  Simulation of gene trees and barcode 
sequences

Species trees were generated with the coalescent process using the 
rcoal function in the package ‘ape’ (Paradis et  al.,  2004; Popescu 
et al., 2012) in R. We set three gradients of virtual species numbers 
(20, 50 and 100) to simulate reference datasets with differing spe-
cies richness. Within each species tree, coalescent simulations were 
also performed to generate gene trees (Zhang et al., 2008) using the 
simSeqfromSp function in the package ‘phybase’ (Liu & Yu, 2010). To 
ensure dataset comparability, the sample size of all simulated data-
sets was set to 100 virtual individuals. Thus, the dataset with 20 spe-
cies would have five individuals in each species, while the 50-species 
dataset would have two per species and the 100-species dataset 
would be an all-singleton dataset, which can adequately test the 
performance of our approach when handling commonplace datasets 
with limited sampling. The fundamental coalescent parameter, θ, was 
set to three gradients of 0.05, 0.1 and 0.2. As θ refers to the muta-
tion rate per site in molecular sequence data (Yang, 2006), increases 
in this parameter cause corresponding increases in intraspecific ge-
netic distance. When the intraspecific distance exceeds the inter-
specific distance between neighbours, a non-monophyletic gene 
tree would be recovered, thereby decreasing the success rate of 
barcoding species identifications (Meier et al., 2006).

The simulated sequences were evolved along these gene trees 
using the GTR model to generate a set of sequence matrices with the 
simSeqfromSp function implemented in the package ‘phybase’ (Liu & 
Yu,  2010). We set the sequence length to 658 base pairs, consis-
tent with one of the most commonly used COI barcode fragments 
(LCO-HCO: Hebert, Cywinska, et al., 2003; Hebert, Ratnasingham, 
et  al.,  2003). Parameter values used in GTR model were derived 
from Roe and Sperling  (2007) study with the following settings: 
base frequencies A = 0.3255, C = 0.1014, G = 0.1206, T = 0.4525; and 
rates matrix AC = 10.6213, AG = 16.7683, AT = 8.8273, CG = 1.5416, 
CT = 122.9118 and GT = 1.000.

3.1.2  |  Simulation of distribution patterns

Nineteen bioclimatic variables were downloaded from WorldClim 
(version 1.4 with 2.5 arc minute resolution; http://​www.​world​clim.​
org/​; Hijmans et al., 2005) to quantify the ecological space of each 
simulated individual. We used the randomPoints function in the 
‘dismo’ package (https://​CRAN.​R-​proje​ct.​org/​packa​ge=​dismo​) to 
randomly generate 5000 real coordinates as background points, 
and extracted their bioclimatic variables as an available matrix by 
applying the extract function in the ‘raster’ package (https://​CRAN.​
R-​proje​ct.​org/​packa​ge=​raster) with the downloaded WorldClim 
data. Then, the environmental data were randomly sampled from 
the variable matrix and matched to the virtual individuals of each 
simulated dataset.

In order to test whether the barcoding and ecological informa-
tion of a reference dataset are significantly correlated, we calculated 

the pairwise genetic distance and ecological distance of each data-
set at the species level using the K80 model (Kimura, 1980) and the 
Euclidean method, respectively, and applied the Mantel statistic 
(Mantel, 1967) using the mantel function in the package ‘vegan’ with 
999 random permutations (Ballesteros & Hormiga, 2018; Oksanen 
et al., 2020). A significantly correlated result from the Mantel test 
implies some type of association between the barcode sequence 
and ecological fitness, whereas an uncorrelated result means that 
the two properties are independent.

In total, 3 × 3 = 9 datasets were simulated with different settings 
(Table 1). Additionally, to evaluate the effectiveness of our method 
in handling extreme situations, we selected sequences that were po-
tentially misidentified by DNA barcoding to constitute another set 
of tested datasets. The genetic nearest neighbours of these targeted 
sequences belonged to either another species or more than two spe-
cies. Given the intrinsic limitations of mtDNA and the complexity of 
human factors (see Section 1), relying solely on sequence informa-
tion in these scenarios could lead to ambiguous species assignments 
(Zhang et al., 2012).

3.2  |  Collection of empirical datasets

We also tested our framework with six empirical datasets retrieved 
from online databases and empirical studies, comprising different 
real-world genetic diversity and various ecological conditions. These 
datasets covered different taxonomic scales and gene markers, and 
each was tested using the commonly used bioclimatic variables from 
WorldClim (version 1.4 with 2.5 arc minute resolution; http://​www.​
world​clim.​org/​; Hijmans et al., 2005).

Four of the six datasets were downloaded from BOLD 
Systems (The Barcode of Life Data, http://​www.​bolds​ystems.​org; 
Ratnasingham & Hebert, 2007), including both barcode sequences 
(COI fragments) and geographic coordinates of collection locali-
ties: a nematode dataset (order-level: Spirurida, Chromadorea), a 
reptile dataset (family level: Scincidae, Reptilia Squamata), two 
insect datasets (family level: Limacodidae, Insecta Lepidoptera; 
genus-level: Theretra, Insecta Lepidoptera Sphingidae). Specimens 
from the ‘hawk-moths’ dataset (family level: Sphingidae, Insecta 
Lepidoptera) was collected using light-traps in Zhejiang, China from 
2017 to 2018; we recorded the geographic information for each 
sample and sequenced their COI fragments following procedures in 
Jin et al. (2013). The ‘Dendrolimus’ dataset (genus-level: Dendrolimus, 
Insecta Lepidoptera Lasiocampidae) was taken from Dai et al. (2012). 
The researchers found that the phylogenetic relationships of dis-
tantly related species were clearly resolved by barcode sequence; 
whereas the three closely related species (D. punctatus, D. tabulae-
formis, D. spectabilis) could not be resolved (Dai et al., 2012).

All datasets were further cleaned by eliminating records which did 
not fulfil these criteria: (1) complete taxonomic information (family, 
genus and species names), (2) valid coding gene fragments and (3) avail-
able geographic coordinates. Table 2 lists the basic information of each 
dataset as well as the Mantel test results between barcode sequences 
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and ecological fitness. We also selected the sequences that were po-
tentially misidentified by DNA barcoding as we did for the simulated 
datasets, and found that those so-called ‘ambiguous sequences’ were 
prevalent in 9.45% to 88.00% of the empirical datasets we selected 
(Table 2). The global distribution of specimens is shown in Figure 1.

3.3  |  Ecological variables used in niche modelling

For testing the empirical datasets, 19 bioclimatic variables from 
WorldClim (version 1.4 with 2.5 arc minute resolution; http://​www.​
world​clim.​org/​; Hijmans et al., 2005) were applied to construct niche 
models. To avoid the influence of potential correlations among vari-
ables on ecological niche modelling, we implemented the variance 
inflation factor (VIF; Fox & Monette, 1992; Lai et al., 2022) to assess 
multicollinearity. The vif function from the ‘car’ package (https://​

CRAN.​R-​proje​ct.​org/​packa​ge=​car) was employed to estimate VIF 
values for each environmental variable. If there were variables with 
VIF values ≥10, the variable with the highest VIF value would be re-
moved. Then, the remaining variables were reassembled into a new 
set, and the VIF values were recalculated collectively. This iterative 
process continued, with the highest VIF variable being eliminated at 
each step, until all variables in the revised set exhibited VIF values 
below the threshold of 10. In the testing procedures of this study, 
the retained variables for each niche modelling have been docu-
mented in the Appendices S3 and S4.

3.4  |  Test and success rate calculation

For each dataset and the corresponding dataset composed of 
ambiguous sequences (the sequences whose genetic nearest 

TA B L E  1  Settings and Mantel tests of simulated datasets.

Dataset 
no.

Number of 
species

Number of 
individuals of 
each species θ

Barcoding 
gapa

MantelStat.b 
(r)

MantelSig.c 
(p-value)

Number of 
ambiguous 
sequencesd

Proportion 
of ambiguous 
sequences (%)

1 20 5 0.05 −0.61 −0.0323 0.620 8 8.00

2 20 5 0.1 −0.59 −0.1029 0.825 15 15.00

3 20 5 0.2 −0.64 −0.0627 0.630 16 16.00

4 50 2 0.05 −0.62 −0.0365 0.926 51 51.00

5 50 2 0.1 −0.62 −0.0159 0.697 57 57.00

6 50 2 0.2 −0.62 −0.0335 0.922 64 64.00

7 100 1 0.05 −0.49 0.0121 0.323 100 100.00

8 100 1 0.1 −0.49 −0.0292 0.780 100 100.00

9 100 1 0.2 −0.55 −0.0378 0.895 100 100.00

aThe difference between the maximum intra-specific genetic distance and the minimum inter-specific genetic distance.
bThe statistic r of the Mantel test between genetic and environmental Euclidean distance matrix.
cMantel test p-values. If p ≤ 0.05, then the two-distance matrix are significantly correlated; if p > 0.05, then they are uncorrelated.
dThe sequences whose genetic nearest neighbours belongs to either another species or more than two species.

TA B L E  2  Basic information and Mantel tests of empirical datasets.

No. Datasets Size
Number of 
species

Percentage of 
singletons (%)

Barcoding 
gapa

MantelStat.b 
(r)

MantelSig.c 
(p-value)

Number of 
ambiguous 
sequencesd

Proportion 
of ambiguous 
sequences (%)

1 Spirurida 63 24 37.50 −0.0533 0.4412 0.004** 11 17.46

2 Scincidae 110 32 53.12 −0.1985 0.1883 0.003** 19 17.27

3 Limacodidae 325 297 91.58 −0.1607 0.0257 0.207 286 88.00

4 hawk-mothse 666 51 17.65 −0.1738 0.0808 0.050* 419 62.91

5 Theretra 455 46 23.91 −0.0709 0.0676 0.229 43 9.45

6 Dendrolimusf 145 7 0 −0.0537 0.1000 0.276 19 13.57

aThe difference between the maximum intra-specific genetic distance and the minimum inter-specific genetic distance.
bThe statistic r of the Mantel test between genetic and environmental Euclidean distance matrix.
cMantel test p-values. If p ≤ 0.05, then the two distance matrices are significantly correlated; if p > 0.05, they are uncorrelated. *p ≤ 0.05; **p ≤ 0.01.
dThe sequences whose genetic nearest neighbours belongs to either another species or more than two species.
eZhejiang hawk-moths dataset that collected using light-traps.
fChinese Dendrolimus dataset from Dai et al. (2012).
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neighbours belong to another species or more than two spe-
cies; see Tables  1 and 2), we implemented 1000 replicates of 
the leave-one-out cross-validation test (Yang et al., 2022; Zhang 
et  al.,  2012) to obtain the species identification results and its 
credibility, Pb,k and NBSI, for each inquiry within the simulated and 
empirical datasets. A series of thresholds were set at 0.90, 0.95 
and 0.99 to accept the identification results, calculating the suc-
cess rate for both the traditional barcoding identification SRb and 
the niche-model-based identification SRNBSI. True positive (TP) and 
true negative (TN) query results were both considered successful 
inquiries (SR = (TP + TN)∕1000 × 100% ; Yang et al., 2022; Zhang 
et al., 2012).

4  |  RESULTS

4.1  |  Performance in simulated datasets

The success rates of NBSI versus traditional DNA barcoding for the 
completely simulated datasets and their ambiguous sequence data-
sets are given in Figure 2A,B, respectively, including the various per-
mutations detailed above. Detailed statistics including sensitivity 
and specificity results are listed in Table S2.

Given that all complete simulated datasets consisted of 100 vir-
tual individuals, the number of virtual individuals per species in the 
20-species, 50-species and 100-species datasets were 5, 2 and 1, 

F I G U R E  1  Empirical datasets and their global distributions, including four BOLD-downloaded datasets: (a) Spirurida (nematodes), 
(b) Scincidae (reptiles, Squamata), (c) Limacodidae (insects, Lepidoptera) and (e) Theretra (insects, Lepidoptera Sphingidae); and two 
field-sampled or literature-published datasets: (d) Zhejiang hawk-moths (insects, Lepidoptera), (f) Dendrolimus (insects, Lepidoptera 
Lasiocampidae; Dai et al., 2012). Points in different colours represent different species.
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    |  2349YANG et al.

respectively. The success rate of traditional DNA barcoding identifi-
cation was highest in the three 20-species datasets, where each spe-
cies had a relatively greater number of reference sequences; while 
the success rate was lower in the three 50-species datasets. For the 
three 100-species datasets, when tested using the leave-one-out 
method, singletons were removed as pseudo-query sequences, re-
sulting in the absence of matching species members in the reference 
database for the target species, leading to a high proportion of false 
positives (FP) and an exceptionally low success rate (Figure 2A). For 
datasets with equal numbers of species, the success rate of tradi-
tional DNA barcoding identification decreases as the sequence vari-
ability increases (θ = 0.05, 0.1, 0.2; Figure 2A).

Working better overall, the niche-model-based identification ap-
proach significantly improved the identification success rate in eight 
of the nine scenarios (Figure 2A). The largest improvement occurred 
in the ‘100_1_0.2’ dataset at all acceptance thresholds, where the 
success rate improved from 4.7% (95% CI: 3.51%–6.25%) to 94.8% 
(95% CI: 93.19%–96.06%); while the smallest was the ‘20_5_0.05’ 

dataset in threshold 0.99, where the success rate improved from 
93.3% (95% CI: 91.52%–94.73%) to 95.0% (95% CI: 93.41%–96.23%). 
The latter represents an ideal scenario where the reference data-
base contains sufficient replicates for each species, and exhibits low 
intraspecific genetic variability, enabling a relatively high level of 
identification accuracy based solely on barcode sequence informa-
tion. Even in this context, our proposed method is capable of further 
enhancing the results, which implies that the integration of ecologi-
cal information confers an intrinsic advantage.

For the tests on the nine ambiguous sequence datasets, all 
the pseudo-query samples extracted by leave-one-out simulation 
could certainly be misidentified by traditional DNA barcoding. The 
success rates of these datasets are exceptionally low regardless 
of the number of virtual individuals per species in the reference 
library (Figure  2B). As expected, the niche-model-based identi-
fication approach significantly improving the success rates in all 
scenarios. The largest improvement was still from the ‘100_1_0.2’ 
dataset, because it is composed of singletons; while the smallest 

F I G U R E  2  Success rates of NBSI 
(blue bars) compared with traditional 
DNA barcoding (red bars) when testing 
(A) completely simulated datasets and 
(B) their corresponding ambiguous 
sequence datasets. The colour gradient 
of the bars, from light to dark, represents 
the thresholds of acceptance for 
identification results, set at 0.90, 0.95 
and 0.99. The X-axis lists the nine 
simulated datasets, each configured 
with a virtual species count of 20 (5 
individuals per species), 50 (2 individuals 
per species) or 100 (1 individual per 
species), and further specified the 
molecular mutation rate by coalescent 
parameters (θ) set at 0.05, 0.1 and 0.2; 
the Y-axis indicates the percentage of 
successful identifications (true positive 
and true negative assignments) among 
1000 leave-one-out cross-validation test. 
The error bars indicate 95% confidence 
intervals, and different lowercase letters 
suggest significant differences at the 
level of 0.05 using Tukey's ‘Honest 
Significant Differences’ test (Miller, 1981; 
Yandell, 1997).

 2041210x, 2024, 12, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14440, W
iley O

nline L
ibrary on [13/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2350  |    YANG et al.

was for the ‘20_5_0.1’ dataset in threshold 0.95, where the suc-
cess rate improved from 27.7% (95% CI: 24.97%–30.61%) to 89.2% 
(95% CI: 87.07%–91.02%). Meanwhile, these improvements are 
consistent across datasets with varying settings of θ, supporting 
our assertion that the integration of ecological information can 
enhance species identifications by avoiding potential misidentifi-
cations that arise solely from sequence data.

4.2  |  Performance in empirical datasets

Similar findings were observed in the test results of empirical data-
sets (Figure  3). Our new framework performed well across the 
various empirical scenarios overall, with significant improvements 
in five of the six cases and, minimally, comparable success to tra-
ditional barcoding; and with significant improvements in all tests of 
the ambiguous sequence datasets (Figure 3A,B). The number of test-
ing replications, the threshold and calculation of the success rate for 

empirical datasets were consistent with those of the simulated data-
sets. Detailed statistics including sensitivity and specificity results 
are given in Table S3.

In the complete empirical datasets, the largest improvement 
of NBSI over traditional DNA barcoding was in the ‘Limacodidae’ 
dataset at threshold 0.90, where the success rate improved from 
17.3% (95% CI: 15.03%–19.82%) to 67.4% (95% CI: 64.38%–
70.28%); while the smallest was for the ‘Dendrolimus’ dataset, 
where the success rate improved from 94.1% (95% CI: 92.41%–
95.44%) to 96.4% (95% CI: 95.00%–97.43%). In the former case, 
the proportion of singletons reached as high as 91.58%, with 88% 
of the samples classified as ambiguous sequences (Table  2), re-
sulting in an extremely low species identification accuracy relying 
solely on sequence information. Our method is adept at handling 
the situation under these dire circumstances. In contrast, the 
latter lacks singletons in its reference library and contains only 
13.57% ambiguous sequences, where traditional barcoding meth-
ods already achieve a relatively high success rate. Yet datasets 

F I G U R E  3  Success rates of NBSI 
(blue bars) compared with traditional 
DNA barcoding (coral bars) when testing 
(A) completely empirical datasets and 
(B) their corresponding ambiguous 
sequence datasets. The colour 
gradient of the bars, from light to dark, 
represents the thresholds of acceptance 
for identification results, set at 0.90, 
0.95 and 0.99. The X-axis lists the six 
empirical datasets, including four BOLD-
downloaded datasets, a field-sampled 
and a literature-published datasets; 
the Y-axis indicates the percentage of 
successful identifications (true positive 
and true negative assignments) among 
1000 leave-one-out cross-validation test. 
The error bars indicate 95% confidence 
intervals, and different lowercase letters 
suggest significant differences at the 
level of 0.05 using Tukey's ‘Honest 
Significant Differences’ test (Miller, 1981; 
Yandell, 1997).
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    |  2351YANG et al.

that meet such conditions are rare in practice. In the testing of the 
other four datasets, the magnitude of improvement is relatively 
similar (Figure 3A). They represent datasets composed of different 
taxonomic ranks (including orders, families, families in a specific 
region, and genera), which are more reflective of the general con-
ditions encountered in empirical studies.

For the tests on the corresponding ambiguous sequence data-
sets, traditional DNA barcoding generated more misidentifications 
than with the completely empirical datasets. Figure 3B shows that 
even in the ideal dataset, ‘Dendrolimus’, the success rates were 63%, 
while the ‘Scincidae’ dataset had zero correct identification among 
1000 leave-one-out tests. As expected, the NBSI approach signifi-
cantly improved success rates in all scenarios (Figure 3B). The larg-
est improvement presents to the ‘Scincidae’ dataset in threshold 
0.99, where the success rate improved from 0 to 75.1% (95% CI: 
72.28%–77.73%); while the smallest was for the ‘Dendrolimus’ data-
set in all acceptance thresholds, where the success rate improved 
from 63.2% (95% CI: 60.12%–66.18%) to 73.1% (95% CI: 70.22%–
75.80%). In these scenarios where misidentifications are almost cer-
tain, our method can still achieve a success rate of up to 84% (see the 
results of ‘Theretra’ dataset).

5  |  DISCUSSION

Using both simulated and empirical datasets, we demonstrate 
that the newly proposed niche-model-based species identification 
(NBSI) framework can successfully integrate both DNA sequence 
and environmental information of species to greatly improve spe-
cies identification, when compared to traditional DNA barcoding. 
Under the NBSI framework, the use of these two relatively inde-
pendent data sources enables each to act as a check on the other 
in case one source is biased in some manner. Phenomena such as 
non-monophyly and the other discussed issues with traditional 
DNA barcoding represent non-trivial challenges that are difficult 
or sometimes impossible to overcome with barcoding alone. If only 
ecological information were used, this could also lead to issues, as 
unrelated species may commonly converge upon similar niches and 
this could cause the assignment of entirely unrelated species as the 
same thing. In the present study, we construct our approach by ap-
plying a non-tree-based Bayesian approach (Jin et al., 2013; Nielsen 
& Matz, 2006), a nonlinear MAXENT model (Phillips et al., 2006), 
and the commonly used WorldClim variables (version 1.4 with 
2.5 arc minute resolution; http://​www.​world​clim.​org/​; Hijmans 
et al., 2005).

Although the NBSI framework sounds theoretically perfect, 
there are factors that may impact its performance under real-
world applications. For instance, due to the inherent limitations, 
the application of ecological niche models (ENMs) requires cau-
tion when dealing with species with rare distributions, as their ac-
curacy is highly dependent on the quality of species occurrence 
and environmental data (Deb et al., 2017; Murphy & Smith, 2021). 
Precisely for this reason, niche modelling with presence-only data 

may have limited predictive accuracy due to spatial sampling bias 
(SSB), and this is challenging to fully correct for without inde-
pendent test data (Baker et al., 2024). In fact, our NBSI approach 
also provides a solution to some extent, which is to use the niche 
model for a secondary check only after the barcode has identified 
a potential target species k (see the Sections 2.1 and 2.2 for de-
tails). Therefore, the outcomes of the niche model do not directly 
dictate the species affiliation of unknown samples, but they can 
validate or refute the preliminary results of barcoding identifica-
tions. Nonetheless, there remains a need for heightened vigilance 
regarding this issue, particularly when the models assume that 
sampling data are random or representative (Yackulic et al., 2013). 
Some studies have proposed solutions to such problems through 
innovative statistical methods, such as the joint classification-
occupancy model (Spiers et al., 2022; Wright et al., 2019), the two-
species false-positive N-mixture model (Clement et  al.,  2022), 
and so on. These will have a positive effect on improving mis-
classification and should be further considered when implement-
ing the NBSI method. Concurrently, these limitations suggest that 
an optimized NBSI method should also provide users with flexible 
choices in niche modelling approaches, and a variety of available 
SSB correction methods (Baker et  al.,  2024) could be integrated 
into the process in the future.

The unavoidable, inherent limitations of sequence information 
determine the upper limits of the success rate of species identi-
fication using traditional DNA barcoding. In complex evolution-
ary processes, barcode sequences often exhibit low interspecific 
divergence and high intraspecific variation, leading to indistinct 
barcoding gaps (e.g. Table  2), which render them ineffective for 
distinguishing all species (Xu et al., 2017). Regardless of whether 
algorithms are distance-based, tree-based or character-based, 
they cannot thoroughly solve the prevalent problem of shared 
haplotypes among different species for barcoding markers, 
let alone the artificial inter-specific similarities that result from 
sampling bias (Chesters et  al.,  2015; Rubinoff & Holland,  2005). 
Here, we extracted these potentially ambiguous sequences whose 
genetic nearest neighbours belong to another species or more 
than two species, and found that NBSI significantly improved the 
success rate of species identifications in these challenging situa-
tions. We also demonstrated that the NBSI framework does not 
introduce more errors than traditional DNA barcoding when faced 
with completely simulated and empirical datasets, and in most 
cases, it outperformed traditional DNA barcoding method that 
only uses DNA sequence information for species identification. 
Figure  4 shows the relationship between improvements of suc-
cess rates and proportions of ambiguous sequences in each data-
set. With increasing proportion of ambiguous sequences in these 
complete datasets, the improvements by NBSI over traditional 
barcoding become larger. This trend is significant across both 
simulated (r = 0.9898; p-value = 1.165e-22) and empirical datasets 
(r = 0.7919; p-value = 8.979e-05), suggesting that the NBSI frame-
work performs significantly better across tests when ambiguous 
sequences are prevalent.
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Global online datasets of bioclimatic variables such as WorldClim 
(version 1.4/2.1; http://​www.​world​clim.​org/​; Hijmans et  al., 2005) 
and ENVIREM (version 1.0; https://​envir​em.​github.​io/​; Title & 
Bemmels, 2018) are widely used in niche-related research because 
of their worldwide coverage. However, such macro-data are not use-
ful when species differ primarily in their microhabitat requirements. 
The selection of macro- or micro-environmental variables depends 
on the distribution of species in the reference library, the ecolog-
ical requirements of the species being studied and the availability 
of such data. Coarse-scale datasets are more commonly available 
for the species with large distributions, or the species distributed 
across many latitudes and ecoregions, while high-resolution data 
are more appropriate for species with narrow or sympatric distri-
butions, or those with very strict microhabitat requirements. As 
such, the type of data used is often a balancing act between what 

is optimal and what is feasible, with considering the impact of the 
calculation method of bioclimatic variables on the model (Bede-
Fazekas & Somodi, 2020). In this study, test datasets were selected 
from widely distributed species at large geographic scales, and we 
used WorldClim variables to demonstrate the power of our NBSI 
framework, given the importance and common usage of these vari-
able sets. For those species with strict microhabitat requirements 
or for studies at smaller spatial scales, users of the ‘NicheBarcoding’ 
package could collect or collate their own micro-environmental in-
formation and use that instead of broad-scale datasets.

As described in Hutchinson  (1957), the fundamental niche of a 
species is an ‘n-dimensional hypervolume’, in which every point that 
corresponds to a state of the environment would permit a species to 
exist indefinitely. Species which overlap in geo-space likely also over-
lap in eco-space (at coarser grain sizes), but overlapping of species in 
eco-space does not indicate that they are sympatric in geo-space 
(Pulliam, 2000; Qiao et al., 2016; Soberón & Nakamura, 2009). The two-
dimensional ecological spaces of part of the genetically close related 
species in the empirical datasets are mapped through principal compo-
nent analysis (Figure 5), where the NBSI method improves the success 
rate by taking advantage of the non-overlapping characteristics of their 
ecological niche. Other novel quantitative methods (e.g. Lu et al., 2021; 
Osorio-Olvera et al., 2020; van der Veen et al., 2021) are also helpful 
in displaying the effect of ecological niche similarity on NBSI. Under-
sampling of species points in geo-space may hinder the generation of 
accurate niche models, and, consequently, a query sampled from a dif-
ferent geographic area may not be assigned to its correct species based 
on niche models (false-negative identifications). To avoid this issue, we 
sampled species points in eco-space instead of geo-space, but we sug-
gest that large sample sizes with true records should be used whenever 
possible regardless, to fully represent species' true eco-spaces (Arlé 
et al., 2021) and better understand their limits.

In addition to the geographical scale, the dynamics of ecological 
niche conservatism within different eco-evolutionary processes on 
a larger time scale should also be taken into account. For example, 
closely related species pairs that have recently diverged may have 
very similar ecological niches (Peterson, 2011); such ecological simi-
larity may be promoted by the presence of predators, or conversely, 
lead to the differentiation of ecological niches due to long-term 
competitive interactions (Haraldsson & Thébault, 2023). Therefore, 
before using the NBSI framework, users can gather prior knowledge 
about the relationship between genetic information and ecological 
niche information in the reference database, as shown in Table 2. Yet 
whether the improvement effect of our approach is still predictable 
in these complex ecological contexts, remains to be further verified.

6  |  CONCLUSIONS

Improving species identifications from DNA barcodes using multiple 
types of information is a critical pursuit. DNA barcoding will only be-
come more important in the future as we finally begin to document 
the enormous undescribed diversity of insects and other poorly 

F I G U R E  4  Improvements of success rates from traditional 
DNA barcoding to the NBSI framework in the (a) simulated and (b) 
empirical datasets. The X-axis indicates proportions of ambiguous 
sequences and the Y-axis indicates improvements of success 
rates. Correlations were measured by Spearman's rank correlation 
coefficient (Hollander & Wolfe, 1973).
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known taxa throughout the Global South (Orr et  al.,  2020). Our 
niche-model-based species identification framework enables joint 
decision-making based on ecological and molecular data, represent-
ing a significant advancement for DNA barcoding. Modern barcod-
ing approaches and many historical collectors both prioritize locality 
information collection, making this a widely available and powerful 
complement for species-level identifications for both museum- and 
field-based efforts.

Our thorough tests show that ecological information can suc-
cessfully and significantly improve DNA barcoding under the NBSI 
framework, including in difficult scenarios where traditional DNA 
barcoding methods typically fail. We extended the use of niche mod-
elling further to fully take advantage of the vast quantity of distribu-
tional data available, as few other data types can compete with the 
prevalence of barcode data. This is especially true in the Global South 
where locality information is far easier to generate than molecular 

F I G U R E  5  Ecological space of part of the genetically close related species in the empirical datasets: (a) Spirurida (nematodes), 
(b) Scincidae (reptiles, Squamata), (c) Limacodidae (insects, Lepidoptera), and (e) Theretra (insects, Lepidoptera Sphingidae); and two 
field-sampled or literature-published datasets: (d) Zhejiang hawk-moths (insects, Lepidoptera), (f) Dendrolimus (insects, Lepidoptera 
Lasiocampidae; Dai et al., 2012).
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data due to technical or funding limitations (Orr et  al., 2020), and 
many of these areas are tropical and hyper-diverse (containing many 
undescribed species; Giam et al., 2012), further benefiting from such 
more powerful, integrated methods. Even where local languages can 
make georeferencing of historical specimens difficult for foreign re-
searchers working with specimens from such developing countries, 
this would simply encourage collaboration with local scientists, yet 
another positive outcome of the increasing interdisciplinarity of 
DNA barcoding.

The NBSI method will also become better as the accuracy of 
niche estimation continues to improve (Kass et al., 2021; Pichler & 
Hartig,  2021). As DNA barcoding technology matures for taxon-
omy and biodiversity studies (Cristescu,  2014; Hebert, Cywinska, 
et al., 2003; Hebert & Gregory, 2005; Yang et al., 2022), it will be-
come increasingly vital to integrate ecological and other information 
to improve these methods.

AUTHOR CONTRIBUTIONS
Ai-bing Zhang designed the study; Cai-qing Yang performed the re-
search; Cai-qing Yang and Ai-bing Zhang wrote the codes, and tested 
most of the examples. Ying Wang, Xin-hai Li and Michael C. Orr ana-
lysed parts of the data; Jing Li and Bing Yang collected some of the 
datasets; Cai-qing Yang and Ai-bing Zhang wrote the first draft of 
the manuscript, and all authors contributed substantially to revisions 
and gave final approval for publication.

ACKNOWLEDG EMENTS
We are deeply grateful for the guidance and insights provided by 
Jie Zhou and Xiao Liang regarding the issue of model averaging. We 
also grateful to the editors and the anonymous reviewers for the 
suggestions provided on our manuscript which have enabled our ap-
proach to better serve the relevant researchers. This research was 
supported by the Natural Science Foundation of China (32200343, 
32170421), Beijing Municipal Natural Science Foundation 
(5232001), Chinese Academy of Sciences President's International 
Fellowship Initiative program (2024PVC0046), Support Project of 
High-level Teachers in Beijing Municipal Universities in the Period 
of 14th Five-year Plan (BPHR20220114), National Key Research and 
Development Program of China (2023YFC2606600), and Academy 
for Multidisciplinary Studies, Capital Normal University.

CONFLIC T OF INTERE S T S TATEMENT
The authors have no conflicts of interest to declare.

PEER RE VIE W
The peer review history for this article is available at https://​www.​
webof​scien​ce.​com/​api/​gatew​ay/​wos/​peer-​review/​10.​1111/​2041-​
210X.​14440​.

DATA AVAIL ABILIT Y S TATEMENT
NicheBarcoding is now freely available from https://​CRAN.​R-​proje​
ct.​org/​packa​ge=​Niche​Barco​ding (Yang et  al.,  2024a). Source code 
can also be found on Github https://​github.​com/​Yangc​q-​Ivy/​Niche​

Barco​ding and Zenodo https://​doi.​org/​10.​5281/​zenodo.​13270695 
(Yang et  al.,  2024b). All releases will be distributed on Microsoft 
Windows, Mac OSX and Linux platforms. The datasets and the 
Supporting Information tests in this study can be found at: https://​
doi.​org/​10.​5061/​dryad.​rbnzs​7h96 (Yang et al., 2024c).

ORCID
Cai-qing Yang   https://orcid.org/0009-0003-9997-8374 
Ying Wang   https://orcid.org/0000-0002-5789-2850 
Xin-hai Li   https://orcid.org/0000-0003-4514-0149 
Jing Li   https://orcid.org/0000-0003-3234-8055 
Bing Yang   https://orcid.org/0000-0002-9610-1935 
Michael C. Orr   https://orcid.org/0000-0002-9096-3008 
Ai-bing Zhang   https://orcid.org/0000-0003-3450-5421 

R E FE R E N C E S
Arlé, E., Zizka, A., Keil, P., Winter, M., Essl, F., Knight, T., Weigelt, P., 

Jiménez-Muñoz, M., & Meyer, C. (2021). BRACATUS: A method to 
estimate the accuracy and biogeographical status of georeferenced 
biological data. Methods in Ecology and Evolution, 12, 1609–1619. 
https://​doi.​org/​10.​1111/​2041-​210x.​13629​

Ashfaq, M., Sabir, J. S. M., El-Ansary, H. O., Perez, K., Levesque-Beaudin, 
V., Khan, A. M., Rasool, A., Gallant, C., Addesi, J., & Hebert, P. D. N. 
(2018). Insect diversity in the Saharo-Arabian region: Revealing a 
little-studied fauna by DNA barcoding. PLoS One, 13(7), e0199965. 
https://​doi.​org/​10.​1371/​journ​al.​pone.​0199965

Asis, A. M., Lacsamana, J. K., & Santos, M. D. (2016). Illegal trade of 
regulated and protected aquatic species in The Philippines de-
tected by DNA barcoding. Mitochondrial DNA Part A DNA Mapping, 
Sequencing, and Analysis, 27, 659–666. https://​doi.​org/​10.​3109/​
19401​736.​2014.​913138

Baker, D. J., Maclean, I. M. D., & Gaston, K. J. (2024). Effective strategies 
for correcting spatial sampling bias in species distribution mod-
els without independent test data. Diversity and Distributions, 30, 
e13802. https://​doi.​org/​10.​1111/​ddi.​13802​

Ballesteros, J. A., & Hormiga, G. (2018). Species delimitation of the North 
American orchard-spider Leucauge venusta (Walckenaer, 1841) 
(Araneae, Tetragnathidae). Molecular Phylogenetics and Evolution, 
121, 183–197. https://​doi.​org/​10.​1016/j.​ympev.​2018.​01.​002

Bede-Fazekas, Á., & Somodi, I. (2020). The way bioclimatic variables are 
calculated has impact on potential distribution models. Methods 
in Ecology and Evolution, 11, 1559–1570. https://​doi.​org/​10.​1111/​
2041-​210x.​13488​

Bergsten, J., Bilton, D. T., Fujisawa, T., Elliott, M., Monaghan, M. T., Balke, 
M., Hendrich, L., Geijer, J., Herrmann, J., Foster, G. N., Ribera, I., 
Nilsson, A. N., Barraclough, T. G., & Vogler, A. P. (2012). The effect 
of geographical scale of sampling on DNA barcoding. Systematic 
Biology, 61, 851–869. https://​doi.​org/​10.​1093/​sysbio/​sys037

Borges, L. M. S., Hollatz, C., Lobo, J., Cunha, A. M., Vilela, A. P., Calado, 
G., Coelho, R., Costa, A. C., Ferreira, M. S. G., Costa, M. H., & Costa, 
F. O. (2016). With a little help from DNA barcoding: Investigating 
the diversity of Gastropoda from the Portuguese coast. Scientific 
Reports, 6(1). https://​doi.​org/​10.​1038/​srep2​0226

Brown, S. D. J., Collins, R. A., Boyer, S., Lefort, M. C., Malumbres-Olarte, 
J., Vink, C. J., & Cruickshank, R. H. (2012). Spider: An R package for 
the analysis of species identity and evolution, with particular refer-
ence to DNA barcoding. Molecular Ecology Resources, 12, 562–565. 
https://​doi.​org/​10.​1111/j.​1755-​0998.​2011.​03108.​x

Buckland, S. T., Burnham, K. P., & Augustin, N. H. (1997). Model selection: 
An integral part of inference. Biometrics, 53, 603. https://​doi.​org/​
10.​2307/​2533961

 2041210x, 2024, 12, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14440, W
iley O

nline L
ibrary on [13/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.14440
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.14440
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.14440
https://cran.r-project.org/package=NicheBarcoding
https://cran.r-project.org/package=NicheBarcoding
https://github.com/Yangcq-Ivy/NicheBarcoding
https://github.com/Yangcq-Ivy/NicheBarcoding
https://doi.org/10.5281/zenodo.13270695
https://doi.org/10.5061/dryad.rbnzs7h96
https://doi.org/10.5061/dryad.rbnzs7h96
https://orcid.org/0009-0003-9997-8374
https://orcid.org/0009-0003-9997-8374
https://orcid.org/0000-0002-5789-2850
https://orcid.org/0000-0002-5789-2850
https://orcid.org/0000-0003-4514-0149
https://orcid.org/0000-0003-4514-0149
https://orcid.org/0000-0003-3234-8055
https://orcid.org/0000-0003-3234-8055
https://orcid.org/0000-0002-9610-1935
https://orcid.org/0000-0002-9610-1935
https://orcid.org/0000-0002-9096-3008
https://orcid.org/0000-0002-9096-3008
https://orcid.org/0000-0003-3450-5421
https://orcid.org/0000-0003-3450-5421
https://doi.org/10.1111/2041-210x.13629
https://doi.org/10.1371/journal.pone.0199965
https://doi.org/10.3109/19401736.2014.913138
https://doi.org/10.3109/19401736.2014.913138
https://doi.org/10.1111/ddi.13802
https://doi.org/10.1016/j.ympev.2018.01.002
https://doi.org/10.1111/2041-210x.13488
https://doi.org/10.1111/2041-210x.13488
https://doi.org/10.1093/sysbio/sys037
https://doi.org/10.1038/srep20226
https://doi.org/10.1111/j.1755-0998.2011.03108.x
https://doi.org/10.2307/2533961
https://doi.org/10.2307/2533961


    |  2355YANG et al.

Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference—
Understanding AIC and BIC in model selection. Sociological 
Methods & Research, 33, 261–304. https://​doi.​org/​10.​1177/​00491​
24104​268644

Chen, R., Jiang, L. Y., Chen, J., & Qiao, G. X. (2016). DNA barcoding re-
veals a mysterious high species diversity of conifer-feeding aphids 
in the mountains of southwest China. Scientific Reports, 6, 20123. 
https://​doi.​org/​10.​1038/​srep2​0123

Chen, S., Pang, X., Song, J., Shi, L., Yao, H., Han, J., & Leon, C. (2014). A 
renaissance in herbal medicine identification: From morphology to 
DNA. Biotechnology Advances, 32, 1237–1244. https://​doi.​org/​10.​
1016/j.​biote​chadv.​2014.​07.​004

Chesters, D., Zheng, W. M., Zhu, C. D., & Yu, D. (2015). A DNA barcod-
ing system integrating multigene sequence data. Methods in Ecology 
and Evolution, 6, 930–937. https://​doi.​org/​10.​1111/​2041-​210x.​
12366​

Clement, M. J., Royle, J. A., & Mixan, R. J. (2022). Estimating occupancy 
from autonomous recording unit data in the presence of misclas-
sifications and detection heterogeneity. Methods in Ecology and 
Evolution, 13, 1719–1729. https://​doi.​org/​10.​1111/​2041-​210x.​
13895​

Collins, R. A., & Cruickshank, R. H. (2013). The seven deadly sins of DNA 
barcoding. Molecular Ecology Resources, 13(6), 969–975. https://​doi.​
org/​10.​1111/​1755-​0998.​12046​

Cristescu, M. E. (2014). From barcoding single individuals to metabar-
coding biological communities: Towards an integrative approach to 
the study of global biodiversity. Trends in Ecology & Evolution, 29, 
566–571. https://​doi.​org/​10.​1016/j.​tree.​2014.​08.​001

Dai, Q.-Y., Gao, Q., Wu, C.-S., Chesters, D., Zhu, C.-D., & Zhang, A.-B. 
(2012). Phylogenetic reconstruction and DNA barcoding for closely 
related pine moth species (Dendrolimus) in China with multiple gene 
markers. PLoS One, 7, e32544. https://​doi.​org/​10.​1371/​journ​al.​
pone.​0032544

Deb, C. R., Jamir, N. S., & Kikon, Z. P. (2017). Distribution prediction 
model of a rare orchid species (Vanda bicolor Griff.) using small sam-
ple size. American Journal of Plant Sciences, 8, 1388–1398. https://​
doi.​org/​10.​4236/​ajps.​2017.​86094​

Despres, L. (2019). One, two or more species? Mitonuclear discordance 
and species delimitation. Molecular Ecology, 28, 3845–3847. https://​
doi.​org/​10.​1111/​mec.​15211​

Domingo-Roura, X., Marmi, J., Ferrando, A., López-Giráldez, F., 
Macdonald, D. W., & Jansman, H. A. H. (2006). Badger hair in shav-
ing brushes comes from protected Eurasian badgers. Biological 
Conservation, 128, 425–430. https://​doi.​org/​10.​1016/j.​biocon.​
2005.​08.​013

Duran, D. P., Herrmann, D. P., Roman, S. J., Gwiazdowski, R. A., 
Drummond, J. A., Hood, G. R., & Egan, S. P. (2019). Cryptic diver-
sity in the North American Dromochorus tiger beetles (Coleoptera: 
Carabidae: Cicindelinae): A congruence-based method for species 
discovery. Zoological Journal of the Linnean Society, 186, 250–285. 
https://​doi.​org/​10.​1093/​zooli​nnean/​​zly035

Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008). Species 
detection using environmental DNA from water samples. Biology 
Letters, 4, 423–425. https://​doi.​org/​10.​1098/​rsbl.​2008.​0118

Fiser Pečnikar, Z., & Buzan, E. V. (2014). 20 years since the introduction 
of DNA barcoding: From theory to application. Journal of Applied 
Genetics, 55, 43–52. https://​doi.​org/​10.​1007/​s1335​3-​013-​0180-​y

Fox, J., & Monette, G. (1992). Generalized collinearity diagnostics. 
Journal of the American Statistical Association, 87, 178–183. https://​
doi.​org/​10.​1080/​01621​459.​1992.​10475190

Funk, D. J., & Omland, K. E. (2003). Species-level paraphyly and poly-
phyly: Frequency, causes, and consequences, with insights from 
animal mitochondrial DNA. Annual Review of Ecology, Evolution, and 
Systematics, 34, 397–423. https://​doi.​org/​10.​1146/​annur​ev.​ecols​
ys.​34.​011802.​132421

García-Robledo, C., Erickson, D. L., Staines, C. L., Erwin, T. L., & Kress, 
W. J. (2013). Tropical plant-herbivore networks: Reconstructing 
species interactions using DNA barcodes. PLoS One, 8(1), e52967. 
https://​doi.​org/​10.​1371/​journ​al.​pone.​0052967

Giam, X., Scheffers, B. R., Sodhi, N. S., Wilcove, D. S., Ceballos, G., & 
Ehrlich, P. R. (2012). Reservoirs of richness: Least disturbed tropical 
forests are centres of undescribed species diversity. Proceedings of 
the Royal Society B: Biological Sciences, 279, 67–76. https://​doi.​org/​
10.​1098/​rspb.​2011.​0433

Gong, L., Qiu, X. H., Huang, J., Xu, W., Bai, J. Q., Zhang, J., Su, H., Xu, C. 
M., & Huang, Z. H. (2018). Constructing a DNA barcode reference 
library for southern herbs in China: A resource for authentication of 
southern Chinese medicine. PLoS One, 13, e0201240. https://​doi.​
org/​10.​1371/​journ​al.​pone.​0201240

Hao, M. D., Jin, Q., Meng, G. L., Yang, C. Q., Yang, S. Z., Shi, Z. Y., Tang, 
M., Liu, S. L., Li, Y. N., Zhang, D., Su, X., Shih, C., Sun, Y. R., Zhou, 
X., & Zhang, A. B. (2020). Regional assemblages shaped by diverse 
historical and contemporary factors: Evidence from a species-rich 
insect group. Molecular Ecology, 29, 2492–2510. https://​doi.​org/​10.​
1111/​mec.​15412​

Haraldsson, M., & Thébault, E. (2023). Emerging niche clustering results 
from both competition and predation. Ecology Letters, 26, 1200–
1211. https://​doi.​org/​10.​1111/​ele.​14230​

Hebert, P. D., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological 
identifications through DNA barcodes. Proceedings of the Royal 
Society B: Biological Sciences, 270, 313–321. https://​doi.​org/​10.​
1098/​rspb.​2002.​2218

Hebert, P. D., & Gregory, T. R. (2005). The promise of DNA barcoding 
for taxonomy. Systematic Biology, 54, 852–859. https://​doi.​org/​10.​
1080/​10635​15050​0354886

Hebert, P. D. N., Ratnasingham, S., & deWaard, J. R. (2003). Barcoding 
animal life: Cytochrome c oxidase subunit 1 divergences among 
closely related species. Proceedings of the Royal Society B: 
Biological Sciences, 270, 96–99. https://​doi.​org/​10.​1098/​rsbl.​
2003.​0025

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). 
Very high resolution interpolated climate surfaces for global land 
areas. International Journal of Climatology, 25, 1965–1978. https://​
doi.​org/​10.​1002/​joc.​1276

Hollander, M., & Wolfe, D. A. (1973). Nonparametric statistical methods. 
John Wiley & Sons.

Hutchinson, G. E. (1957). Concluding remark. Cold Spring Harbor Symposia 
on Quantitative Biology, 22, 415–427. https://​doi.​org/​10.​1007/​978-​
3-​642-​68836​-​2_​20

Jin, Q., Han, H., Hu, X., Li, X., Zhu, C., Ho, S. Y., Ward, R. D., & Zhang, A. B. 
(2013). Quantifying species diversity with a DNA barcoding-based 
method: Tibetan moth species (Noctuidae) on the Qinghai-Tibetan 
plateau. PLoS One, 8, e64428. https://​doi.​org/​10.​1371/​journ​al.​
pone.​0064428

Joly, S., Davies, T. J., Archambault, A., Bruneau, A., Derry, A., Kembel, S. 
W., Peres-Neto, P., Vamosi, J., & Wheeler, T. A. (2014). Ecology in 
the age of DNA barcoding: The resource, the promise and the chal-
lenges ahead. Molecular Ecology Resources, 14, 221–232. https://​doi.​
org/​10.​1111/​1755-​0998.​12173​

Kamo, T., Kusumoto, Y., Tokuoka, Y., Okubo, S., Hayakawa, H., Yoshiyama, 
M., Kimura, K., & Konuma, A. (2018). A DNA barcoding method 
for identifying and quantifying the composition of pollen species 
collected by European honeybees, Apis mellifera (Hymenoptera: 
Apidae). Applied Entomology and Zoology, 53, 353–361. https://​doi.​
org/​10.​1007/​s1335​5-​018-​0565-​9

Kass, J. M., Muscarella, R., Galante, P. J., Bohl, C. L., Pinilla-Buitrago, G. E., 
Boria, R. A., Soley-Guardia, M., & Anderson, R. P. (2021). ENMeval 
2.0: Redesigned for customizable and reproducible modeling of 
species' niches and distributions. Methods in Ecology and Evolution, 
12, 1602–1608. https://​doi.​org/​10.​1111/​2041-​210x.​13628​

 2041210x, 2024, 12, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14440, W
iley O

nline L
ibrary on [13/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1177/0049124104268644
https://doi.org/10.1177/0049124104268644
https://doi.org/10.1038/srep20123
https://doi.org/10.1016/j.biotechadv.2014.07.004
https://doi.org/10.1016/j.biotechadv.2014.07.004
https://doi.org/10.1111/2041-210x.12366
https://doi.org/10.1111/2041-210x.12366
https://doi.org/10.1111/2041-210x.13895
https://doi.org/10.1111/2041-210x.13895
https://doi.org/10.1111/1755-0998.12046
https://doi.org/10.1111/1755-0998.12046
https://doi.org/10.1016/j.tree.2014.08.001
https://doi.org/10.1371/journal.pone.0032544
https://doi.org/10.1371/journal.pone.0032544
https://doi.org/10.4236/ajps.2017.86094
https://doi.org/10.4236/ajps.2017.86094
https://doi.org/10.1111/mec.15211
https://doi.org/10.1111/mec.15211
https://doi.org/10.1016/j.biocon.2005.08.013
https://doi.org/10.1016/j.biocon.2005.08.013
https://doi.org/10.1093/zoolinnean/zly035
https://doi.org/10.1098/rsbl.2008.0118
https://doi.org/10.1007/s13353-013-0180-y
https://doi.org/10.1080/01621459.1992.10475190
https://doi.org/10.1080/01621459.1992.10475190
https://doi.org/10.1146/annurev.ecolsys.34.011802.132421
https://doi.org/10.1146/annurev.ecolsys.34.011802.132421
https://doi.org/10.1371/journal.pone.0052967
https://doi.org/10.1098/rspb.2011.0433
https://doi.org/10.1098/rspb.2011.0433
https://doi.org/10.1371/journal.pone.0201240
https://doi.org/10.1371/journal.pone.0201240
https://doi.org/10.1111/mec.15412
https://doi.org/10.1111/mec.15412
https://doi.org/10.1111/ele.14230
https://doi.org/10.1098/rspb.2002.2218
https://doi.org/10.1098/rspb.2002.2218
https://doi.org/10.1080/10635150500354886
https://doi.org/10.1080/10635150500354886
https://doi.org/10.1098/rsbl.2003.0025
https://doi.org/10.1098/rsbl.2003.0025
https://doi.org/10.1002/joc.1276
https://doi.org/10.1002/joc.1276
https://doi.org/10.1007/978-3-642-68836-2_20
https://doi.org/10.1007/978-3-642-68836-2_20
https://doi.org/10.1371/journal.pone.0064428
https://doi.org/10.1371/journal.pone.0064428
https://doi.org/10.1111/1755-0998.12173
https://doi.org/10.1111/1755-0998.12173
https://doi.org/10.1007/s13355-018-0565-9
https://doi.org/10.1007/s13355-018-0565-9
https://doi.org/10.1111/2041-210x.13628


2356  |    YANG et al.

Kimura, M. (1980). A simple method for estimating evolutionary rates 
of base substitutions through comparative studies of nucleotide 
sequences. Journal of Molecular Evolution, 16, 111–120. https://​doi.​
org/​10.​1007/​BF017​31581​

Lai, J., Zou, Y., Zhang, J., & Peres-Neto, P. R. (2022). Generalizing hierar-
chical and variation partitioning in multiple regression and canoni-
cal analyses using the rdacca.hp R package. Methods in Ecology and 
Evolution, 13, 782–788. https://​doi.​org/​10.​1111/​2041-​210x.​13800​

Leaché, A. D., Koo, M. S., Spencer, C. L., Papenfuss, T. J., Fisher, R. N., & 
McGuire, J. A. (2009). Quantifying ecological, morphological, and 
genetic variation to delimit species in the coast horned lizard spe-
cies complex (Phrynosoma). Proceedings of the National Academy of 
Sciences of the United States of America, 106, 12418–19623. https://​
doi.​org/​10.​1073/​pnas.​09063​80106​

Lim, G. S., Balke, M., & Meier, R. (2012). Determining species boundaries 
in a world full of rarity: Singletons, species delimitation methods. 
Systematic Biology, 61, 165–169. https://​doi.​org/​10.​1093/​sysbio/​
syr030

Liu, L., & Yu, L. L. (2010). Phybase: An R package for species tree analysis. 
Bioinformatics, 26, 962–963. https://​doi.​org/​10.​1093/​bioin​forma​
tics/​btq062

Liu, Q., Charleston, M. A., Richards, S. A., Holland, B. R., & Jermiin, L. 
(2023). Performance of Akaike information criterion and Bayesian 
information criterion in selecting partition models and mixture 
models. Systematic Biology, 72, 92–105. https://​doi.​org/​10.​1093/​
sysbio/​syac081

Lu, M., Winner, K., & Jetz, W. (2021). A unifying framework for quantify-
ing and comparing n-dimensional hypervolumes. Methods in Ecology 
and Evolution, 12, 1953–1968. https://​doi.​org/​10.​1111/​2041-​210x.​
13665​

Mantel, N. (1967). The detection of disease clustering and a generalized 
regression approach. Cancer Research, 27, 209–220. https://​doi.​
org/​10.​1007/​s0025​3-​002-​1013-​9

McGuire, J. A., Linkem, C. W., Koo, M. S., Hutchison, D. W., Lappin, A. 
K., Orange, D. I., Lemos-Espinal, J., Riddle, B. R., & Jaeger, J. R. 
(2007). Mitochondrial introgression and incomplete lineage sort-
ing through space and time: Phylogenetics of crotaphytid lizards. 
Evolution, 61, 2879–2897. https://​doi.​org/​10.​1111/j.​1558-​5646.​
2007.​00239.​x

Meier, R., Shiyang, K., Vaidya, G., & Ng, P. K. L. (2006). DNA barcoding 
and taxonomy in Diptera: A tale of high intraspecific variability and 
low identification success. Systematic Biology, 55, 715–728. https://​
doi.​org/​10.​1080/​10635​15060​0969864

Meier, R., Zhang, G., & Ali, F. (2008). The use of mean instead of small-
est interspecific distances exaggerates the size of the ‘barcoding 
gap’ and leads to misidentification. Systematic Biology, 57, 809–813. 
https://​doi.​org/​10.​1080/​10635​15080​2406343

Miller, R. G. (1981). Simultaneous statistical inference. Springer.
Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G., & Worm, B. (2011). How 

many species are there on Earth and in the ocean? PLoS Biology, 9, 
e1001127. https://​doi.​org/​10.​1371/​journ​al.​pbio.​1001127

Moritz, C., & Cicero, C. (2004). DNA barcoding: Promise and pitfalls. 
PLoS Biology, 2, 1529–1531. https://​doi.​org/​10.​1371/​journ​al.​pbio.​
0020354

Murphy, S. J., & Smith, A. B. (2021). What can community ecologists 
learn from species distribution models? Ecosphere, 12, e03864. 
https://​doi.​org/​10.​1002/​ecs2.​3864

Mutanen, M., Kivela, S. M., Vos, R. A., Doorenweerd, C., Ratnasingham, 
S., Hausmann, A., Huemer, P., Dinca, V., van Nieukerken, E. J., 
Lopez-Vaamonde, C., Vila, R., Aarvik, L., Decaens, T., Efetov, K. A., 
Hebert, P. D., Johnsen, A., Karsholt, O., Pentinsaari, M., Rougerie, 
R., … Godfray, H. C. J. (2016). Species-level para- and polyphyly 
in DNA barcode gene trees: Strong operational bias in European 
Lepidoptera. Systematic Biology, 65, 1024–1040. https://​doi.​org/​10.​
1093/​sysbio/​syw044

Nielsen, R., & Matz, M. (2006). Statistical approaches for DNA barcoding. 
Systematic Biology, 55, 162–169. https://​doi.​org/​10.​1080/​10635​
15050​0431239

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, 
D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, 
M. H. H., Szoecs, E., & Wagner, H. (2020). vegan: Community ecol-
ogy package. R package version 2.5-7. https://​CRAN.​R-​proje​ct.​org/​
packa​ge=​vegan​

Orr, M. C., Ascher, J. S., Bai, M., Chesters, D., & Zhu, C. D. (2020). Three 
questions: How can taxonomists survive and thrive worldwide? 
Megataxa, 1, 19–27. https://​doi.​org/​10.​11646/​​megat​axa.1.​1.​4

Orr, M. C., Feijó, A., Chesters, D., Vogler, A. P., Bossert, S., Ferrari, 
R. R., Costello, M. J., Hughes, A. C., Krogmann, L., Ascher, J. 
S., Zhou, X., Li, D.-Z., Bai, M., Chen, J., Ge, D., Luo, A., Qiao, G., 
Williams, P. H., Zhang, A.-B., … Zhu, C.-D. (2022). Six steps for 
building a technological knowledge base for future taxonomic 
work. National Science Review, 9, nwac284. https://​doi.​org/​10.​
1093/​nsr/​nwac284

Orr, M. C., Koch, J. B., Griswold, T. L., & Pitts, J. P. (2014). Taxonomic 
utility of niche models in validating species concepts: A case study 
in Anthophora (Heliophila) (Hymenoptera: Apidae). Zootaxa, 3846, 
411–429. https://​doi.​org/​10.​11646/​​zoota​xa.​3846.3.​5

Osorio-Olvera, L., Lira-Noriega, A., Soberón, J., Peterson, A. T., Falconi, 
M., Contreras-Díaz, R. G., Martínez-Meyer, E., Barve, V., Barve, N., 
& Qiao, H. (2020). NTBOX: An R package with graphical user in-
terface for modelling and evaluating multidimensional ecological 
niches. Methods in Ecology and Evolution, 11, 1199–1206. https://​
doi.​org/​10.​1111/​2041-​210x.​13452​

Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylo-
genetics and evolution in R language. Bioinformatics, 20, 289–290. 
https://​doi.​org/​10.​1093/​bioin​forma​tics/​btg412

Pejovic, I., Ardura, A., Miralles, L., Arias, A., Borrell, Y. J., & Garcia-
Vazquez, E. (2016). DNA barcoding for assessment of exotic mol-
luscs associated with maritime ports in northern Iberia. Marine 
Biology Research, 12, 168–176. https://​doi.​org/​10.​1080/​17451​000.​
2015.​1112016

Peterson, A. T. (2011). Ecological niche conservatism: A time-structured 
review of evidence. Journal of Biogeography, 38, 817–827. https://​
doi.​org/​10.​1111/j.​1365-​2699.​2010.​02456.​x

Pfenninger, M., Nowak, C., Kley, C., Steinke, D., & Streit, B. (2007). Utility 
of DNA taxonomy and barcoding for the inference of larval commu-
nity structure in morphologically cryptic Chironomus (Diptera) spe-
cies. Molecular Ecology, 16, 1957–1968. https://​doi.​org/​10.​1111/j.​
1365-​294X.​2006.​03136.​x

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum en-
tropy modeling of species geographic distributions. Ecological 
Modelling, 190, 231–259. https://​doi.​org/​10.​1016/j.​ecolm​odel.​
2005.​03.​026

Pichler, M., & Hartig, F. (2021). A new joint species distribution model for 
faster and more accurate inference of species associations from big 
community data. Methods in Ecology and Evolution, 12, 2159–2173. 
https://​doi.​org/​10.​1111/​2041-​210x.​13687​

Popescu, A. A., Huber, K. T., & Paradis, E. (2012). ape 3.0: New tools 
for distance-based phylogenetics and evolutionary analysis in R. 
Bioinformatics, 28, 1536–1537. https://​doi.​org/​10.​1093/​bioin​forma​
tics/​bts184

Porco, D., Decaëns, T., Deharveng, L., James, S. W., Skarżyński, D., 
Erséus, C., Butt, K. R., Richard, B., & Hebert, P. D. N. (2012). 
Biological invasions in soil: DNA barcoding as a monitoring tool in 
a multiple taxa survey targeting European earthworms and spring-
tails in North America. Biological Invasions, 15, 899–910. https://​doi.​
org/​10.​1007/​s1053​0-​012-​0338-​2

Pulliam, H. R. (2000). On the relationship between niche and distribu-
tion. Ecology Letters, 3, 349–361. https://​doi.​org/​10.​1046/j.​1461-​
0248.​2000.​00143.​x

 2041210x, 2024, 12, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14440, W
iley O

nline L
ibrary on [13/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1007/BF01731581
https://doi.org/10.1007/BF01731581
https://doi.org/10.1111/2041-210x.13800
https://doi.org/10.1073/pnas.0906380106
https://doi.org/10.1073/pnas.0906380106
https://doi.org/10.1093/sysbio/syr030
https://doi.org/10.1093/sysbio/syr030
https://doi.org/10.1093/bioinformatics/btq062
https://doi.org/10.1093/bioinformatics/btq062
https://doi.org/10.1093/sysbio/syac081
https://doi.org/10.1093/sysbio/syac081
https://doi.org/10.1111/2041-210x.13665
https://doi.org/10.1111/2041-210x.13665
https://doi.org/10.1007/s00253-002-1013-9
https://doi.org/10.1007/s00253-002-1013-9
https://doi.org/10.1111/j.1558-5646.2007.00239.x
https://doi.org/10.1111/j.1558-5646.2007.00239.x
https://doi.org/10.1080/10635150600969864
https://doi.org/10.1080/10635150600969864
https://doi.org/10.1080/10635150802406343
https://doi.org/10.1371/journal.pbio.1001127
https://doi.org/10.1371/journal.pbio.0020354
https://doi.org/10.1371/journal.pbio.0020354
https://doi.org/10.1002/ecs2.3864
https://doi.org/10.1093/sysbio/syw044
https://doi.org/10.1093/sysbio/syw044
https://doi.org/10.1080/10635150500431239
https://doi.org/10.1080/10635150500431239
https://cran.r-project.org/package=vegan
https://cran.r-project.org/package=vegan
https://doi.org/10.11646/megataxa.1.1.4
https://doi.org/10.1093/nsr/nwac284
https://doi.org/10.1093/nsr/nwac284
https://doi.org/10.11646/zootaxa.3846.3.5
https://doi.org/10.1111/2041-210x.13452
https://doi.org/10.1111/2041-210x.13452
https://doi.org/10.1093/bioinformatics/btg412
https://doi.org/10.1080/17451000.2015.1112016
https://doi.org/10.1080/17451000.2015.1112016
https://doi.org/10.1111/j.1365-2699.2010.02456.x
https://doi.org/10.1111/j.1365-2699.2010.02456.x
https://doi.org/10.1111/j.1365-294X.2006.03136.x
https://doi.org/10.1111/j.1365-294X.2006.03136.x
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1111/2041-210x.13687
https://doi.org/10.1093/bioinformatics/bts184
https://doi.org/10.1093/bioinformatics/bts184
https://doi.org/10.1007/s10530-012-0338-2
https://doi.org/10.1007/s10530-012-0338-2
https://doi.org/10.1046/j.1461-0248.2000.00143.x
https://doi.org/10.1046/j.1461-0248.2000.00143.x


    |  2357YANG et al.

Qiao, H., Peterson, A. T., Campbell, L. P., Soberón, J., Ji, L., & Escobar, 
L. E. (2016). NicheA: Creating virtual species and ecological niches 
in multivariate environmental scenarios. Ecography, 39, 805–813. 
https://​doi.​org/​10.​1111/​ecog.​01961​

Ratnasingham, S., & Hebert, P. D. N. (2007). BOLD: The barcode of life 
data system (www.​barco​dingl​ife.​org). Molecular Ecology Notes, 7, 
355–364. https://​doi.​org/​10.​1111/j.​1471-​8286.​2007.​01678.​x

Raxworthy, C. J., Ingram, C. M., Rabibisoa, N., & Pearson, R. G. (2007). 
Applications of ecological niche modeling for species delimitation: 
A review and empirical evaluation using day geckos (Phelsuma) from 
Madagascar. Systematic Biology, 56, 907–923. https://​doi.​org/​10.​
1080/​10635​15070​1775111

Rissler, L. J., & Apodaca, J. J. (2007). Adding more ecology into species 
delimitation: Ecological niche models and phylogeography help de-
fine cryptic species in the black salamander (Aneides flavipunctatus). 
Systematic Biology, 56, 924–942. https://​doi.​org/​10.​1080/​10635​
15070​1703063

Roe, A. D., & Sperling, F. A. H. (2007). Patterns of evolution of mitochon-
drial cytochrome coxidase I and II DNA and implications for DNA 
barcoding. Molecular Phylogenetics and Evolution, 44, 325–345. 
https://​doi.​org/​10.​1016/j.​ympev.​2006.​12.​005

Ross, H. A. (2014). The incidence of species-level paraphyly in animals: 
A re-assessment. Molecular Phylogenetics and Evolution, 76, 10–17. 
https://​doi.​org/​10.​1016/j.​ympev.​2014.​02.​021

Rubinoff, D., & Holland, B. S. (2005). Between two extremes: 
Mitochondrial DNA is neither the panacea nor the nemesis of phy-
logenetic and taxonomic inference. Systematic Biology, 54, 952–961. 
https://​doi.​org/​10.​1080/​10635​15050​0234674

Ruiz-Sanchez, E., & Sosa, V. (2010). Delimiting species boundaries within 
the neotropical bamboo Otatea (Poaceae: Bambusoideae) using mo-
lecular, morphological and ecological data. Molecular Phylogenetics 
and Evolution, 54, 344–356. https://​doi.​org/​10.​1016/j.​ympev.​2009.​
10.​035

Santos, A. M., Besnard, G., & Quicke, D. L. (2011). Applying DNA barcod-
ing for the study of geographical variation in host-parasitoid inter-
actions. Molecular Ecology Resources, 11, 46–59. https://​doi.​org/​10.​
1111/j.​1755-​0998.​2010.​02889.​x

Scriven, J. J., Whitehorn, P. R., Goulson, D., & Tinsley, M. C. (2016). Niche 
partitioning in a sympatric cryptic species complex. Ecology and 
Evolution, 6, 132812–132839. https://​doi.​org/​10.​1002/​ece3.​1965

Shi, Z. Y., Yang, C. Q., Hao, M. D., Wang, X. Y., Ward, R. D., & Zhang, 
A. B. (2018). FuzzyID2: A software package for large data set spe-
cies identification via barcoding and metabarcoding using hidden 
Markov models and fuzzy set methods. Molecular Ecology Resources, 
18, 666–675. https://​doi.​org/​10.​1111/​1755-​0998.​12738​

Soberón, J., & Nakamura, M. (2009). Niches and distributional areas: 
Concepts, methods, and assumptions. Proceedings of the National 
Academy of Sciences of the United States of America, 106(Suppl 2), 
19644–19650. https://​doi.​org/​10.​1073/​pnas.​09016​37106​

Spiers, A. I., Royle, J. A., Torrens, C. L., & Joseph, M. B. (2022). Estimating 
species misclassification with occupancy dynamics and encoun-
ter rates: A semi-supervised, individual-level approach. Methods 
in Ecology and Evolution, 13, 1528–1539. https://​doi.​org/​10.​1111/​
2041-​210x.​13858​

Sultana, S., Ali, M. E., Hossain, M. A. M., Asing, A., Naquiah, N., & Zaidul, 
I. S. M. (2018). Universal mini COI barcode for the identification of 
fish species in processed products. Food Research International, 105, 
19–28. https://​doi.​org/​10.​1016/j.​foodr​es.​2017.​10.​065

Talavera, G., Dinca, V., & Vila, R. (2013). Factors affecting species de-
limitations with the GMYC model: Insights from a butterfly survey. 
Methods in Ecology and Evolution, 4, 1101–1110. https://​doi.​org/​10.​
1111/​2041-​210X.​12107​

Taylor, H. R., & Harris, W. E. (2012). An emergent science on the brink 
of irrelevance: A review of the past 8 years of DNA barcoding. 
Molecular Ecology Resources, 12, 377–388. https://​doi.​org/​10.​
1111/j.​1755-​0998.​2012.​03119.​x

Title, P. O., & Bemmels, J. B. (2018). ENVIREM: An expanded set of biocli-
matic and topographic variables increases flexibility and improves 
performance of ecological niche modeling. Ecography, 41, 291–307. 
https://​doi.​org/​10.​1111/​ecog.​02880​

van der Veen, B., Hui, F. K. C., Hovstad, K. A., Solbu, E. B., & O'Hara, R. 
B. (2021). Model-based ordination for species with unequal niche 
widths. Methods in Ecology and Evolution, 12, 1288–1300. https://​
doi.​org/​10.​1111/​2041-​210x.​13595​

Wallis, G. P., Cameron-Christie, S. R., Kennedy, H. L., Palmer, G., Sanders, 
T. R., & Winter, D. J. (2017). Interspecific hybridization causes long-
term phylogenetic discordance between nuclear and mitochondrial 
genomes in freshwater fishes. Molecular Ecology, 26, 3116–3127. 
https://​doi.​org/​10.​1111/​mec.​14096​

Wiemers, M., & Fiedler, K. (2007). Does the DNA barcoding gap exist? - A 
case study in blue butterflies (Lepidoptera: Lycaenidae). Frontiers in 
Zoology, 4, 8. https://​doi.​org/​10.​1186/​1742-​9994-​4-​8

Wijayathilaka, N., Senevirathne, G., Bandara, C., Rajapakse, S., 
Pethiyagoda, R., & Meegaskumbura, M. (2018). Integrating bio-
acoustics, DNA barcoding and niche modeling for frog conserva-
tion—The threatened balloon frogs of Sri Lanka. Global Ecology and 
Conservation, 16, e00496. https://​doi.​org/​10.​1016/j.​gecco.​2018.​
e00496

Will, K. W., Mishler, B. D., & Wheeler, Q. D. (2005). The perils of DNA bar-
coding and the need for integrative taxonomy. Systematic Biology, 
54(5), 844–851. https://​doi.​org/​10.​1080/​10635​15050​0354878

Wilson, J. S., Clark, S. L., Williams, K. A., & Pitts, J. P. (2012). Historical 
biogeography of the arid-adapted velvet ant Sphaeropthalma 
arota (Hymenoptera: Mutillidae) reveals cryptic species. Journal of 
Biogeography, 39, 336–352. https://​doi.​org/​10.​1111/j.​1365-​2699.​
2011.​02580.​x

Wright, W. J., Irvine, K. M., Almberg, E. S., Litt, A. R., & Yoccoz, N. (2019). 
Modelling misclassification in multi-species acoustic data when 
estimating occupancy and relative activity. Methods in Ecology and 
Evolution, 11, 71–81. https://​doi.​org/​10.​1111/​2041-​210x.​13315​

Wu, Y. H., Hou, S. B., Yuan, Z. Y., Jiang, K., Huang, R. Y., Wang, K., Liu, Q., 
Yu, Z. B., Zhao, H. P., Zhang, B. L., Chen, J. M., Wang, L. J., Stuart, B. 
L., Chambers, E. A., Wang, Y. F., Gao, W., Zou, D. H., Yan, F., Zhao, G. 
G., … Che, J. (2023). DNA barcoding of Chinese snakes reveals hid-
den diversity and conservation needs. Molecular Ecology Resources, 
23, 1124–1141. https://​doi.​org/​10.​1111/​1755-​0998.​13784​

Xu, S. Z., Li, Z. Y., & Jin, X. H. (2017). DNA barcoding of invasive plants in 
China: A resource for identifying invasive plants. Molecular Ecology 
Resources, 18, 128–136. https://​doi.​org/​10.​1111/​1755-​0998.​12715​

Yackulic, C. B., Chandler, R., Zipkin, E. F., Royle, J. A., Nichols, J. D., 
Campbell Grant, E. H., Veran, S., & O'Hara, R. B. (2013). Presence-
only modelling using MAXENT: When can we trust the inferences? 
Methods in Ecology and Evolution, 4, 236–243. https://​doi.​org/​10.​
1111/​2041-​210x.​12004​

Yandell, B. S. (1997). Practical data analysis for designed experiments. 
Chapman & Hall.

Yang, B., Zhang, Z. X., Yang, C. Q., Wang, Y., Orr, M. C., Wang, H. B., & 
Zhang, A. B. (2022). Identification of species by combining molec-
ular and morphological data using convolutional neural networks. 
Systematic Biology, 71, 690–705. https://​doi.​org/​10.​1093/​sysbio/​
syab076

Yang, C. Q., Lv, Q., & Zhang, A. B. (2020). Sixteen years of DNA barcod-
ing in China: What has been done? What can be done? Frontiers 
in Ecology and Evolution, 8, 57. https://​doi.​org/​10.​3389/​fevo.​2020.​
00057​

Yang, C. Q., Wang, Y., Li, X. H., Li, J., Yang, B., Orr, M. C., & Zhang, A. B. 
(2024a). NicheBarcoding: Niche-model-based species identification. R 
package version 1.8. https://​CRAN.​R-​proje​ct.​org/​packa​ge=​Niche​
Barco​ding

Yang, C. Q., Wang, Y., Li, X. H., Li, J., Yang, B., Orr, M. C., & Zhang, A. 
B. (2024b). NicheBarcoding (Version v0.0.1.8000). Zenodo, https://​
doi.​org/​10.​5281/​zenodo.​13270695

 2041210x, 2024, 12, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14440, W
iley O

nline L
ibrary on [13/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1111/ecog.01961
http://www.barcodinglife.org
https://doi.org/10.1111/j.1471-8286.2007.01678.x
https://doi.org/10.1080/10635150701775111
https://doi.org/10.1080/10635150701775111
https://doi.org/10.1080/10635150701703063
https://doi.org/10.1080/10635150701703063
https://doi.org/10.1016/j.ympev.2006.12.005
https://doi.org/10.1016/j.ympev.2014.02.021
https://doi.org/10.1080/10635150500234674
https://doi.org/10.1016/j.ympev.2009.10.035
https://doi.org/10.1016/j.ympev.2009.10.035
https://doi.org/10.1111/j.1755-0998.2010.02889.x
https://doi.org/10.1111/j.1755-0998.2010.02889.x
https://doi.org/10.1002/ece3.1965
https://doi.org/10.1111/1755-0998.12738
https://doi.org/10.1073/pnas.0901637106
https://doi.org/10.1111/2041-210x.13858
https://doi.org/10.1111/2041-210x.13858
https://doi.org/10.1016/j.foodres.2017.10.065
https://doi.org/10.1111/2041-210X.12107
https://doi.org/10.1111/2041-210X.12107
https://doi.org/10.1111/j.1755-0998.2012.03119.x
https://doi.org/10.1111/j.1755-0998.2012.03119.x
https://doi.org/10.1111/ecog.02880
https://doi.org/10.1111/2041-210x.13595
https://doi.org/10.1111/2041-210x.13595
https://doi.org/10.1111/mec.14096
https://doi.org/10.1186/1742-9994-4-8
https://doi.org/10.1016/j.gecco.2018.e00496
https://doi.org/10.1016/j.gecco.2018.e00496
https://doi.org/10.1080/10635150500354878
https://doi.org/10.1111/j.1365-2699.2011.02580.x
https://doi.org/10.1111/j.1365-2699.2011.02580.x
https://doi.org/10.1111/2041-210x.13315
https://doi.org/10.1111/1755-0998.13784
https://doi.org/10.1111/1755-0998.12715
https://doi.org/10.1111/2041-210x.12004
https://doi.org/10.1111/2041-210x.12004
https://doi.org/10.1093/sysbio/syab076
https://doi.org/10.1093/sysbio/syab076
https://doi.org/10.3389/fevo.2020.00057
https://doi.org/10.3389/fevo.2020.00057
https://cran.r-project.org/package=NicheBarcoding
https://cran.r-project.org/package=NicheBarcoding
https://doi.org/10.5281/zenodo.13270695
https://doi.org/10.5281/zenodo.13270695


2358  |    YANG et al.

Yang, C. Q., Wang, Y., Li, X. H., Li, J., Yang, B., Orr, M. C., & Zhang, A. B. 
(2024c). Data from: Environmental niche models improve species 
identification in DNA barcoding. Dryad Digital Repository, https://​
doi.​org/​10.​5061/​dryad.​rbnzs​7h96

Yang, Z. H. (2006). Computational molecular evolution. Oxford University 
Press.

Zhang, A. B., Hao, M. D., Yang, C. Q., & Shi, Z. Y. (2017). BarcodingR: 
An integrated R package for species identification using DNA bar-
codes. Methods in Ecology and Evolution, 8, 627–634. https://​doi.​
org/​10.​1111/​2041-​210X.​12682​

Zhang, A. B., Muster, C., Liang, H. B., Zhu, C. D., Crozier, R., Wan, P., Feng, 
J., & Ward, R. D. (2012). A fuzzy-set-theory-based approach to anal-
yse species membership in DNA barcoding. Molecular Ecology, 21, 
1848–1863. https://​doi.​org/​10.​1111/j.​1365-​294X.​2011.​05235.​x

Zhang, A. B., Sikes, D. S., Muster, C., & Li, S. Q. (2008). Inferring species 
membership using DNA sequences with back-propagation neu-
ral networks. Systematic Biology, 57, 202–215. https://​doi.​org/​10.​
1080/​10635​15080​2032982

Zhang, X. M., Shi, Z. Y., Zhang, S. Q., Zhang, P., Wilson, J. J., Shih, C., Li, 
J., Li, X. D., Yu, G. Y., & Zhang, A. B. (2020). Plant-herbivorous in-
sect networks: Who is eating what revealed by long barcodes using 
high-throughput sequencing and Trinity assembly. Insect Science, 
28, 127–143. https://​doi.​org/​10.​1111/​1744-​7917.​12749​

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

Table S1: The notation table of the parameters involved in the NBSI 
framework.
Table S2: The detailed statistics of tests of simulated datasets.
Table S3: The detailed statistics of tests of empirical datasets.
Appendix S1: All generated simulated datasets.
Appendix S2: All collected empirical datasets.
Appendix S3: The variables retained for niche modelling in every 
single test of simulated datasets.
Appendix S4: The variables retained for niche modelling in every 
single test of empirical datasets.

How to cite this article: Yang, C.-q., Wang, Y., Li, X.-h., Li, J., 
Yang, B., Orr, M. C., & Zhang, A.-b. (2024). Environmental niche 
models improve species identification in DNA barcoding. 
Methods in Ecology and Evolution, 15, 2343–2358. https://doi.
org/10.1111/2041-210X.14440

 2041210x, 2024, 12, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14440, W
iley O

nline L
ibrary on [13/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.5061/dryad.rbnzs7h96
https://doi.org/10.5061/dryad.rbnzs7h96
https://doi.org/10.1111/2041-210X.12682
https://doi.org/10.1111/2041-210X.12682
https://doi.org/10.1111/j.1365-294X.2011.05235.x
https://doi.org/10.1080/10635150802032982
https://doi.org/10.1080/10635150802032982
https://doi.org/10.1111/1744-7917.12749
https://doi.org/10.1111/2041-210X.14440
https://doi.org/10.1111/2041-210X.14440

	Environmental niche models improve species identification in DNA barcoding
	Abstract
	1  |  INTRODUCTION
	2  |  A NEWLY PROPOSED FRAMEWORK: NBSI
	2.1  |  Probability based on barcode sequence
	2.2  |  Probability based on ecological niche
	2.3  |  Calculation of the final integrated outcome

	3  |  MATERIALS AND METHODS
	3.1  |  Generation of simulated datasets
	3.1.1  |  Simulation of gene trees and barcode sequences
	3.1.2  |  Simulation of distribution patterns

	3.2  |  Collection of empirical datasets
	3.3  |  Ecological variables used in niche modelling
	3.4  |  Test and success rate calculation

	4  |  RESULTS
	4.1  |  Performance in simulated datasets
	4.2  |  Performance in empirical datasets

	5  |  DISCUSSION
	6  |  CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	PEER REVIEW
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES


