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Abstract

1. Recent advances in DNA barcoding have immeasurably advanced global biodi-
versity research in the last two decades. However, inherent limitations in barcode
sequences, such as hybridization, introgression or incomplete lineage sorting can
lead to misidentifications when relying solely on barcode sequences.

2. Here, we propose a new Niche-model-Based Species Identification (NBSI) method
based on the idea that species distribution information is a potential complement
to DNA barcoding species identifications. NBSI performs species membership
inference by incorporating niche modelling predictions and traditional DNA bar-
coding identifications.

3. Systematic tests across diverse scenarios show significant improvements in spe-
cies identification success rates under the newly proposed NBSI framework,
where the largest increase is from 4.7% (95% Cl: 3.51%-6.25%) to 94.8% (95% ClI:
93.19%-96.06%). Additionally, obvious improvements were observed when using
NBSI on potentially ambiguous sequences whose genetic nearest neighbours be-
longs to another species or more than two species, which occurs commonly with
species represented by single or short DNA barcodes.

4. These results support our assertion that environmental factors/variables are val-
uable complements to DNA sequence data for species identification by avoiding
potential misidentifications inferred from genetic information alone. The NBSI
framework is currently implemented as a new R package, ‘NicheBarcoding’, that is
open source under GNU General Public Licence and freely available from https://

CRAN.R-project.org/package=NicheBarcoding.
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1 | INTRODUCTION

DNA barcoding has evolved over two decades and is now widely
recognized as the optimal solution for large-scale, species-level iden-
tification. It has greatly expanded in use from its origins in taxonomy
to become a standard tool in ecological and evolutionary research
(Fiser Pe¢nikar & Buzan, 2014; Joly et al., 2014). Following innova-
tions in DNA sequencing (Taylor & Harris, 2012), nearly sixteen mil-
lion (15,824,647) barcodes from over three-hundred fifty thousand
(351,521) species have been accumulated in BOLD Systems (The
Barcode of Life Data, http://www.boldsystems.org; Ratnasingham &
Hebert, 2007) as of February 2024. Information gathered from DNA
barcodes has proven invaluable for understanding interspecies inter-
actions (Garcia-Robledo et al., 2013; Kamo et al., 2018; Pfenninger
et al., 2007; Santos et al., 2011; Zhang et al., 2020); assessing bio-
diversity in species-rich, difficult-to-access and poorly catalogued
ecosystems (Ashfaq et al., 2018; Chen et al., 2016; Hao et al., 2020;
Mora et al., 2011; Wu et al., 2023); monitoring illegal trade in animal
byproducts (Asis et al., 2016; Domingo-Roura et al., 2006; Sultana
et al., 2018); identifying exotic species reliably and quickly (Ficetola
et al., 2008; Pejovic et al., 2016; Porco et al., 2012); verifying the
identity of medicinal plants (Chen et al., 2014; Gong et al., 2018;
Yang et al., 2020); and more.

However, challenges persist due to the inherent limitations of
mitochondrial DNA (mtDNA) sequences (Chesters et al., 2015;
Rubinoff & Holland, 2005). Studies have shown that identical COI
sequences do not guarantee species concordance, with a 6% chance
of misidentification (Meier et al., 2006). Non-monophyly among bar-
code genes, reflecting discordance between gene tree and species
tree, further complicates identification (Chesters et al., 2015; Funk
& Omland, 2003; Ross, 2014). These are often linked to mitochon-
drial hybrid introgression, incomplete lineage sorting, and male-
biased gene flow (e.g. Despres, 2019; McGuire et al., 2007; Moritz
& Cicero, 2004; Talavera et al., 2013; Wallis et al., 2017), but can
also stem from human factors such as tree inference methods, in-
accurate reference taxonomy, under-sampling, or other operational
factors (Bergsten et al., 2012; Lim et al., 2012; Meier et al., 2008;
Mutanen et al., 2016; Wiemers & Fiedler, 2007). The development
of integrative taxonomy concepts and techniques serves to improve
the issue of species misidentification caused by reliance on single
data sources (Borges et al., 2016; Collins & Cruickshank, 2013; Orr
etal.,, 2022; Spiers et al., 2022; Will et al., 2005; Wright et al., 2019).
For example, Yang et al. (2022) has presented a convolutional neural
network method (MMNet) that integrates morphological and molec-
ular data for species identification with high accuracy across various
taxa. However, Yang et al. (2022)'s method may also encounter big
challenges when morphological data are limited due to the lack of
photographs, the presence of tiny or damaged specimens.

In such cases, instead of morphology, geospatial data, with its
generality, accessibility, quantifiability and high species specificity,
may serve as an additional source of information to complement
barcode sequence data for species identification. The increased
volume of geotagged DNA barcoding samples (e.g. BOLD Systems)
offer valuable reference data, rendering niche model analysis an

ideal aspect for integrative species identification without mor-
phological information (Ballesteros & Hormiga, 2018; Leaché
et al.,, 2009; Raxworthy et al., 2007; Ruiz-Sanchez & Sosa, 2010;
Scriven et al., 2016). However, niche modelling is rarely used for spe-
cies identification at present, typically employed as supplementary
evidence in the delineation of closely related species (Ballesteros
& Hormiga, 2018; Duran et al.,, 2019; Leaché et al.,, 2009; Orr
et al., 2014; Rissler & Apodaca, 2007; Wijayathilaka et al., 2018;
Wilson et al., 2012). Although ecological information reflects the
long-term adaption of species to certain environments, it may pro-
vide useful information for species identifications to avoid potential
assignment errors encountered when solely basing identification on
barcode sequences.

Here, we propose a Niche-model-Based Species Identification
(NBSI) framework to reinforce species identifications in traditional
DNA barcoding by incorporating both information from DNA bar-
codes and niche model-based species distribution. Systematic tests
under different scenarios using both simulated and empirical data-
sets are performed to show that environmental factors/variables
could be valuable complements to DNA sequence data for species
identification. We also provide an R package ‘NicheBarcoding’, to en-

able free and easy use of this framework by researchers worldwide.

2 | ANEWLY PROPOSED FRAMEWORK:
NBSI

Integrating data from different types is a complex and challenging
task that requires careful consideration and progressive develop-
ment (Orr et al., 2022). Our novel framework proceeds as follows:
Initially, we employ DNA barcoding identification to determine a
potential species k for an unknown sample, and derive the member-
ship probabilities P, based on the barcode sequence. Subsequently,
we construct an ecological niche model and make a prediction for
that potential species to estimate the membership probabilities P,
for the unknown sample based on ecological variables. Finally, con-
sidering the topological monophyly of the barcode sequences (i.e.
whether intraspecific genetic distances are smaller than interspe-
cific ones), we assign weights to the probabilities derived from both
the sequence model and the ecological niche model according to
their confidence levels (SR, and SR, ), resulting in the final integrated
outcome of NBSI. The notation table of the parameters involved in
the NBSI framework can be found in Table S1.

2.1 | Probability based on barcode sequence

To determine the intrinsic discriminative capacity of barcode se-
quence data for different species, we calculate the topological
monophyly of the reference sequence dataset (Ref,). The nj function
from the ‘ape’ package (Paradis et al., 2004; Popescu et al., 2012)
in R-4.2.1 is used to estimate phylogenetic structure based on
genetic distances, and the monophyly function from the ‘spider’
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package (Brown et al., 2012) is applied to identify a list of spe-
cies with sequence monophyly MonolList,. In this context, species
with only one sequence (i.e. singleton) in the dataset are treated as
non-monophyletic.

Then, for the identification of DNA barcoding, we choose a
non-tree-based Bayesian approach (Jin et al., 2013; Nielsen &
Matz, 2006; Zhang et al., 2017) to establish a naiveBayes model
B using the ‘e1071' package (https://CRAN.R-project.org/packa
ge=e1071). The trained model B is then queried with Ref,, and the
identification results for each sample in Ref, are tallied. When the
identified species matches the actual species and the Bayesian pos-
terior probability of species membership is > 0.99, it is recorded as
a true positive (TP); whereas the probability is < 0.99, it is a false
negative (FN). Conversely, if the identified species does not match
the actual species but the probability is > 0.99, it is a false positive
(FP); whereas if the probability is < 0.99, it is a true negative (TN).
The confidence of model B (Success Rate, SR) is calculated as (Yang
et al., 2022; Zhang et al., 2012):

TP+ TN

R = TN+ PPN

x 100%.

Using the query sequence Que,, in model B, we can obtain the potential
target species k for Que, and the membership probability of Que, be-
longing to species k, denoted as Py,,.

2.2 | Probability based on ecological niche

For the identification procedure of the ecological niche, the model
Niche of species k (k = 1,2, ... ,n)is built by a nonlinear method with
good performance, MAXENT (Phillips et al., 2006), using environmental
variables dataset Ref,. According to the ROC curve, we can obtain the
model evaluation parameters, including specificity, sensitivity, thresh-
old (T,,), and accuracy (SR, ). The threshold value here represents the
predicted probability of the modelled species Ref, , belongs to the cor-
responding species k when self-inquiring to the model Niche,.

Using the query environmental variables Que,, we infer the
ecological niche model constructed for species k and then obtain
Eque,k' To ensure the comparability of results from different spe-
cies' models, we employ the Fuzzy method (Shi et al., 2018; Zhang
et al., 2012) for standardization by calculating the following three
parameters:

x=1- Eque,ky

0, = 1- Te,k'

92=1—max{f,zk| 1§i5n;i¢k}.

The probability P, that the query environment variable Que, belongs
to the potential target species k is obtained by the following fuzzy-set
function (Shi et al., 2018; Zhang et al., 2012):
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2.3 | Calculation of the final integrated outcome

Following the setting of threshold value in Shi et al. (2018)'s study
(these values could also be set by users), when Py, >0.95 and
P.x =1, both information sources confirm the potential species k
as correct, resulting in NBSI = 1; while P, < 0.90 and P, = 0, both
sources indicate the potential species k as incorrect, resulting in
NBSI = 0. In cases where the results do not match either of the
above scenarios, it may suggest a discrepancy between the two
sources or an ambiguous situation that requires further investiga-
tion. We should consider whether the species k is included in the
list of species with sequence monophyly Monolist,. If yes, then
based on the model averaging algorithm (Buckland et al., 1997;
Burnham & Anderson, 2004; Liu et al., 2023), weights are assigned
to the probability results from both sources according to their con-
fidence levels:

SR, « SRy, X Py + SR,y X Py

NBSI = b P =
SR, + SRy, bkt SR TR, X ek SR, + SR,y

If not, the species k is considered non-monophyletic, indicating a low
reliability of the barcode result Py,. In this case, the ecological niche
model result is directly used, withNBSI = P,.

3 | MATERIALS AND METHODS

To explore the performance of this approach, we tested the
NBSI framework in both simulated and empirical datasets across
a range of geographic scales while varying genetic diversity, to
comprehensively compare the integrated use of both distribution
and barcode data to the use of traditional DNA barcoding meth-
ods in isolation. All datasets involved in this study are given in
Appendices S1 and S2.

3.1 | Generation of simulated datasets

In the simulations, we considered two factors that may influence the
success rate of species identification in NBSI: (1) the number of in-
dividuals of each species in the reference dataset; and (2) the mono-
phyly of the gene tree compared with its true species tree. These are
main factors affecting the reliability of reference libraries built using
barcode information. The detailed simulation strategy is described

as follows.

85U017 SUOWILIOD 818D 8|qed![dde auyy Aq pausenob a1e S9pile YO ‘SN JO S3INJ 10} Akeud1 78Ul UO 8|1/ UO (SUOTHIPUOO-PUB-SWLIW0™ A8 | 1M A0 18U UO//:SANY) SUOTIPUOD pue SWie | 8U} 89S *[7202/2T/ET] uo Ariqiauliuo A8|IM ‘OriyT X0TZ-Tv0Z/TTTT 0T/I0p/wod A8 imAriq1pul|uo's euInokaq)/sdny wolj pepeojumod ‘ZT ‘v20z *XOTZTY0Z


https://cran.r-project.org/package=e1071
https://cran.r-project.org/package=e1071

Methods in Ecology and Evo

YANG ET AL.

BRITISH
ECOLOGICAL
SOCIETY

3.1.1 | Simulation of gene trees and barcode
sequences

Species trees were generated with the coalescent process using the
rcoal function in the package ‘ape’ (Paradis et al., 2004; Popescu
et al., 2012) in R. We set three gradients of virtual species numbers
(20, 50 and 100) to simulate reference datasets with differing spe-
cies richness. Within each species tree, coalescent simulations were
also performed to generate gene trees (Zhang et al., 2008) using the
simSeqfromSp function in the package ‘phybase’ (Liu & Yu, 2010). To
ensure dataset comparability, the sample size of all simulated data-
sets was set to 100 virtual individuals. Thus, the dataset with 20 spe-
cies would have five individuals in each species, while the 50-species
dataset would have two per species and the 100-species dataset
would be an all-singleton dataset, which can adequately test the
performance of our approach when handling commonplace datasets
with limited sampling. The fundamental coalescent parameter, 6, was
set to three gradients of 0.05, 0.1 and 0.2. As @ refers to the muta-
tion rate per site in molecular sequence data (Yang, 2006), increases
in this parameter cause corresponding increases in intraspecific ge-
netic distance. When the intraspecific distance exceeds the inter-
specific distance between neighbours, a non-monophyletic gene
tree would be recovered, thereby decreasing the success rate of
barcoding species identifications (Meier et al., 2006).

The simulated sequences were evolved along these gene trees
using the GTR model to generate a set of sequence matrices with the
simSeqfromSp function implemented in the package ‘phybase’ (Liu &
Yu, 2010). We set the sequence length to 658 base pairs, consis-
tent with one of the most commonly used COIl barcode fragments
(LCO-HCO: Hebert, Cywinska, et al., 2003; Hebert, Ratnasingham,
et al., 2003). Parameter values used in GTR model were derived
from Roe and Sperling (2007) study with the following settings:
base frequencies A=0.3255,C=0.1014, G=0.1206, T=0.4525; and
rates matrix AC=10.6213, AG=16.7683, AT=8.8273, CG=1.5416,
CT=122.9118 and GT=1.000.

3.1.2 | Simulation of distribution patterns

Nineteen bioclimatic variables were downloaded from WorldClim
(version 1.4 with 2.5 arc minute resolution; http://www.worldclim.
org/; Hijmans et al., 2005) to quantify the ecological space of each
simulated individual. We used the randomPoints function in the
‘dismo’ package (https://CRAN.R-project.org/package=dismo) to
randomly generate 5000 real coordinates as background points,
and extracted their bioclimatic variables as an available matrix by
applying the extract function in the ‘raster’ package (https://CRAN.
R-project.org/package=raster) with the downloaded WorldClim
data. Then, the environmental data were randomly sampled from
the variable matrix and matched to the virtual individuals of each
simulated dataset.

In order to test whether the barcoding and ecological informa-
tion of a reference dataset are significantly correlated, we calculated

the pairwise genetic distance and ecological distance of each data-
set at the species level using the K80 model (Kimura, 1980) and the
Euclidean method, respectively, and applied the Mantel statistic
(Mantel, 1967) using the mantel function in the package ‘vegan’ with
999 random permutations (Ballesteros & Hormiga, 2018; Oksanen
et al., 2020). A significantly correlated result from the Mantel test
implies some type of association between the barcode sequence
and ecological fitness, whereas an uncorrelated result means that
the two properties are independent.

In total, 3x3=9 datasets were simulated with different settings
(Table 1). Additionally, to evaluate the effectiveness of our method
in handling extreme situations, we selected sequences that were po-
tentially misidentified by DNA barcoding to constitute another set
of tested datasets. The genetic nearest neighbours of these targeted
sequences belonged to either another species or more than two spe-
cies. Given the intrinsic limitations of mtDNA and the complexity of
human factors (see Section 1), relying solely on sequence informa-
tion in these scenarios could lead to ambiguous species assignments
(Zhang et al., 2012).

3.2 | Collection of empirical datasets

We also tested our framework with six empirical datasets retrieved
from online databases and empirical studies, comprising different
real-world genetic diversity and various ecological conditions. These
datasets covered different taxonomic scales and gene markers, and
each was tested using the commonly used bioclimatic variables from
WorldClim (version 1.4 with 2.5 arc minute resolution; http://www.
worldclim.org/; Hijmans et al., 2005).

Four of the six datasets were downloaded from BOLD
Systems (The Barcode of Life Data, http://www.boldsystems.org;
Ratnasingham & Hebert, 2007), including both barcode sequences
(COI fragments) and geographic coordinates of collection locali-
ties: a nematode dataset (order-level: Spirurida, Chromadorea), a
reptile dataset (family level: Scincidae, Reptilia Squamata), two
insect datasets (family level: Limacodidae, Insecta Lepidoptera;
genus-level: Theretra, Insecta Lepidoptera Sphingidae). Specimens
from the ‘hawk-moths’ dataset (family level: Sphingidae, Insecta
Lepidoptera) was collected using light-traps in Zhejiang, China from
2017 to 2018; we recorded the geographic information for each
sample and sequenced their COI fragments following procedures in
Jin et al. (2013). The ‘Dendrolimus’ dataset (genus-level: Dendrolimus,
Insecta Lepidoptera Lasiocampidae) was taken from Dai et al. (2012).
The researchers found that the phylogenetic relationships of dis-
tantly related species were clearly resolved by barcode sequence;
whereas the three closely related species (D. punctatus, D. tabulae-
formis, D. spectabilis) could not be resolved (Dai et al., 2012).

All datasets were further cleaned by eliminating records which did
not fulfil these criteria: (1) complete taxonomic information (family,
genus and species names), (2) valid coding gene fragments and (3) avail-
able geographic coordinates. Table 2 lists the basic information of each
dataset as well as the Mantel test results between barcode sequences
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TABLE 1 Settings and Mantel tests of simulated datasets.

Number of Number of Proportion
Dataset Number of individuals of Barcoding MantelStat.? MantelSig. ambiguous of ambiguous
no. species each species (/] gap? (r) (p-value) sequences? sequences (%)
1 20 5 0.05 -0.61 -0.0323 0.620 8 8.00
2 20 5 0.1 -0.59 -0.1029 0.825 15 15.00
3 20 5 0.2 -0.64 -0.0627 0.630 16 16.00
4 50 2 0.05 -0.62 -0.0365 0.926 51 51.00
5 50 2 0.1 -0.62 -0.0159 0.697 57 57.00
6 50 2 0.2 -0.62 -0.0335 0.922 64 64.00
7 100 1 0.05 -0.49 0.0121 0.323 100 100.00
8 100 1 0.1 -0.49 -0.0292 0.780 100 100.00
9 100 1 0.2 -0.55 -0.0378 0.895 100 100.00

*The difference between the maximum intra-specific genetic distance and the minimum inter-specific genetic distance.
®The statistic r of the Mantel test between genetic and environmental Euclidean distance matrix.
“‘Mantel test p-values. If p<0.05, then the two-distance matrix are significantly correlated; if p>0.05, then they are uncorrelated.

9The sequences whose genetic nearest neighbours belongs to either another species or more than two species.

TABLE 2 Basic information and Mantel tests of empirical datasets.

Number of Proportion
Number of  Percentage of Barcoding  MantelStat.® MantelSig® ambiguous of ambiguous
No. Datasets Size species singletons (%) gap® (r) (p-value) sequences!  sequences (%)
1 Spirurida 63 24 37.50 -0.0533 0.4412 0.004** 11 17.46
2 Scincidae 110 32 53.12 -0.1985 0.1883 0.003** 19 17.27
3 Limacodidae 325 297 91.58 -0.1607 0.0257 0.207 286 88.00
4 hawk-moths® 666 51 17.65 -0.1738 0.0808 0.050* 419 62.91
5 Theretra 455 46 2391 -0.0709 0.0676 0.229 43 9.45
6 Dendrolimus’ 145 7 0 -0.0537 0.1000 0.276 19 13.57

*The difference between the maximum intra-specific genetic distance and the minimum inter-specific genetic distance.

BThe statistic r of the Mantel test between genetic and environmental Euclidean distance matrix.

“‘Mantel test p-values. If p<0.05, then the two distance matrices are significantly correlated; if p>0.05, they are uncorrelated. *p <0.05; **p<0.01.
4The sequences whose genetic nearest neighbours belongs to either another species or more than two species.

€Zhejiang hawk-moths dataset that collected using light-traps.

fChinese Dendrolimus dataset from Dai et al. (2012).

and ecological fitness. We also selected the sequences that were po-
tentially misidentified by DNA barcoding as we did for the simulated
datasets, and found that those so-called ‘ambiguous sequences’ were
prevalent in 9.45% to 88.00% of the empirical datasets we selected
(Table 2). The global distribution of specimens is shown in Figure 1.

3.3 | Ecological variables used in niche modelling

For testing the empirical datasets, 19 bioclimatic variables from
WorldClim (version 1.4 with 2.5 arc minute resolution; http://www.
worldclim.org/; Hijmans et al., 2005) were applied to construct niche
models. To avoid the influence of potential correlations among vari-
ables on ecological niche modelling, we implemented the variance
inflation factor (VIF; Fox & Monette, 1992; Lai et al., 2022) to assess
multicollinearity. The vif function from the ‘car’ package (https://

CRAN.R-project.org/package=car) was employed to estimate VIF
values for each environmental variable. If there were variables with
VIF values 210, the variable with the highest VIF value would be re-
moved. Then, the remaining variables were reassembled into a new
set, and the VIF values were recalculated collectively. This iterative
process continued, with the highest VIF variable being eliminated at
each step, until all variables in the revised set exhibited VIF values
below the threshold of 10. In the testing procedures of this study,
the retained variables for each niche modelling have been docu-
mented in the Appendices S3 and S4.

3.4 | Testand success rate calculation

For each dataset and the corresponding dataset composed of
ambiguous sequences (the sequences whose genetic nearest
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FIGURE 1 Empirical datasets and their global distributions, including four BOLD-downloaded datasets: (a) Spirurida (nematodes),
(b) Scincidae (reptiles, Squamata), (c) Limacodidae (insects, Lepidoptera) and (e) Theretra (insects, Lepidoptera Sphingidae); and two
field-sampled or literature-published datasets: (d) Zhejiang hawk-moths (insects, Lepidoptera), (f) Dendrolimus (insects, Lepidoptera
Lasiocampidae; Dai et al., 2012). Points in different colours represent different species.

neighbours belong to another species or more than two spe-
cies; see Tables 1 and 2), we implemented 1000 replicates of
the leave-one-out cross-validation test (Yang et al., 2022; Zhang
et al., 2012) to obtain the species identification results and its
credibility, P,, and NBS|, for each inquiry within the simulated and
empirical datasets. A series of thresholds were set at 0.90, 0.95
and 0.99 to accept the identification results, calculating the suc-
cess rate for both the traditional barcoding identification SR, and
the niche-model-based identification SRygg. True positive (TP) and
true negative (TN) query results were both considered successful
inquiries (SR = (TP + TN) /1000 x 100 %; Yang et al., 2022; Zhang
et al.,, 2012).

4 | RESULTS

4.1 | Performance in simulated datasets
The success rates of NBSI versus traditional DNA barcoding for the
completely simulated datasets and their ambiguous sequence data-
sets are given in Figure 2A,B, respectively, including the various per-
mutations detailed above. Detailed statistics including sensitivity
and specificity results are listed in Table S2.

Given that all complete simulated datasets consisted of 100 vir-
tual individuals, the number of virtual individuals per species in the

20-species, 50-species and 100-species datasets were 5, 2 and 1,
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FIGURE 2 Success rates of NBSI
(blue bars) compared with traditional
DNA barcoding (red bars) when testing
(A) completely simulated datasets and
(B) their corresponding ambiguous 0.751
sequence datasets. The colour gradient
of the bars, from light to dark, represents
the thresholds of acceptance for
identification results, set at 0.90, 0.95
and 0.99. The X-axis lists the nine
simulated datasets, each configured

with a virtual species count of 20 (5
individuals per species), 50 (2 individuals
per species) or 100 (1 individual per
species), and further specified the
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respectively. The success rate of traditional DNA barcoding identifi-
cation was highest in the three 20-species datasets, where each spe-
cies had a relatively greater number of reference sequences; while
the success rate was lower in the three 50-species datasets. For the
three 100-species datasets, when tested using the leave-one-out
method, singletons were removed as pseudo-query sequences, re-
sulting in the absence of matching species members in the reference
database for the target species, leading to a high proportion of false
positives (FP) and an exceptionally low success rate (Figure 2A). For
datasets with equal numbers of species, the success rate of tradi-
tional DNA barcoding identification decreases as the sequence vari-
ability increases (9=0.05, 0.1, 0.2; Figure 2A).

Working better overall, the niche-model-based identification ap-
proach significantly improved the identification success rate in eight
of the nine scenarios (Figure 2A). The largest improvement occurred
in the 100_1_0.2’ dataset at all acceptance thresholds, where the
success rate improved from 4.7% (95% Cl: 3.51%-6.25%) to 94.8%
(95% Cl: 93.19%-96.06%); while the smallest was the ‘20_5_0.05’

I\

Q. QQ Q‘ Q. Qp Q. Q.
j2 2% Ao
‘.50 }/ N7 DS A :\ ISR\

Simulated datasets

dataset in threshold 0.99, where the success rate improved from
93.3%(95% Cl: 91.52%-94.73%) to 95.0% (95% Cl: 93.41%-96.23%).
The latter represents an ideal scenario where the reference data-
base contains sufficient replicates for each species, and exhibits low
intraspecific genetic variability, enabling a relatively high level of
identification accuracy based solely on barcode sequence informa-
tion. Even in this context, our proposed method is capable of further
enhancing the results, which implies that the integration of ecologi-
cal information confers an intrinsic advantage.

For the tests on the nine ambiguous sequence datasets, all
the pseudo-query samples extracted by leave-one-out simulation
could certainly be misidentified by traditional DNA barcoding. The
success rates of these datasets are exceptionally low regardless
of the number of virtual individuals per species in the reference
library (Figure 2B). As expected, the niche-model-based identi-
fication approach significantly improving the success rates in all
scenarios. The largest improvement was still from the ‘100_1_0.2’
dataset, because it is composed of singletons; while the smallest
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was for the ‘20_5_0.1" dataset in threshold 0.95, where the suc-
cess rate improved from 27.7% (95% Cl: 24.97%-30.61%) to 89.2%
(95% Cl: 87.07%-91.02%). Meanwhile, these improvements are
consistent across datasets with varying settings of 6, supporting
our assertion that the integration of ecological information can
enhance species identifications by avoiding potential misidentifi-

cations that arise solely from sequence data.

4.2 | Performance in empirical datasets

Similar findings were observed in the test results of empirical data-
sets (Figure 3). Our new framework performed well across the
various empirical scenarios overall, with significant improvements
in five of the six cases and, minimally, comparable success to tra-
ditional barcoding; and with significant improvements in all tests of
the ambiguous sequence datasets (Figure 3A,B). The number of test-
ing replications, the threshold and calculation of the success rate for
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empirical datasets were consistent with those of the simulated data-
sets. Detailed statistics including sensitivity and specificity results
are given in Table S3.

In the complete empirical datasets, the largest improvement
of NBSI over traditional DNA barcoding was in the ‘Limacodidae’
dataset at threshold 0.90, where the success rate improved from
17.3% (95% Cl: 15.03%-19.82%) to 67.4% (95% Cl: 64.38%-
70.28%); while the smallest was for the ‘Dendrolimus’ dataset,
where the success rate improved from 94.1% (95% Cl: 92.41%-
95.44%) to 96.4% (95% Cl: 95.00%-97.43%). In the former case,
the proportion of singletons reached as high as 91.58%, with 88%
of the samples classified as ambiguous sequences (Table 2), re-
sulting in an extremely low species identification accuracy relying
solely on sequence information. Our method is adept at handling
the situation under these dire circumstances. In contrast, the
latter lacks singletons in its reference library and contains only
13.57% ambiguous sequences, where traditional barcoding meth-
ods already achieve a relatively high success rate. Yet datasets

Methods

Barcoding-0.90
Barcoding-0.95

B Barcoding-0.99
NBSI-0.90

1 NBSI-0.95

B NBSI-0.99

FIGURE 3 Success rates of NBSI
(blue bars) compared with traditional
DNA barcoding (coral bars) when testing
(A) completely empirical datasets and
(B) their corresponding ambiguous
sequence datasets. The colour

gradient of the bars, from light to dark,
represents the thresholds of acceptance
for identification results, set at 0.90,
0.95 and 0.99. The X-axis lists the six
empirical datasets, including four BOLD-
downloaded datasets, a field-sampled

Methods
Barcoding—0.90
Barcoding-0.95

B Barcoding-0.99

NBSI-0.90 and a literature-published datasets;
[ NBSI-0.95 the Y-axis indicates the percentage of
B NBSI-0.99

successful identifications (true positive
and true negative assignments) among
1000 leave-one-out cross-validation test.
The error bars indicate 95% confidence
intervals, and different lowercase letters
suggest significant differences at the
level of 0.05 using Tukey's ‘Honest
Significant Differences’ test (Miller, 1981;
Yandell, 1997).
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that meet such conditions are rare in practice. In the testing of the
other four datasets, the magnitude of improvement is relatively
similar (Figure 3A). They represent datasets composed of different
taxonomic ranks (including orders, families, families in a specific
region, and genera), which are more reflective of the general con-
ditions encountered in empirical studies.

For the tests on the corresponding ambiguous sequence data-
sets, traditional DNA barcoding generated more misidentifications
than with the completely empirical datasets. Figure 3B shows that
even in the ideal dataset, ‘Dendrolimus’, the success rates were 63%,
while the ‘Scincidae’ dataset had zero correct identification among
1000 leave-one-out tests. As expected, the NBSI approach signifi-
cantly improved success rates in all scenarios (Figure 3B). The larg-
est improvement presents to the ‘Scincidae’ dataset in threshold
0.99, where the success rate improved from 0 to 75.1% (95% Cl:
72.28%-77.73%); while the smallest was for the ‘Dendrolimus’ data-
set in all acceptance thresholds, where the success rate improved
from 63.2% (95% Cl: 60.12%-66.18%) to 73.1% (95% CI: 70.22%-
75.80%). In these scenarios where misidentifications are almost cer-
tain, our method can still achieve a success rate of up to 84% (see the

results of ‘Theretra’ dataset).

5 | DISCUSSION

Using both simulated and empirical datasets, we demonstrate
that the newly proposed niche-model-based species identification
(NBSI) framework can successfully integrate both DNA sequence
and environmental information of species to greatly improve spe-
cies identification, when compared to traditional DNA barcoding.
Under the NBSI framework, the use of these two relatively inde-
pendent data sources enables each to act as a check on the other
in case one source is biased in some manner. Phenomena such as
non-monophyly and the other discussed issues with traditional
DNA barcoding represent non-trivial challenges that are difficult
or sometimes impossible to overcome with barcoding alone. If only
ecological information were used, this could also lead to issues, as
unrelated species may commonly converge upon similar niches and
this could cause the assignment of entirely unrelated species as the
same thing. In the present study, we construct our approach by ap-
plying a non-tree-based Bayesian approach (Jin et al., 2013; Nielsen
& Matz, 2006), a nonlinear MAXENT model (Phillips et al., 2006),
and the commonly used WorldClim variables (version 1.4 with
2.5 arc minute resolution; http://www.worldclim.org/; Hijmans
et al., 2005).

Although the NBSI framework sounds theoretically perfect,
there are factors that may impact its performance under real-
world applications. For instance, due to the inherent limitations,
the application of ecological niche models (ENMs) requires cau-
tion when dealing with species with rare distributions, as their ac-
curacy is highly dependent on the quality of species occurrence
and environmental data (Deb et al., 2017; Murphy & Smith, 2021).
Precisely for this reason, niche modelling with presence-only data
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may have limited predictive accuracy due to spatial sampling bias
(SSB), and this is challenging to fully correct for without inde-
pendent test data (Baker et al., 2024). In fact, our NBSI approach
also provides a solution to some extent, which is to use the niche
model for a secondary check only after the barcode has identified
a potential target species k (see the Sections 2.1 and 2.2 for de-
tails). Therefore, the outcomes of the niche model do not directly
dictate the species affiliation of unknown samples, but they can
validate or refute the preliminary results of barcoding identifica-
tions. Nonetheless, there remains a need for heightened vigilance
regarding this issue, particularly when the models assume that
sampling data are random or representative (Yackulic et al., 2013).
Some studies have proposed solutions to such problems through
innovative statistical methods, such as the joint classification-
occupancy model (Spiers et al., 2022; Wright et al., 2019), the two-
species false-positive N-mixture model (Clement et al., 2022),
and so on. These will have a positive effect on improving mis-
classification and should be further considered when implement-
ing the NBSI method. Concurrently, these limitations suggest that
an optimized NBSI method should also provide users with flexible
choices in niche modelling approaches, and a variety of available
SSB correction methods (Baker et al., 2024) could be integrated
into the process in the future.

The unavoidable, inherent limitations of sequence information
determine the upper limits of the success rate of species identi-
fication using traditional DNA barcoding. In complex evolution-
ary processes, barcode sequences often exhibit low interspecific
divergence and high intraspecific variation, leading to indistinct
barcoding gaps (e.g. Table 2), which render them ineffective for
distinguishing all species (Xu et al., 2017). Regardless of whether
algorithms are distance-based, tree-based or character-based,
they cannot thoroughly solve the prevalent problem of shared
haplotypes among different species for barcoding markers,
let alone the artificial inter-specific similarities that result from
sampling bias (Chesters et al., 2015; Rubinoff & Holland, 2005).
Here, we extracted these potentially ambiguous sequences whose
genetic nearest neighbours belong to another species or more
than two species, and found that NBSI significantly improved the
success rate of species identifications in these challenging situa-
tions. We also demonstrated that the NBSI framework does not
introduce more errors than traditional DNA barcoding when faced
with completely simulated and empirical datasets, and in most
cases, it outperformed traditional DNA barcoding method that
only uses DNA sequence information for species identification.
Figure 4 shows the relationship between improvements of suc-
cess rates and proportions of ambiguous sequences in each data-
set. With increasing proportion of ambiguous sequences in these
complete datasets, the improvements by NBSI over traditional
barcoding become larger. This trend is significant across both
simulated (r=0.9898; p-value=1.165e-22) and empirical datasets
(r=0.7919; p-value =8.97%9e-05), suggesting that the NBSI frame-
work performs significantly better across tests when ambiguous
sequences are prevalent.
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FIGURE 4 Improvements of success rates from traditional
DNA barcoding to the NBSI framework in the (a) simulated and (b)
empirical datasets. The X-axis indicates proportions of ambiguous
sequences and the Y-axis indicates improvements of success
rates. Correlations were measured by Spearman's rank correlation
coefficient (Hollander & Wolfe, 1973).

Global online datasets of bioclimatic variables such as WorldClim
(version 1.4/2.1; http://www.worldclim.org/; Hijmans et al., 2005)
and ENVIREM (version 1.0; https://envirem.github.io/; Title &
Bemmels, 2018) are widely used in niche-related research because
of their worldwide coverage. However, such macro-data are not use-
ful when species differ primarily in their microhabitat requirements.
The selection of macro- or micro-environmental variables depends
on the distribution of species in the reference library, the ecolog-
ical requirements of the species being studied and the availability
of such data. Coarse-scale datasets are more commonly available
for the species with large distributions, or the species distributed
across many latitudes and ecoregions, while high-resolution data
are more appropriate for species with narrow or sympatric distri-
butions, or those with very strict microhabitat requirements. As
such, the type of data used is often a balancing act between what

is optimal and what is feasible, with considering the impact of the
calculation method of bioclimatic variables on the model (Bede-
Fazekas & Somodi, 2020). In this study, test datasets were selected
from widely distributed species at large geographic scales, and we
used WorldClim variables to demonstrate the power of our NBSI
framework, given the importance and common usage of these vari-
able sets. For those species with strict microhabitat requirements
or for studies at smaller spatial scales, users of the ‘NicheBarcoding’
package could collect or collate their own micro-environmental in-
formation and use that instead of broad-scale datasets.

As described in Hutchinson (1957), the fundamental niche of a
species is an ‘n-dimensional hypervolume’, in which every point that
corresponds to a state of the environment would permit a species to
exist indefinitely. Species which overlap in geo-space likely also over-
lap in eco-space (at coarser grain sizes), but overlapping of species in
eco-space does not indicate that they are sympatric in geo-space
(Pulliam, 2000; Qiao et al., 2016; Soberdn & Nakamura, 2009). The two-
dimensional ecological spaces of part of the genetically close related
species in the empirical datasets are mapped through principal compo-
nent analysis (Figure 5), where the NBSI method improves the success
rate by taking advantage of the non-overlapping characteristics of their
ecological niche. Other novel quantitative methods (e.g. Lu et al., 2021;
Osorio-Olvera et al., 2020; van der Veen et al., 2021) are also helpful
in displaying the effect of ecological niche similarity on NBSI. Under-
sampling of species points in geo-space may hinder the generation of
accurate niche models, and, consequently, a query sampled from a dif-
ferent geographic area may not be assigned to its correct species based
on niche models (false-negative identifications). To avoid this issue, we
sampled species points in eco-space instead of geo-space, but we sug-
gest that large sample sizes with true records should be used whenever
possible regardless, to fully represent species' true eco-spaces (Arlé
et al., 2021) and better understand their limits.

In addition to the geographical scale, the dynamics of ecological
niche conservatism within different eco-evolutionary processes on
a larger time scale should also be taken into account. For example,
closely related species pairs that have recently diverged may have
very similar ecological niches (Peterson, 2011); such ecological simi-
larity may be promoted by the presence of predators, or conversely,
lead to the differentiation of ecological niches due to long-term
competitive interactions (Haraldsson & Thébault, 2023). Therefore,
before using the NBSI framework, users can gather prior knowledge
about the relationship between genetic information and ecological
niche information in the reference database, as shown in Table 2. Yet
whether the improvement effect of our approach is still predictable

in these complex ecological contexts, remains to be further verified.

6 | CONCLUSIONS

Improving species identifications from DNA barcodes using multiple
types of information is a critical pursuit. DNA barcoding will only be-
come more important in the future as we finally begin to document
the enormous undescribed diversity of insects and other poorly
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FIGURE 5 Ecological space of part of the genetically close related species in the empirical datasets: (a) Spirurida (nematodes),
(b) Scincidae (reptiles, Squamata), (c) Limacodidae (insects, Lepidoptera), and (e) Theretra (insects, Lepidoptera Sphingidae); and two
field-sampled or literature-published datasets: (d) Zhejiang hawk-moths (insects, Lepidoptera), (f) Dendrolimus (insects, Lepidoptera

Lasiocampidae; Dai et al., 2012).

known taxa throughout the Global South (Orr et al., 2020). Our
niche-model-based species identification framework enables joint
decision-making based on ecological and molecular data, represent-
ing a significant advancement for DNA barcoding. Modern barcod-
ing approaches and many historical collectors both prioritize locality
information collection, making this a widely available and powerful
complement for species-level identifications for both museum- and
field-based efforts.

Our thorough tests show that ecological information can suc-
cessfully and significantly improve DNA barcoding under the NBSI
framework, including in difficult scenarios where traditional DNA
barcoding methods typically fail. We extended the use of niche mod-
elling further to fully take advantage of the vast quantity of distribu-
tional data available, as few other data types can compete with the
prevalence of barcode data. This is especially true in the Global South
where locality information is far easier to generate than molecular
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data due to technical or funding limitations (Orr et al., 2020), and
many of these areas are tropical and hyper-diverse (containing many
undescribed species; Giam et al., 2012), further benefiting from such
more powerful, integrated methods. Even where local languages can
make georeferencing of historical specimens difficult for foreign re-
searchers working with specimens from such developing countries,
this would simply encourage collaboration with local scientists, yet
another positive outcome of the increasing interdisciplinarity of
DNA barcoding.

The NBSI method will also become better as the accuracy of
niche estimation continues to improve (Kass et al., 2021; Pichler &
Hartig, 2021). As DNA barcoding technology matures for taxon-
omy and biodiversity studies (Cristescu, 2014; Hebert, Cywinska,
et al., 2003; Hebert & Gregory, 2005; Yang et al., 2022), it will be-
come increasingly vital to integrate ecological and other information

to improve these methods.

AUTHOR CONTRIBUTIONS

Ai-bing Zhang designed the study; Cai-qging Yang performed the re-
search; Cai-ging Yang and Ai-bing Zhang wrote the codes, and tested
most of the examples. Ying Wang, Xin-hai Li and Michael C. Orr ana-
lysed parts of the data; Jing Li and Bing Yang collected some of the
datasets; Cai-qging Yang and Ai-bing Zhang wrote the first draft of
the manuscript, and all authors contributed substantially to revisions

and gave final approval for publication.

ACKNOWLEDGEMENTS

We are deeply grateful for the guidance and insights provided by
Jie Zhou and Xiao Liang regarding the issue of model averaging. We
also grateful to the editors and the anonymous reviewers for the
suggestions provided on our manuscript which have enabled our ap-
proach to better serve the relevant researchers. This research was
supported by the Natural Science Foundation of China (32200343,
32170421), Beijing Municipal Natural Science Foundation
(5232001), Chinese Academy of Sciences President's International
Fellowship Initiative program (2024PVC0046), Support Project of
High-level Teachers in Beijing Municipal Universities in the Period
of 14th Five-year Plan (BPHR20220114), National Key Research and
Development Program of China (2023YFC2606600), and Academy
for Multidisciplinary Studies, Capital Normal University.

CONFLICT OF INTEREST STATEMENT

The authors have no conflicts of interest to declare.

PEER REVIEW

The peer review history for this article is available at https://www.
webofscience.com/api/gateway/wos/peer-review/10.1111/2041-
210X.14440.

DATA AVAILABILITY STATEMENT

NicheBarcoding is now freely available from https://CRAN.R-proje
ct.org/package=NicheBarcoding (Yang et al., 2024a). Source code
can also be found on Github https://github.com/Yangcg-Ivy/Niche

Barcoding and Zenodo https://doi.org/10.5281/zenodo.13270695
(Yang et al., 2024b). All releases will be distributed on Microsoft
Windows, Mac OSX and Linux platforms. The datasets and the
Supporting Information tests in this study can be found at: https://
doi.org/10.5061/dryad.rbnzs7h96 (Yang et al., 2024c).

ORCID

Cai-qing Yang "% https://orcid.org/0009-0003-9997-8374

Ying Wang " https://orcid.org/0000-0002-5789-2850
Xin-hai Li "~ https://orcid.org/0000-0003-4514-0149
Jing Li "= https://orcid.org/0000-0003-3234-8055

Bing Yang " https://orcid.org/0000-0002-9610-1935
Michael C. Orr "' https://orcid.org/0000-0002-2096-3008
Ai-bing Zhang "= https://orcid.org/0000-0003-3450-5421

REFERENCES

Arlé, E., Zizka, A., Keil, P., Winter, M., Essl, F., Knight, T., Weigelt, P.,
Jiménez-Muiioz, M., & Meyer, C. (2021). BRACATUS: A method to
estimate the accuracy and biogeographical status of georeferenced
biological data. Methods in Ecology and Evolution, 12, 1609-1619.
https://doi.org/10.1111/2041-210x.13629

Ashfaqg, M., Sabir, J. S. M., El-Ansary, H. O., Perez, K., Levesque-Beaudin,
V., Khan, A. M., Rasool, A., Gallant, C., Addesi, J., & Hebert, P. D. N.
(2018). Insect diversity in the Saharo-Arabian region: Revealing a
little-studied fauna by DNA barcoding. PLoS One, 13(7), €0199965.
https://doi.org/10.1371/journal.pone.0199965

Asis, A. M., Lacsamana, J. K., & Santos, M. D. (2016). lllegal trade of
regulated and protected aquatic species in The Philippines de-
tected by DNA barcoding. Mitochondrial DNA Part A DNA Mapping,
Sequencing, and Analysis, 27, 659-666. https://doi.org/10.3109/
19401736.2014.913138

Baker, D. J., Maclean, I. M. D., & Gaston, K. J. (2024). Effective strategies
for correcting spatial sampling bias in species distribution mod-
els without independent test data. Diversity and Distributions, 30,
€13802. https://doi.org/10.1111/ddi.13802

Ballesteros, J. A., & Hormiga, G. (2018). Species delimitation of the North
American orchard-spider Leucauge venusta (Walckenaer, 1841)
(Araneae, Tetragnathidae). Molecular Phylogenetics and Evolution,
121, 183-197. https://doi.org/10.1016/j.ympev.2018.01.002

Bede-Fazekas, A., & Somodi, I. (2020). The way bioclimatic variables are
calculated has impact on potential distribution models. Methods
in Ecology and Evolution, 11, 1559-1570. https://doi.org/10.1111/
2041-210x.13488

Bergsten, J., Bilton, D. T., Fujisawa, T., Elliott, M., Monaghan, M. T., Balke,
M., Hendrich, L., Geijer, J., Herrmann, J., Foster, G. N., Ribera, I.,
Nilsson, A. N., Barraclough, T. G., & Vogler, A. P. (2012). The effect
of geographical scale of sampling on DNA barcoding. Systematic
Biology, 61, 851-869. https://doi.org/10.1093/sysbio/sys037

Borges, L. M. S,, Hollatz, C., Lobo, J., Cunha, A. M., Vilela, A. P., Calado,
G., Coelho, R., Costa, A. C., Ferreira, M. S. G., Costa, M. H., & Costa,
F. O. (2016). With a little help from DNA barcoding: Investigating
the diversity of Gastropoda from the Portuguese coast. Scientific
Reports, 6(1). https://doi.org/10.1038/srep20226

Brown, S. D. J., Collins, R. A., Boyer, S., Lefort, M. C., Malumbres-Olarte,
J.,Vink, C. J., & Cruickshank, R. H. (2012). Spider: An R package for
the analysis of species identity and evolution, with particular refer-
ence to DNA barcoding. Molecular Ecology Resources, 12, 562-565.
https://doi.org/10.1111/j.1755-0998.2011.03108.x

Buckland, S. T., Burnham, K. P., & Augustin, N. H. (1997). Model selection:
An integral part of inference. Biometrics, 53, 603. https://doi.org/
10.2307/2533961

85U017 SUOWILIOD 818D 8|qed![dde auyy Aq pausenob a1e S9pile YO ‘SN JO S3INJ 10} Akeud1 78Ul UO 8|1/ UO (SUOTHIPUOO-PUB-SWLIW0™ A8 | 1M A0 18U UO//:SANY) SUOTIPUOD pue SWie | 8U} 89S *[7202/2T/ET] uo Ariqiauliuo A8|IM ‘OriyT X0TZ-Tv0Z/TTTT 0T/I0p/wod A8 imAriq1pul|uo's euInokaq)/sdny wolj pepeojumod ‘ZT ‘v20z *XOTZTY0Z


https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.14440
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.14440
https://www.webofscience.com/api/gateway/wos/peer-review/10.1111/2041-210X.14440
https://cran.r-project.org/package=NicheBarcoding
https://cran.r-project.org/package=NicheBarcoding
https://github.com/Yangcq-Ivy/NicheBarcoding
https://github.com/Yangcq-Ivy/NicheBarcoding
https://doi.org/10.5281/zenodo.13270695
https://doi.org/10.5061/dryad.rbnzs7h96
https://doi.org/10.5061/dryad.rbnzs7h96
https://orcid.org/0009-0003-9997-8374
https://orcid.org/0009-0003-9997-8374
https://orcid.org/0000-0002-5789-2850
https://orcid.org/0000-0002-5789-2850
https://orcid.org/0000-0003-4514-0149
https://orcid.org/0000-0003-4514-0149
https://orcid.org/0000-0003-3234-8055
https://orcid.org/0000-0003-3234-8055
https://orcid.org/0000-0002-9610-1935
https://orcid.org/0000-0002-9610-1935
https://orcid.org/0000-0002-9096-3008
https://orcid.org/0000-0002-9096-3008
https://orcid.org/0000-0003-3450-5421
https://orcid.org/0000-0003-3450-5421
https://doi.org/10.1111/2041-210x.13629
https://doi.org/10.1371/journal.pone.0199965
https://doi.org/10.3109/19401736.2014.913138
https://doi.org/10.3109/19401736.2014.913138
https://doi.org/10.1111/ddi.13802
https://doi.org/10.1016/j.ympev.2018.01.002
https://doi.org/10.1111/2041-210x.13488
https://doi.org/10.1111/2041-210x.13488
https://doi.org/10.1093/sysbio/sys037
https://doi.org/10.1038/srep20226
https://doi.org/10.1111/j.1755-0998.2011.03108.x
https://doi.org/10.2307/2533961
https://doi.org/10.2307/2533961

YANG ET AL.

Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference—
Understanding AIC and BIC in model selection. Sociological
Methods & Research, 33, 261-304. https://doi.org/10.1177/00491
24104268644

Chen, R., Jiang, L. Y., Chen, J., & Qiao, G. X. (2016). DNA barcoding re-
veals a mysterious high species diversity of conifer-feeding aphids
in the mountains of southwest China. Scientific Reports, 6, 20123.
https://doi.org/10.1038/srep20123

Chen, S., Pang, X., Song, J., Shi, L., Yao, H., Han, J., & Leon, C. (2014). A
renaissance in herbal medicine identification: From morphology to
DNA. Biotechnology Advances, 32, 1237-1244. https://doi.org/10.
1016/j.biotechadv.2014.07.004

Chesters, D., Zheng, W. M., Zhu, C. D., & Yu, D. (2015). A DNA barcod-
ing system integrating multigene sequence data. Methods in Ecology
and Evolution, 6, 930-937. https://doi.org/10.1111/2041-210x.
12366

Clement, M. J., Royle, J. A., & Mixan, R. J. (2022). Estimating occupancy
from autonomous recording unit data in the presence of misclas-
sifications and detection heterogeneity. Methods in Ecology and
Evolution, 13, 1719-1729. https://doi.org/10.1111/2041-210x.
13895

Collins, R. A., & Cruickshank, R. H. (2013). The seven deadly sins of DNA
barcoding. Molecular Ecology Resources, 13(6), 969-975. https://doi.
org/10.1111/1755-0998.12046

Cristescu, M. E. (2014). From barcoding single individuals to metabar-
coding biological communities: Towards an integrative approach to
the study of global biodiversity. Trends in Ecology & Evolution, 29,
566-571. https://doi.org/10.1016/j.tree.2014.08.001

Dai, Q.-Y., Gao, Q., Wu, C.-S., Chesters, D., Zhu, C.-D., & Zhang, A.-B.
(2012). Phylogenetic reconstruction and DNA barcoding for closely
related pine moth species (Dendrolimus) in China with multiple gene
markers. PLoS One, 7, e32544. https://doi.org/10.1371/journal.
pone.0032544

Deb, C. R., Jamir, N. S., & Kikon, Z. P. (2017). Distribution prediction
model of a rare orchid species (Vanda bicolor Griff.) using small sam-
ple size. American Journal of Plant Sciences, 8, 1388-1398. https://
doi.org/10.4236/ajps.2017.86094

Despres, L. (2019). One, two or more species? Mitonuclear discordance
and species delimitation. Molecular Ecology, 28, 3845-3847. https://
doi.org/10.1111/mec.15211

Domingo-Roura, X., Marmi, J., Ferrando, A., Loépez-Giradldez, F.,
Macdonald, D. W., & Jansman, H. A. H. (2006). Badger hair in shav-
ing brushes comes from protected Eurasian badgers. Biological
Conservation, 128, 425-430. https://doi.org/10.1016/j.biocon.
2005.08.013

Duran, D. P, Herrmann, D. P, Roman, S. J.,, Gwiazdowski, R. A.,
Drummond, J. A, Hood, G. R., & Egan, S. P. (2019). Cryptic diver-
sity in the North American Dromochorus tiger beetles (Coleoptera:
Carabidae: Cicindelinae): A congruence-based method for species
discovery. Zoological Journal of the Linnean Society, 186, 250-285.
https://doi.org/10.1093/zoolinnean/zly035

Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008). Species
detection using environmental DNA from water samples. Biology
Letters, 4, 423-425. https://doi.org/10.1098/rsbl.2008.0118

Fiser Pecnikar, Z., & Buzan, E. V. (2014). 20years since the introduction
of DNA barcoding: From theory to application. Journal of Applied
Genetics, 55, 43-52. https://doi.org/10.1007/s13353-013-0180-y

Fox, J., & Monette, G. (1992). Generalized collinearity diagnostics.
Journal of the American Statistical Association, 87, 178-183. https://
doi.org/10.1080/01621459.1992.10475190

Funk, D. J., & Omland, K. E. (2003). Species-level paraphyly and poly-
phyly: Frequency, causes, and consequences, with insights from
animal mitochondrial DNA. Annual Review of Ecology, Evolution, and
Systematics, 34, 397-423. https://doi.org/10.1146/annurev.ecols
ys.34.011802.132421

Methods in Ecology and Evolutio EE?S?S!M

OpenAcosss SOCIETY

Garcia-Robledo, C., Erickson, D. L., Staines, C. L., Erwin, T. L., & Kress,
W. J. (2013). Tropical plant-herbivore networks: Reconstructing
species interactions using DNA barcodes. PLoS One, 8(1), €52967.
https://doi.org/10.1371/journal.pone.0052967

Giam, X., Scheffers, B. R., Sodhi, N. S., Wilcove, D. S., Ceballos, G., &
Ehrlich, P. R.(2012). Reservoirs of richness: Least disturbed tropical
forests are centres of undescribed species diversity. Proceedings of
the Royal Society B: Biological Sciences, 279, 67-76. https://doi.org/
10.1098/rspb.2011.0433

Gong, L., Qiu, X. H., Huang, J., Xu, W.,, Bai, J. Q., Zhang, J., Su, H., Xu, C.
M., & Huang, Z. H. (2018). Constructing a DNA barcode reference
library for southern herbs in China: A resource for authentication of
southern Chinese medicine. PLoS One, 13, e0201240. https://doi.
org/10.1371/journal.pone.0201240

Hao, M. D., Jin, Q,, Meng, G. L., Yang, C. Q., Yang, S. Z., Shi, Z. Y., Tang,
M., Liu, S. L., Li, Y. N., Zhang, D., Su, X,, Shih, C., Sun, Y. R., Zhou,
X., & Zhang, A. B. (2020). Regional assemblages shaped by diverse
historical and contemporary factors: Evidence from a species-rich
insect group. Molecular Ecology, 29, 2492-2510. https://doi.org/10.
1111/mec.15412

Haraldsson, M., & Thébault, E. (2023). Emerging niche clustering results
from both competition and predation. Ecology Letters, 26, 1200-
1211. https://doi.org/10.1111/ele.14230

Hebert, P. D., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological
identifications through DNA barcodes. Proceedings of the Royal
Society B: Biological Sciences, 270, 313-321. https://doi.org/10.
1098/rspbh.2002.2218

Hebert, P. D., & Gregory, T. R. (2005). The promise of DNA barcoding
for taxonomy. Systematic Biology, 54, 852-859. https://doi.org/10.
1080/10635150500354886

Hebert, P. D. N., Ratnasingham, S., & deWaard, J. R. (2003). Barcoding
animal life: Cytochrome c oxidase subunit 1 divergences among
closely related species. Proceedings of the Royal Society B:
Biological Sciences, 270, 96-99. https://doi.org/10.1098/rsbl.
2003.0025

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005).
Very high resolution interpolated climate surfaces for global land
areas. International Journal of Climatology, 25, 1965-1978. https://
doi.org/10.1002/joc.1276

Hollander, M., & Wolfe, D. A. (1973). Nonparametric statistical methods.
John Wiley & Sons.

Hutchinson, G. E. (1957). Concluding remark. Cold Spring Harbor Symposia
on Quantitative Biology, 22, 415-427. https://doi.org/10.1007/978-
3-642-68836-2_20

Jin, Q., Han, H., Hu, X., Li, X., Zhu, C., Ho, S. Y., Ward, R. D., & Zhang, A. B.
(2013). Quantifying species diversity with a DNA barcoding-based
method: Tibetan moth species (Noctuidae) on the Qinghai-Tibetan
plateau. PLoS One, 8, €64428. https://doi.org/10.1371/journal.
pone.0064428

Joly, S., Davies, T. J., Archambault, A., Bruneau, A., Derry, A., Kembel, S.
W., Peres-Neto, P., Vamosi, J., & Wheeler, T. A. (2014). Ecology in
the age of DNA barcoding: The resource, the promise and the chal-
lenges ahead. Molecular Ecology Resources, 14,221-232. https://doi.
org/10.1111/1755-0998.12173

Kamo, T., Kusumoto, Y., Tokuoka, Y., Okubo, S., Hayakawa, H., Yoshiyama,
M., Kimura, K., & Konuma, A. (2018). A DNA barcoding method
for identifying and quantifying the composition of pollen species
collected by European honeybees, Apis mellifera (Hymenoptera:
Apidae). Applied Entomology and Zoology, 53, 353-361. https://doi.
org/10.1007/s13355-018-0565-9

Kass, J. M., Muscarella, R., Galante, P. J., Bohl, C. L., Pinilla-Buitrago, G. E.,
Boria, R. A., Soley-Guardia, M., & Anderson, R. P. (2021). ENMeval
2.0: Redesigned for customizable and reproducible modeling of
species' niches and distributions. Methods in Ecology and Evolution,
12, 1602-1608. https://doi.org/10.1111/2041-210x.13628

85U017 SUOWILIOD 818D 8|qed![dde auyy Aq pausenob a1e S9pile YO ‘SN JO S3INJ 10} Akeud1 78Ul UO 8|1/ UO (SUOTHIPUOO-PUB-SWLIW0™ A8 | 1M A0 18U UO//:SANY) SUOTIPUOD pue SWie | 8U} 89S *[7202/2T/ET] uo Ariqiauliuo A8|IM ‘OriyT X0TZ-Tv0Z/TTTT 0T/I0p/wod A8 imAriq1pul|uo's euInokaq)/sdny wolj pepeojumod ‘ZT ‘v20z *XOTZTY0Z


https://doi.org/10.1177/0049124104268644
https://doi.org/10.1177/0049124104268644
https://doi.org/10.1038/srep20123
https://doi.org/10.1016/j.biotechadv.2014.07.004
https://doi.org/10.1016/j.biotechadv.2014.07.004
https://doi.org/10.1111/2041-210x.12366
https://doi.org/10.1111/2041-210x.12366
https://doi.org/10.1111/2041-210x.13895
https://doi.org/10.1111/2041-210x.13895
https://doi.org/10.1111/1755-0998.12046
https://doi.org/10.1111/1755-0998.12046
https://doi.org/10.1016/j.tree.2014.08.001
https://doi.org/10.1371/journal.pone.0032544
https://doi.org/10.1371/journal.pone.0032544
https://doi.org/10.4236/ajps.2017.86094
https://doi.org/10.4236/ajps.2017.86094
https://doi.org/10.1111/mec.15211
https://doi.org/10.1111/mec.15211
https://doi.org/10.1016/j.biocon.2005.08.013
https://doi.org/10.1016/j.biocon.2005.08.013
https://doi.org/10.1093/zoolinnean/zly035
https://doi.org/10.1098/rsbl.2008.0118
https://doi.org/10.1007/s13353-013-0180-y
https://doi.org/10.1080/01621459.1992.10475190
https://doi.org/10.1080/01621459.1992.10475190
https://doi.org/10.1146/annurev.ecolsys.34.011802.132421
https://doi.org/10.1146/annurev.ecolsys.34.011802.132421
https://doi.org/10.1371/journal.pone.0052967
https://doi.org/10.1098/rspb.2011.0433
https://doi.org/10.1098/rspb.2011.0433
https://doi.org/10.1371/journal.pone.0201240
https://doi.org/10.1371/journal.pone.0201240
https://doi.org/10.1111/mec.15412
https://doi.org/10.1111/mec.15412
https://doi.org/10.1111/ele.14230
https://doi.org/10.1098/rspb.2002.2218
https://doi.org/10.1098/rspb.2002.2218
https://doi.org/10.1080/10635150500354886
https://doi.org/10.1080/10635150500354886
https://doi.org/10.1098/rsbl.2003.0025
https://doi.org/10.1098/rsbl.2003.0025
https://doi.org/10.1002/joc.1276
https://doi.org/10.1002/joc.1276
https://doi.org/10.1007/978-3-642-68836-2_20
https://doi.org/10.1007/978-3-642-68836-2_20
https://doi.org/10.1371/journal.pone.0064428
https://doi.org/10.1371/journal.pone.0064428
https://doi.org/10.1111/1755-0998.12173
https://doi.org/10.1111/1755-0998.12173
https://doi.org/10.1007/s13355-018-0565-9
https://doi.org/10.1007/s13355-018-0565-9
https://doi.org/10.1111/2041-210x.13628

YANG ET AL.

Methods in Ecology and Evoluti EE‘:‘E?E:“:‘“‘

Kimura, M. (1980). A simple method for estimating evolutionary rates
of base substitutions through comparative studies of nucleotide
sequences. Journal of Molecular Evolution, 16, 111-120. https://doi.
org/10.1007/BF01731581

Lai, J., Zou, Y., Zhang, J., & Peres-Neto, P. R. (2022). Generalizing hierar-
chical and variation partitioning in multiple regression and canoni-
cal analyses using the rdacca.hp R package. Methods in Ecology and
Evolution, 13, 782-788. https://doi.org/10.1111/2041-210x.13800

Leaché, A. D., Koo, M. S,, Spencer, C. L., Papenfuss, T. J,, Fisher, R. N., &
McGuire, J. A. (2009). Quantifying ecological, morphological, and
genetic variation to delimit species in the coast horned lizard spe-
cies complex (Phrynosoma). Proceedings of the National Academy of
Sciences of the United States of America, 106, 12418-19623. https://
doi.org/10.1073/pnas.0906380106

Lim, G. S., Balke, M., & Meier, R. (2012). Determining species boundaries
in a world full of rarity: Singletons, species delimitation methods.
Systematic Biology, 61, 165-169. https://doi.org/10.1093/sysbio/
syr030

Liu, L., & Yu, L. L. (2010). Phybase: An R package for species tree analysis.
Bioinformatics, 26, 962-963. https://doi.org/10.1093/bioinforma
tics/btq062

Liu, Q., Charleston, M. A,, Richards, S. A., Holland, B. R., & Jermiin, L.
(2023). Performance of Akaike information criterion and Bayesian
information criterion in selecting partition models and mixture
models. Systematic Biology, 72, 92-105. https://doi.org/10.1093/
sysbio/syac081

Lu, M., Winner, K., & Jetz, W. (2021). A unifying framework for quantify-
ing and comparing n-dimensional hypervolumes. Methods in Ecology
and Evolution, 12, 1953-1968. https://doi.org/10.1111/2041-210x.
13665

Mantel, N. (1967). The detection of disease clustering and a generalized
regression approach. Cancer Research, 27, 209-220. https://doi.
org/10.1007/s00253-002-1013-9

McGuire, J. A., Linkem, C. W., Koo, M. S., Hutchison, D. W., Lappin, A.
K., Orange, D. I., Lemos-Espinal, J., Riddle, B. R., & Jaeger, J. R.
(2007). Mitochondrial introgression and incomplete lineage sort-
ing through space and time: Phylogenetics of crotaphytid lizards.
Evolution, 61, 2879-2897. https://doi.org/10.1111/j.1558-5646.
2007.00239.x

Meier, R., Shiyang, K., Vaidya, G., & Ng, P. K. L. (2006). DNA barcoding
and taxonomy in Diptera: A tale of high intraspecific variability and
low identification success. Systematic Biology, 55, 715-728. https://
doi.org/10.1080/10635150600969864

Meier, R., Zhang, G., & Ali, F. (2008). The use of mean instead of small-
est interspecific distances exaggerates the size of the ‘barcoding
gap’ and leads to misidentification. Systematic Biology, 57, 809-813.
https://doi.org/10.1080/10635150802406343

Miller, R. G. (1981). Simultaneous statistical inference. Springer.

Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G., & Worm, B. (2011). How
many species are there on Earth and in the ocean? PLoS Biology, 9,
e1001127. https://doi.org/10.1371/journal.pbio.1001127

Moritz, C., & Cicero, C. (2004). DNA barcoding: Promise and pitfalls.
PLoS Biology, 2, 1529-1531. https://doi.org/10.1371/journal.pbio.
0020354

Murphy, S. J., & Smith, A. B. (2021). What can community ecologists
learn from species distribution models? Ecosphere, 12, e03864.
https://doi.org/10.1002/ecs2.3864

Mutanen, M., Kivela, S. M., Vos, R. A., Doorenweerd, C., Ratnasingham,
S., Hausmann, A., Huemer, P., Dinca, V., van Nieukerken, E. J.,
Lopez-Vaamonde, C,, Vila, R., Aarvik, L., Decaens, T., Efetov, K. A.,
Hebert, P. D., Johnsen, A., Karsholt, O., Pentinsaari, M., Rougerie,
R., ... Godfray, H. C. J. (2016). Species-level para- and polyphyly
in DNA barcode gene trees: Strong operational bias in European
Lepidoptera. Systematic Biology, 65, 1024-1040. https://doi.org/10.
1093/sysbio/syw044

Nielsen, R., & Matz, M. (2006). Statistical approaches for DNA barcoding.
Systematic Biology, 55, 162-169. https://doi.org/10.1080/10635
150500431239

Oksanen, J., Blanchet, F. G, Friendly, M., Kindt, R., Legendre, P., McGlinn,
D., Minchin, P.R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens,
M. H. H., Szoecs, E., & Wagner, H. (2020). vegan: Community ecol-
ogy package. R package version 2.5-7. https://CRAN.R-project.org/
package=vegan

Orr, M. C,, Ascher, J. S., Bai, M., Chesters, D., & Zhu, C. D. (2020). Three
questions: How can taxonomists survive and thrive worldwide?
Megataxa, 1, 19-27. https://doi.org/10.11646/megataxa.1.1.4

Orr, M. C., Feijé, A., Chesters, D., Vogler, A. P., Bossert, S., Ferrari,
R. R., Costello, M. J., Hughes, A. C., Krogmann, L., Ascher, J.
S., Zhou, X., Li, D.-Z., Bai, M., Chen, J., Ge, D., Luo, A., Qiao, G.,
Williams, P. H., Zhang, A.-B., ... Zhu, C.-D. (2022). Six steps for
building a technological knowledge base for future taxonomic
work. National Science Review, 9, nwac284. https://doi.org/10.
1093/nsr/nwac284

Orr, M. C., Koch, J. B., Griswold, T. L., & Pitts, J. P. (2014). Taxonomic
utility of niche models in validating species concepts: A case study
in Anthophora (Heliophila) (Hymenoptera: Apidae). Zootaxa, 3846,
411-429. https://doi.org/10.11646/zootaxa.3846.3.5

Osorio-Olvera, L., Lira-Noriega, A., Soberon, J., Peterson, A. T., Falconi,
M., Contreras-Diaz, R. G., Martinez-Meyer, E., Barve, V., Barve, N.,
& Qiao, H. (2020). NTBOX: An R package with graphical user in-
terface for modelling and evaluating multidimensional ecological
niches. Methods in Ecology and Evolution, 11, 1199-1206. https://
doi.org/10.1111/2041-210x.13452

Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylo-
genetics and evolution in R language. Bioinformatics, 20, 289-290.
https://doi.org/10.1093/bioinformatics/btg412

Pejovic, ., Ardura, A., Miralles, L., Arias, A., Borrell, Y. J., & Garcia-
Vazquez, E. (2016). DNA barcoding for assessment of exotic mol-
luscs associated with maritime ports in northern Iberia. Marine
Biology Research, 12, 168-176. https://doi.org/10.1080/17451000.
2015.1112016

Peterson, A. T. (2011). Ecological niche conservatism: A time-structured
review of evidence. Journal of Biogeography, 38, 817-827. https://
doi.org/10.1111/j.1365-2699.2010.02456.x

Pfenninger, M., Nowak, C., Kley, C., Steinke, D., & Streit, B. (2007). Utility
of DNA taxonomy and barcoding for the inference of larval commu-
nity structure in morphologically cryptic Chironomus (Diptera) spe-
cies. Molecular Ecology, 16, 1957-1968. https://doi.org/10.1111/j.
1365-294X.2006.03136.x

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum en-
tropy modeling of species geographic distributions. Ecological
Modelling, 190, 231-259. https://doi.org/10.1016/j.ecolmodel.
2005.03.026

Pichler, M., & Hartig, F. (2021). A new joint species distribution model for
faster and more accurate inference of species associations from big
community data. Methods in Ecology and Evolution, 12, 2159-2173.
https://doi.org/10.1111/2041-210x.13687

Popescu, A. A., Huber, K. T., & Paradis, E. (2012). ape 3.0: New tools
for distance-based phylogenetics and evolutionary analysis in R.
Bioinformatics, 28, 1536-1537. https://doi.org/10.1093/bioinforma
tics/bts184

Porco, D., Decaéns, T., Deharveng, L., James, S. W., Skarzynski, D.,
Erséus, C., Butt, K. R., Richard, B., & Hebert, P. D. N. (2012).
Biological invasions in soil: DNA barcoding as a monitoring tool in
a multiple taxa survey targeting European earthworms and spring-
tails in North America. Biological Invasions, 15, 899-910. https://doi.
org/10.1007/s10530-012-0338-2

Pulliam, H. R. (2000). On the relationship between niche and distribu-
tion. Ecology Letters, 3, 349-361. https://doi.org/10.1046/j.1461-
0248.2000.00143.x

85U017 SUOWILIOD 818D 8|qed![dde auyy Aq pausenob a1e S9pile YO ‘SN JO S3INJ 10} Akeud1 78Ul UO 8|1/ UO (SUOTHIPUOO-PUB-SWLIW0™ A8 | 1M A0 18U UO//:SANY) SUOTIPUOD pue SWie | 8U} 89S *[7202/2T/ET] uo Ariqiauliuo A8|IM ‘OriyT X0TZ-Tv0Z/TTTT 0T/I0p/wod A8 imAriq1pul|uo's euInokaq)/sdny wolj pepeojumod ‘ZT ‘v20z *XOTZTY0Z


https://doi.org/10.1007/BF01731581
https://doi.org/10.1007/BF01731581
https://doi.org/10.1111/2041-210x.13800
https://doi.org/10.1073/pnas.0906380106
https://doi.org/10.1073/pnas.0906380106
https://doi.org/10.1093/sysbio/syr030
https://doi.org/10.1093/sysbio/syr030
https://doi.org/10.1093/bioinformatics/btq062
https://doi.org/10.1093/bioinformatics/btq062
https://doi.org/10.1093/sysbio/syac081
https://doi.org/10.1093/sysbio/syac081
https://doi.org/10.1111/2041-210x.13665
https://doi.org/10.1111/2041-210x.13665
https://doi.org/10.1007/s00253-002-1013-9
https://doi.org/10.1007/s00253-002-1013-9
https://doi.org/10.1111/j.1558-5646.2007.00239.x
https://doi.org/10.1111/j.1558-5646.2007.00239.x
https://doi.org/10.1080/10635150600969864
https://doi.org/10.1080/10635150600969864
https://doi.org/10.1080/10635150802406343
https://doi.org/10.1371/journal.pbio.1001127
https://doi.org/10.1371/journal.pbio.0020354
https://doi.org/10.1371/journal.pbio.0020354
https://doi.org/10.1002/ecs2.3864
https://doi.org/10.1093/sysbio/syw044
https://doi.org/10.1093/sysbio/syw044
https://doi.org/10.1080/10635150500431239
https://doi.org/10.1080/10635150500431239
https://cran.r-project.org/package=vegan
https://cran.r-project.org/package=vegan
https://doi.org/10.11646/megataxa.1.1.4
https://doi.org/10.1093/nsr/nwac284
https://doi.org/10.1093/nsr/nwac284
https://doi.org/10.11646/zootaxa.3846.3.5
https://doi.org/10.1111/2041-210x.13452
https://doi.org/10.1111/2041-210x.13452
https://doi.org/10.1093/bioinformatics/btg412
https://doi.org/10.1080/17451000.2015.1112016
https://doi.org/10.1080/17451000.2015.1112016
https://doi.org/10.1111/j.1365-2699.2010.02456.x
https://doi.org/10.1111/j.1365-2699.2010.02456.x
https://doi.org/10.1111/j.1365-294X.2006.03136.x
https://doi.org/10.1111/j.1365-294X.2006.03136.x
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1111/2041-210x.13687
https://doi.org/10.1093/bioinformatics/bts184
https://doi.org/10.1093/bioinformatics/bts184
https://doi.org/10.1007/s10530-012-0338-2
https://doi.org/10.1007/s10530-012-0338-2
https://doi.org/10.1046/j.1461-0248.2000.00143.x
https://doi.org/10.1046/j.1461-0248.2000.00143.x

YANG ET AL.

Qiao, H., Peterson, A. T., Campbell, L. P., Soberén, J., Ji, L., & Escobar,
L. E. (2016). NicheA: Creating virtual species and ecological niches
in multivariate environmental scenarios. Ecography, 39, 805-813.
https://doi.org/10.1111/ecog.01961

Ratnasingham, S., & Hebert, P. D. N. (2007). BOLD: The barcode of life
data system (www.barcodinglife.org). Molecular Ecology Notes, 7,
355-364. https://doi.org/10.1111/j.1471-8286.2007.01678.x

Raxworthy, C. J., Ingram, C. M., Rabibisoa, N., & Pearson, R. G. (2007).
Applications of ecological niche modeling for species delimitation:
A review and empirical evaluation using day geckos (Phelsuma) from
Madagascar. Systematic Biology, 56, 907-923. https://doi.org/10.
1080/10635150701775111

Rissler, L. J., & Apodaca, J. J. (2007). Adding more ecology into species
delimitation: Ecological niche models and phylogeography help de-
fine cryptic species in the black salamander (Aneides flavipunctatus).
Systematic Biology, 56, 924-942. https://doi.org/10.1080/10635
150701703063

Roe, A. D., & Sperling, F. A. H. (2007). Patterns of evolution of mitochon-
drial cytochrome coxidase | and Il DNA and implications for DNA
barcoding. Molecular Phylogenetics and Evolution, 44, 325-345.
https://doi.org/10.1016/j.ympev.2006.12.005

Ross, H. A. (2014). The incidence of species-level paraphyly in animals:
A re-assessment. Molecular Phylogenetics and Evolution, 76, 10-17.
https://doi.org/10.1016/j.ympev.2014.02.021

Rubinoff, D., & Holland, B. S. (2005). Between two extremes:
Mitochondrial DNA is neither the panacea nor the nemesis of phy-
logenetic and taxonomic inference. Systematic Biology, 54, 952-961.
https://doi.org/10.1080/10635150500234674

Ruiz-Sanchez, E., & Sosa, V. (2010). Delimiting species boundaries within
the neotropical bamboo Otatea (Poaceae: Bambusoideae) using mo-
lecular, morphological and ecological data. Molecular Phylogenetics
and Evolution, 54, 344-356. https://doi.org/10.1016/j.ympev.2009.
10.035

Santos, A. M., Besnard, G., & Quicke, D. L. (2011). Applying DNA barcod-
ing for the study of geographical variation in host-parasitoid inter-
actions. Molecular Ecology Resources, 11, 46-59. https://doi.org/10.
1111/j.1755-0998.2010.02889.x

Scriven, J. J.,, Whitehorn, P. R., Goulson, D., & Tinsley, M. C. (2016). Niche
partitioning in a sympatric cryptic species complex. Ecology and
Evolution, 6, 132812-132839. https://doi.org/10.1002/ece3.1965

Shi, Z. Y., Yang, C. Q., Hao, M. D., Wang, X. Y., Ward, R. D., & Zhang,
A. B. (2018). FuzzylD2: A software package for large data set spe-
cies identification via barcoding and metabarcoding using hidden
Markov models and fuzzy set methods. Molecular Ecology Resources,
18, 666-675. https://doi.org/10.1111/1755-0998.12738

Soberdn, J., & Nakamura, M. (2009). Niches and distributional areas:
Concepts, methods, and assumptions. Proceedings of the National
Academy of Sciences of the United States of America, 106(Suppl 2),
19644-19650. https://doi.org/10.1073/pnas.0901637106

Spiers, A. |, Royle, J. A., Torrens, C. L., & Joseph, M. B. (2022). Estimating
species misclassification with occupancy dynamics and encoun-
ter rates: A semi-supervised, individual-level approach. Methods
in Ecology and Evolution, 13, 1528-1539. https://doi.org/10.1111/
2041-210x.13858

Sultana, S., Ali, M. E., Hossain, M. A. M., Asing, A., Naquiah, N., & Zaidul,
I.S. M. (2018). Universal mini COI barcode for the identification of
fish species in processed products. Food Research International, 105,
19-28. https://doi.org/10.1016/j.foodres.2017.10.065

Talavera, G., Dinca, V., & Vila, R. (2013). Factors affecting species de-
limitations with the GMYC model: Insights from a butterfly survey.
Methods in Ecology and Evolution, 4, 1101-1110. https://doi.org/10.
1111/2041-210X.12107

Taylor, H. R., & Harris, W. E. (2012). An emergent science on the brink
of irrelevance: A review of the past 8years of DNA barcoding.
Molecular Ecology Resources, 12, 377-388. https://doi.org/10.
1111/j.1755-0998.2012.03119.x

Methods in Ecology and Evolution EE?S?S!M
—— D SOCIETY

Title, P. O., & Bemmels, J. B. (2018). ENVIREM: An expanded set of biocli-
matic and topographic variables increases flexibility and improves
performance of ecological niche modeling. Ecography, 41, 291-307.
https://doi.org/10.1111/ecog.02880

van der Veen, B., Hui, F. K. C., Hovstad, K. A., Solbu, E. B., & O'Hara, R.
B. (2021). Model-based ordination for species with unequal niche
widths. Methods in Ecology and Evolution, 12, 1288-1300. https://
doi.org/10.1111/2041-210x.13595

Wallis, G. P., Cameron-Christie, S. R., Kennedy, H. L., Palmer, G., Sanders,
T.R., & Winter, D. J. (2017). Interspecific hybridization causes long-
term phylogenetic discordance between nuclear and mitochondrial
genomes in freshwater fishes. Molecular Ecology, 26, 3116-3127.
https://doi.org/10.1111/mec.14096

Wiemers, M., & Fiedler, K. (2007). Does the DNA barcoding gap exist? - A
case study in blue butterflies (Lepidoptera: Lycaenidae). Frontiers in
Zoology, 4, 8. https://doi.org/10.1186/1742-9994-4-8

Wijayathilaka, N., Senevirathne, G., Bandara, C., Rajapakse, S.,
Pethiyagoda, R., & Meegaskumbura, M. (2018). Integrating bio-
acoustics, DNA barcoding and niche modeling for frog conserva-
tion—The threatened balloon frogs of Sri Lanka. Global Ecology and
Conservation, 16, e00496. https://doi.org/10.1016/j.gecco.2018.
e00496

Will, K. W., Mishler, B. D., & Wheeler, Q. D. (2005). The perils of DNA bar-
coding and the need for integrative taxonomy. Systematic Biology,
54(5), 844-851. https://doi.org/10.1080/10635150500354878

Wilson, J. S., Clark, S. L., Williams, K. A., & Pitts, J. P. (2012). Historical
biogeography of the arid-adapted velvet ant Sphaeropthalma
arota (Hymenoptera: Mutillidae) reveals cryptic species. Journal of
Biogeography, 39, 336-352. https://doi.org/10.1111/j.1365-2699.
2011.02580.x

Wright, W. J., Irvine, K. M., Almberg, E. S., Litt, A. R., & Yoccoz, N. (2019).
Modelling misclassification in multi-species acoustic data when
estimating occupancy and relative activity. Methods in Ecology and
Evolution, 11, 71-81. https://doi.org/10.1111/2041-210x.13315

Wu, Y. H,, Hou, S. B, Yuan, Z. Y., Jiang, K., Huang, R. Y., Wang, K., Liu, Q.,
Yu, Z. B., Zhao, H. P, Zhang, B. L., Chen, J. M., Wang, L. J., Stuart, B.
L., Chambers, E. A., Wang, Y. F., Gao, W., Zou, D. H., Yan, F., Zhao, G.
G., ... Che, J. (2023). DNA barcoding of Chinese snakes reveals hid-
den diversity and conservation needs. Molecular Ecology Resources,
23, 1124-1141. https://doi.org/10.1111/1755-0998.13784

Xu,S.Z., Li, Z. Y., &Jin, X. H. (2017). DNA barcoding of invasive plants in
China: A resource for identifying invasive plants. Molecular Ecology
Resources, 18,128-136. https://doi.org/10.1111/1755-0998.12715

Yackulic, C. B., Chandler, R., Zipkin, E. F., Royle, J. A., Nichols, J. D.,
Campbell Grant, E. H., Veran, S., & O'Hara, R. B. (2013). Presence-
only modelling using MAXENT: When can we trust the inferences?
Methods in Ecology and Evolution, 4, 236-243. https://doi.org/10.
1111/2041-210x.12004

Yandell, B. S. (1997). Practical data analysis for designed experiments.
Chapman & Hall.

Yang, B., Zhang, Z. X., Yang, C. Q., Wang, Y., Orr, M. C., Wang, H. B., &
Zhang, A. B. (2022). Identification of species by combining molec-
ular and morphological data using convolutional neural networks.
Systematic Biology, 71, 690-705. https://doi.org/10.1093/sysbio/
syab076

Yang, C. Q, Lv, Q., & Zhang, A. B. (2020). Sixteen years of DNA barcod-
ing in China: What has been done? What can be done? Frontiers
in Ecology and Evolution, 8, 57. https://doi.org/10.3389/fevo.2020.
00057

Yang, C. Q., Wang, Y., Li, X. H., Li, J., Yang, B., Orr, M. C., & Zhang, A. B.
(2024a). NicheBarcoding: Niche-model-based species identification. R
package version 1.8. https://CRAN.R-project.org/package=Niche
Barcoding

Yang, C. Q., Wang, Y., Li, X. H., Li, J,, Yang, B., Orr, M. C., & Zhang, A.
B. (2024b). NicheBarcoding (Version v0.0.1.8000). Zenodo, https://
doi.org/10.5281/zenodo0.13270695

85U017 SUOWILIOD 818D 8|qed![dde auyy Aq pausenob a1e S9pile YO ‘SN JO S3INJ 10} Akeud1 78Ul UO 8|1/ UO (SUOTHIPUOO-PUB-SWLIW0™ A8 | 1M A0 18U UO//:SANY) SUOTIPUOD pue SWie | 8U} 89S *[7202/2T/ET] uo Ariqiauliuo A8|IM ‘OriyT X0TZ-Tv0Z/TTTT 0T/I0p/wod A8 imAriq1pul|uo's euInokaq)/sdny wolj pepeojumod ‘ZT ‘v20z *XOTZTY0Z


https://doi.org/10.1111/ecog.01961
http://www.barcodinglife.org
https://doi.org/10.1111/j.1471-8286.2007.01678.x
https://doi.org/10.1080/10635150701775111
https://doi.org/10.1080/10635150701775111
https://doi.org/10.1080/10635150701703063
https://doi.org/10.1080/10635150701703063
https://doi.org/10.1016/j.ympev.2006.12.005
https://doi.org/10.1016/j.ympev.2014.02.021
https://doi.org/10.1080/10635150500234674
https://doi.org/10.1016/j.ympev.2009.10.035
https://doi.org/10.1016/j.ympev.2009.10.035
https://doi.org/10.1111/j.1755-0998.2010.02889.x
https://doi.org/10.1111/j.1755-0998.2010.02889.x
https://doi.org/10.1002/ece3.1965
https://doi.org/10.1111/1755-0998.12738
https://doi.org/10.1073/pnas.0901637106
https://doi.org/10.1111/2041-210x.13858
https://doi.org/10.1111/2041-210x.13858
https://doi.org/10.1016/j.foodres.2017.10.065
https://doi.org/10.1111/2041-210X.12107
https://doi.org/10.1111/2041-210X.12107
https://doi.org/10.1111/j.1755-0998.2012.03119.x
https://doi.org/10.1111/j.1755-0998.2012.03119.x
https://doi.org/10.1111/ecog.02880
https://doi.org/10.1111/2041-210x.13595
https://doi.org/10.1111/2041-210x.13595
https://doi.org/10.1111/mec.14096
https://doi.org/10.1186/1742-9994-4-8
https://doi.org/10.1016/j.gecco.2018.e00496
https://doi.org/10.1016/j.gecco.2018.e00496
https://doi.org/10.1080/10635150500354878
https://doi.org/10.1111/j.1365-2699.2011.02580.x
https://doi.org/10.1111/j.1365-2699.2011.02580.x
https://doi.org/10.1111/2041-210x.13315
https://doi.org/10.1111/1755-0998.13784
https://doi.org/10.1111/1755-0998.12715
https://doi.org/10.1111/2041-210x.12004
https://doi.org/10.1111/2041-210x.12004
https://doi.org/10.1093/sysbio/syab076
https://doi.org/10.1093/sysbio/syab076
https://doi.org/10.3389/fevo.2020.00057
https://doi.org/10.3389/fevo.2020.00057
https://cran.r-project.org/package=NicheBarcoding
https://cran.r-project.org/package=NicheBarcoding
https://doi.org/10.5281/zenodo.13270695
https://doi.org/10.5281/zenodo.13270695

YANG ET AL.

Methods in Ecology and Evoluti EEEZ%?E?VM:AL

Yang, C. Q., Wang, Y., Li, X. H., Li, J,, Yang, B., Orr, M. C., & Zhang, A. B.
(2024c). Data from: Environmental niche models improve species
identification in DNA barcoding. Dryad Digital Repository, https://
doi.org/10.5061/dryad.rbnzs7h96

Yang, Z. H. (2006). Computational molecular evolution. Oxford University
Press.

Zhang, A. B., Hao, M. D,, Yang, C. Q., & Shi, Z. Y. (2017). BarcodingR:
An integrated R package for species identification using DNA bar-
codes. Methods in Ecology and Evolution, 8, 627-634. https://doi.
org/10.1111/2041-210X.12682

Zhang, A. B., Muster, C,, Liang, H. B., Zhu, C. D., Crozier, R., Wan, P., Feng,
J.,&Ward, R. D. (2012). A fuzzy-set-theory-based approach to anal-
yse species membership in DNA barcoding. Molecular Ecology, 21,
1848-1863. https://doi.org/10.1111/j.1365-294X.2011.05235.x

Zhang, A. B., Sikes, D. S., Muster, C., & Li, S. Q. (2008). Inferring species
membership using DNA sequences with back-propagation neu-
ral networks. Systematic Biology, 57, 202-215. https://doi.org/10.
1080/10635150802032982

Zhang, X. M., Shi, Z. Y., Zhang, S. Q., Zhang, P., Wilson, J. J., Shih, C., Li,
J., Li, X. D, Yu, G. Y., & Zhang, A. B. (2020). Plant-herbivorous in-
sect networks: Who is eating what revealed by long barcodes using
high-throughput sequencing and Trinity assembly. Insect Science,
28, 127-143. https://doi.org/10.1111/1744-7917.12749

SUPPORTING INFORMATION
Additional supporting information can be found online in the
Supporting Information section at the end of this article.

Table S1: The notation table of the parameters involved in the NBSI
framework.

Table S2: The detailed statistics of tests of simulated datasets.
Table S3: The detailed statistics of tests of empirical datasets.
Appendix S1: All generated simulated datasets.

Appendix S2: All collected empirical datasets.

Appendix S3: The variables retained for niche modelling in every
single test of simulated datasets.

Appendix S4: The variables retained for niche modelling in every

single test of empirical datasets.

How to cite this article: Yang, C.-q., Wang, Y., Li, X.-h., Li, J.,
Yang, B., Orr, M. C., & Zhang, A.-b. (2024). Environmental niche
models improve species identification in DNA barcoding.
Methods in Ecology and Evolution, 15, 2343-2358. https://doi.
org/10.1111/2041-210X.14440

85U017 SUOWILIOD 818D 8|qed![dde auyy Aq pausenob a1e S9pile YO ‘SN JO S3INJ 10} Akeud1 78Ul UO 8|1/ UO (SUOTHIPUOO-PUB-SWLIW0™ A8 | 1M A0 18U UO//:SANY) SUOTIPUOD pue SWie | 8U} 89S *[7202/2T/ET] uo Ariqiauliuo A8|IM ‘OriyT X0TZ-Tv0Z/TTTT 0T/I0p/wod A8 imAriq1pul|uo's euInokaq)/sdny wolj pepeojumod ‘ZT ‘v20z *XOTZTY0Z


https://doi.org/10.5061/dryad.rbnzs7h96
https://doi.org/10.5061/dryad.rbnzs7h96
https://doi.org/10.1111/2041-210X.12682
https://doi.org/10.1111/2041-210X.12682
https://doi.org/10.1111/j.1365-294X.2011.05235.x
https://doi.org/10.1080/10635150802032982
https://doi.org/10.1080/10635150802032982
https://doi.org/10.1111/1744-7917.12749
https://doi.org/10.1111/2041-210X.14440
https://doi.org/10.1111/2041-210X.14440

	Environmental niche models improve species identification in DNA barcoding
	Abstract
	1  |  INTRODUCTION
	2  |  A NEWLY PROPOSED FRAMEWORK: NBSI
	2.1  |  Probability based on barcode sequence
	2.2  |  Probability based on ecological niche
	2.3  |  Calculation of the final integrated outcome

	3  |  MATERIALS AND METHODS
	3.1  |  Generation of simulated datasets
	3.1.1  |  Simulation of gene trees and barcode sequences
	3.1.2  |  Simulation of distribution patterns

	3.2  |  Collection of empirical datasets
	3.3  |  Ecological variables used in niche modelling
	3.4  |  Test and success rate calculation

	4  |  RESULTS
	4.1  |  Performance in simulated datasets
	4.2  |  Performance in empirical datasets

	5  |  DISCUSSION
	6  |  CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	PEER REVIEW
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES


