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Abstract

The microbiome of mammals has profound effects on host fitness, but the process, which drives the assembly and shift of mammalian micro-
biome remains poorly understood. To explore the patterns of small mammal microbial commmunities across host species and geographical sites
and measure the relative contributions of different processes in driving assembly patterns, 2 sympatric desert rodent species (Dipus sagitta
and Meriones meridianus) were sampled from 2 geographically distant regions, which differed in the environment, followed by 16S rRNA gene
sequencing. The microbiomes differed significantly between D. sagitta and M. meridianus, and linear mixed modeling (LMM) analysis revealed
that microbial diversity was mostly affected by species rather than the environment. For each rodent species, the microbiome diversity and
structure differed across geographical regions, with individuals from lower rainfall environments exhibiting greater diversity. The null modeling
results suggested dispersal limitation and ecological drift rather than differential selective pressures acting on the microbiome. In addition, each
group had a different core genus, suggesting that the taxonomic composition of the microbiome was shaped most strongly by stochastic pro-
cesses. Our results suggest that variation in the microbiome between hosts, both within and among geographic rodent populations, is driven by
bacterial dispersal and ecological drift rather than by differential selective pressures. These results elucidated the diversity patterns and assembly
processes of bacterial microbiomes in small desert mammals. Deciphering the processes shaping the assembly of the microbial community is
a premise for better understanding how the environment-host-microbe interactions of mammals are established and maintained, particularly in
the context of increased environmental disturbances and global changes.
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The microbiome of mammals profoundly influences host fit-
ness because they perform many important functions in hosts,
including food digestion (Tremaroli and Backhed 2012),
immunity regulation (Round and Mazmanian 2009), disease
prevention (Tlaskalova-Hogenova et al. 2011) and physical
development (Sommer and Backhed 2013). The structure of
microbial communities is shaped by a complex set of host
attributes (e.g., host genotype, species, ontogeny, and diet) and
environmental factors (e.g., habitat, geographic location, and
anthropogenic disturbance) (Ley et al. 2008; Spor et al. 2011;
Amato et al. 2013), whose relative quantitative importance
varies between hosts and geographical locations (Huang et
al. 2022). Although the composition, diversity and function
of the microbial communities of small mammals have been
studied (Kevin et al. 2022; Zahra et al. 2022), the assembly
of the microbiome of small mammals has not yet been inves-
tigated. Deciphering the processes shaping the assembly of
microbial communities is an approach to better understand

how the environment-host-microbe interaction of mammals
is established and maintained, particularly in the context of
increased environmental disturbances and global changes.
Selection, dispersal, and drift have been proposed to be
the major processes, which govern the assembly and shift of
ecological communities (Vellend 2010; Rosindell et al. 2011;
Feng et al. 2018). The niche theory emphasizes the deter-
ministic forces of biotic and abiotic factors in sorting com-
munities (Vellend 2010; Dini-Andreote et al. 2015; Li et al.
2019). Selection may cause communities to converge if they
undergo similar environmental conditions (homogeneous
selection) or diverge if they undergo distinct environmental
conditions (variable selection/Heterogeneous selection). The
neutral theory emphasizes stochastic processes such as dis-
persal and drift (Rosindell et al. 2011; Dini-Andreote et al.
2015). Dispersal influences community assembly by regulating
the movement of species across spaces and systems. Dispersal
can also cause communities to converge or diverge depending
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on the magnitude of dispersal; that is, high dispersal homoge-
nizes communities through frequent species exchange between
communities (homogeneous dispersal), whereas restricted
dispersal differentiates communities (dispersal limitation).
Ecological drift results in stochastic population fluctuations of
species within communities by chance birth and death events
and thus generally disperse communities (Ge et al. 2021).

Although knowledge of microbial community assembly in
several ecosystems (e.g., gut, soil, and water) has increased in
recent years (Zhou et al. 2014; Yan et al. 2016; Dong et al.,
2024), there are differences in the relative contributions of
assembly processes between free-living and host-associated
microbiomes. Generally, deterministic process and stochastic
processes work in conjunction in microbiome assembly (Stegen
et al. 2012; Dini-Andreote et al. 2015), but the relative con-
tributions of these ecological processes (e.g., diversification,
selection, dispersal, and drift) in shaping host microbiomes are
likely to vary between ecosystems (Furman et al. 2020; Ge et
al.,2021; Xiao et al. 2021). In this study, our main aim was to
determine the relative importance of each process (i.e., homo-
geneous selection, heterogeneous selection, dispersal limitation,
homogenizing dispersal, and drift) during the assembly of bac-
terial microbiomes and to determine how their relative impor-
tance varies across biological and geographical scales.

Hosts, which occupy a broad range of environments may
exhibit greater spatiotemporal variation in their microbiome
than those constrained as specialists to narrower subsets of
resources or habitats. To explore the patterns of small mam-
mal bacterial microbiomes across host species and geograph-
ical sites and measure the relative contributions of different
processes (i.e., homogeneous selection, heterogeneous selec-
tion, dispersal limitation, homogenizing dispersal, and ecology
drift) in driving assembly patterns, we surveyed the bacterial
microbiomes of sympatric and allopatric populations of 2
rodent species residing in the wild throughout western China:
Dipus sagitta and Meriones meridianus. These host species are
ideal for comparison because they are relatively abundant and
widespread in the inland deserts of East Asia (IUCN 2016),
and their distribution range has been significantly influenced
by climate change (Bu et al. 2022; Wang et al. 2022). They are
both social animals, which inhabit similar environments and
mostly survive in high-altitude deserts and semideserts. The
diet of D. sagitta largely consists of nuts, seeds, and insects,
whereas that of M. meridianus is dominated by stems and a
leaf of herbaceous plants (Wilson et al. 2017).

We tested 3 hypotheses: first, the gut microbiota of sympa-
tric species differs in the compositional and predicted func-
tional characteristics of their gut microbiomes, reflecting that
host phylogeny plays a crucial role in shaping the gut micro-
biota; second, host species exhibit different degrees of spati-
otemporal turnover in the composition and diversity of their
gut microbiomes. Regions with greater rainfall show greater
host microbial diversity, reflecting ecological differences in
how hosts respond to rainfall-driven environmental changes;
third, deterministic processes drive the process of community
assemblage of the gut microbiota in each group because selec-
tion is the result of biotic and abiotic pressures.

Materials and Methods
Sampling

To explore the patterns of small mammals microbial commu-
nities across host species and geographical sites and measure
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the relative contributions of different processes in driving
assembly patterns, 4 groups (LD, LM, HD, and HM) of 2
species (D: D.sagitta and M: M.meridianus) within 2 types
of environments on the basis of mean annual precipitation
(MAP) (L: MAP < 50 mm, H: MAP > 100 mm) were consid-
ered here, with 6 and 5 geographical sites selected from each
region (separated by distances of up to approximately 2,500
km). We collected a total of 39 fecal samples in the summer
of 2021-2022 (Figure 1). The information for each sample is
provided in Table S1. We used the same methods of sample
collection and preservation at all of the sampling sites. Briefly,
on capture, the animals were euthanized via cervical disloca-
tion to minimize animal suffering in the field, and the entire
gut was dissected from each animal and preserved separately
in sterile tubes with ethanol. Finally, after all of the samples
were transferred to the laboratory, we washed the entire
gut 3x with sterile water and expelled the fresh feces from
it into new sterile tubes under sterile conditions via ethanol-
sterilized forceps. Before DNA extraction, the fecal samples
were stored separately in sterile tubes at —20°C.

All animal works were conducted in accordance with
Animal Research Protocol 10Z-2006 approved by the
Animal Care Committee of the Institute of Zoology, Chinese
Academy of Sciences (IOZCAS), China.

DNA extraction and sequencing

The total DNA of feces was extracted using a TGuide 96 Soi
genomic DNA extraction kit (TTANGEN Biotech, China)
following the manufacturer’s protocol. The extracted DNA
was diluted to 10 ng/uL for PCR amplification. We used the
universal primers 515F (5-ACTCCTACGGGAGGCAGCA-
37)/806R(5-GGACTACHVGGGTWTCTAAT-3") to amplify
the V3-V4 region of the microbial 16S rRNA gene (Tamaki et
al. 2011). The 515F primer with a 12bp barcode was inserted
to differentiate each sample during sequencing analysis. PCR
amplifications were performed in duplicate with 10 pL reac-
tion mixture containing 5 pL. of PCR buffer, 0.2 uL of each
deoxynucleoside triphosphate (ANTP) at 2 mm, 0.3 um of
each primer, 0.2 U of KOD FX Neo (TOYOBO, Beijing) and
10 ng genomic DNA. The thermal cycling procedure con-
sisted of an initial denaturation step at 95°C for 5 min, fol-
lowed by 25 cycles of 95°C for 30 s, 50°C for 30 s, and 72°C
for 40 s, and a final extension at 72°C for 7 min. Ultimately,
we used an Illumina Novaseq6000 (Illumina, USA) platform
to sequence the PCR amplicons after acquiring 2 x 250 bp
paired-end sequences. The above services were provided by
Berry Genomics (Beijing, China).

Preprocessing and quality control

We processed the raw sequencing data with Amplicon Analysis
Pipeline-Version 1.14 (Liu et al. 2021). First, the paired reads
were merged to obtain amplicon sequences, and the primers
were removed. Then, low-quality amplicon sequences (those
with quality scores less than 20, lengths less than 350 bp, or
ambiguous bases) were removed. All these procedures were
performed with USEARCH (Edgar 2010). All sequences were
denoised to amplicon sequence variants (ASVs) using unoise3
in USEARCH (Edgar and Flyvbjerg 2015). The aligned 16S
rRNA gene sequences were input into the UCHIME algo-
rithm for a chimera check (Edgar et al. 2011). Additionally,
we filled out a feature table (amplicon sequence variant ASV
table) by quantifying the frequency of the feature sequences
in each sample. Owing to possible contamination of the
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Figure 1 A map showing the locations of sampling sites marked with different symbols across the research area. Symbols include green circles for
group HM: M. meridianus from high rainfall regions, purple circles for group LM: M. meridianus from low rainfall regions, blue triangles for group LD: D.
sagitta from low rainfall regions, and red triangles for group HD: D. sagitta from high rainfall regions. Boundaries of countries and rivers were acquired

from https://malagis.com/category/gis-resource/

chloroplast sequences during PCR amplification, we then
removed nonbacterial ASVs, chloroplasts and singletons from
our ASV list (https://www.festinalente.me/bioinf/). The ASVs
were assigned to the taxonomy group against the Silva 128
database (http://www.arb-silva.de). A total of 119,719,48
sequences were obtained from 39 samples, and a total of
575,640 high-quality sequences were obtained after splic-
ing and quality control of the data (Table S2, Supporting
Information). In total, we recovered 2,928 bacterial ASVs
from all samples. Because uneven sequencing depth across
samples may confuse the results of community comparisons,
we rarefied each sample to the same number of reads (14,000
sequences) with the “vegan” package (Oksanen et al., 2018)
in R software.

Diversity and composition measures

The “vegan” package was used to calculate 4 indices of alpha
diversity: the Chaol, ACE, Shanon and Simpson diversity
indices. Analysis of Variance (ANOVA) was then performed
to determine whether the alpha diversity differed between
the groups. Pairwise comparisons were performed using
Tukey’s Honest Significant Difference (HSD) test. We used
Principal coordinate analysis (PCoA) with the Bray—Curtis
distance to evaluate the dissimilarities in community com-
position between samples and assess their beta diversity.
To determine differences in the community composition of
microbiomes among samples, a permutational multivariate
analysis of variance (PERMANOVA) was carried out with

9,999 permutations using the adonis function (Anderson
2014). For the analysis of the core microbiota, we defined
ASVs, which were present in more than 50% of the sam-
ples and had a relative abundance of more than 0.5% as
core ASVs. Similarly, the genera associated with these ASVs
were categorized as core genera. Linear discriminant analysis
(LDA) effect size (LEfSe) (Segata et al. 2011) was performed
to identify the specialists for the various bacterial communi-
ties among groups at the ASV level using the criteria of an
LDA score >4.0 and a Kruskal-Wallis test significance level
<0.05. Furthermore, we obtained species-specific ASVs with
the stricter criteria of an LDA score >4.0 and a significance
level <0.05 to facilitate visualization as a phylogenetic tree.
The phylogenetic tree was annotated and visualized online
(https://www.bic.ac.cn/ImageGP/).

We performed LMM with microbiome richness as the
response variable and model predictors that included species,
environment, and the species x environment interaction, with
the collection site representing a random intercept to account
for repeated sampling of populations, in the package “lme4”
in R (Bates et al. 20135).

Functional prediction of the microbiome

Phylogenetic Investigation of Communities by Reconstruction
of Unobserved States (PICRUSt) v1.1.0 (Langille et al. 2013)
was used to predict the metagenomic functional composition
(Zheng et al. 2019) of Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (Kanehisa and Goto 2000).
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Community assembly process

The ecological processes were quantified using a novel
method named infer community assembly mechanisms by
the phylogenetic-bin-based null model (iCAMP), which
was developed from the method of Stegen et al (Stegen
et al. 2013; Ning et al. 2020). First, iCAMP assigned the
observed taxa into phylogenetic-closed groups (bins). We
subsequently calculated the within-bin beta Net Relatedness
Index (BNRI) and the modified Raup—Crick metric (RC) to
estimate the relative contributions of homogeneous selec-
tion (HoS; BNRI < -1.96), heterogeneous selection (HeS;
BPNRI > 1.96), homogeneous dispersal (HD; RC <-0.95
and IBNRII<1.96), dispersal limitation (DL; RC > 0.95 and
IBNRII<1.96), and drift (DR; IRCI<0.95 and IBNRII<1.96)
in governing microbial community assembly. This analysis
was conducted with the iCAMP (version 1.3.4) package
(https://github.com/DaliangNing/iCAMP1; accessed on 5
Nov 2022). On the basis of the principle of the null mod-
els employed by iCAMP, dispersal limitation, homogenizing
dispersal, and drift fractions were considered stochastic.
Thus, the sum of their estimated relative importance can be
used to estimate the stochasticity of community assembly
(Ning et al. 2020).

Data availability

The sequence data have been deposited in the NCBI
Sequence Read Archive (SRA) under the accession num-
ber PRJNA1058805  https://www.ncbi.nlm.nih.gov/sra/
PRJNA1058805.

Results

Bacterial community variation between sympatric
and allopatric species

Alpha diversity indices were calculated to clarify the differ-
ences in the richness and diversity of the bacterial communi-
ties from different geographic sources. We used the Chao 1,
ACE, Shannon and Simpson indices to determine the alpha
diversity of the bacterial microbiome at the ASV level. In
terms of sympatric groups, both the chaol index and ACE
index of M. meridianus gut bacterial communities were
greater than those of the D. sagitta bacterial communities in
the D and H regions. Regarding allopatric species, the Chao 1
index and ACE index of the LD population were higher than
those of the HD population, and they were also greater in
the LM population than in the HM population (P < 0.05 for
both; Figure 2A and Figure S2B). The Shannon and Simpson
indices were similar between the groups (P > 0.05; Figure 2B
and Figure S2C).

PCoA based on Bray-Crutis distance revealed that for both
regions, the bacterial communities of D. sagitta and M. merid-
ianus were significantly different from each other (LD vs. LM:
PERMANOVA: F = 1.91, R? = 0.07, P < 0.001; HD vs. HM:
PERMANOVA: F = 1.87, R? = 0.15, P < 0.001). In addition,
among D. sagitta, the bacterial communities at different sites
were significantly different (PERMANOVA: F=1.84, R? =
0.09, P <0.001). However, for M. meridianus, whereas the
difference between regions was not significant, there was still
a noticeable trend, which was also quite clear from the ordi-
nation, as the groups did not really overlap (PERMANOVA:
F=1.28,R*=0.07, P = 0.08) (Figure 2C, Table S3).

On the basis of the 16S rRNA gene sequences, we also
analyzed the bacterial taxonomic compositions, and the ASV
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obtained vial6S rRNA amplicon sequencing were classified
into 14 phyla, 23 classes, 43 orders, 88 families, and 221
genera. In addition to their overall bacterial properties, the
core ASVs also differed between host species (Figure 2D). We
defined the core ASVs as those observed at more than 50% of
the samples in each group with a relative abundance > 0.5%.
Among the 2,928 bacterial ASVs detected in this study, 7 and
5 ASVs were identified as the core ASVs of D. sagitta and M.
meridianus, respectively (Table S4). The 7 core ASVs of D.
sagitta were assigned to the genera Kineothrix (including 2
ASVs), Paramuribaculum, Pseudescherichia, Ligilactobacillus,
Clostridium_XIVa, and Akkermansia; the 5 core ASVs of M.
meridianus were assigned to the genera Lactobacillus (includ-
ing 2 ASVs), Paramuribaculum (2), and Barnesiella. Among
these core ASVs, 3 assigned to Paramuribaculum were shared
by both host species (Figure 2D and Table S4).

In addition to the general bacterial features (e.g., diversity
and composition), group-specific taxa were identified via
LEfSe. Three phyla, 3 classes, 3 orders, 4 families, and 6 gen-
era were dominant in distinct groups. The bacterial micro-
biome of the LD population contained the majority of the
distinct species, which were classified individually into the
following groups: Bacteroidales, Bacteroidia, Bacteroidetes,
Muribaculaceae, Paramuribaculum, Akkermansia,
Akkermansiaceae, Verrucomicrobiales, Verrucomicrobiae,
and Muribaculaceae. The LM population contained 5 dis-
tinct species, which were significantly abundant: Bacilli,
Lactobacillales, Lactobacillaceae, and 2 unidentified genera.
Two significantly abundant taxa in the HD population were
Firmicutes and Clostridium X[ Va; in the HM population, only
1 taxonomic genus, Lactobacillus, was enriched (P < 0.05;
logarithmic LDA score >4.0) (Figure 2F and G).

According to the LMM analysis, there was a significant
positive correlation between species and microbiome rich-
ness (Table 1). However, there was no strong or consistent
correlation between the richness of the microbiome samples
and the environment or species x environment interaction.
Specifically, the marginal R-squared (R2m) of 0.2836 indi-
cates that the fixed effects (species, environment, and their
interaction) collectively explain approximately 28.36% of
the variance in richness. This suggests that species and envi-
ronmental factors individually contribute significantly to the
variations in richness. Moreover, the conditional R-squared
(R2c¢) of 0.5553, which considers both fixed effects and ran-
dom effects (variations at the site level), indicated a more
comprehensive model fit, explaining a substantial proportion
of the total variance in the response variable. This higher
R2c value underscores the model’s robustness in capturing
the overall variability in microbiome richness, accounting for
both fixed and random effects across different environmental
conditions and species interactions (Table 1).

Functional prediction of bacterial community

The functions of each group of bacterial communities were
predicted using PICRUSt in the KEGG database, and the top
25 core functions at level 3 of each group are shown in Figure
3. The results revealed that while the extent of interindivid-
ual variation in microbiome composition differed between
host species based on the identities of the bacterial taxa they
included, there was no difference in the degree of interindivid-
ual variation in the predicted functional pathways between
the groups. “Transporters” and “ABC transporters” were the
dominant bacterial community proteins in all the groups.
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Figure 2 Diversity, structure, and composition in D. sagitta and M. meridianus. Box and whisker plots of 2 alpha diversity indices (A) Chao1 and (B)
Shannon indices in each group. Different letters above the whiskers denote significant differences between each group determined with analysis of
variance tests (P < 0.05). (C) PCoA plots showing group variation in the bacterial microbiome based on Bray—Curtis dissimilarity. The ellipses indicate the
95% confidence intervals, and the percentages in parentheses are the proportions of variation explained by the PCoA. (D) The 8 core genera (present

in more than 50% of samples in each group with a relative abundance of more than 0.5%.) across all samples. (E) Cladogram depicting the phylogenic
relationships between microbial taxa, which were significantly different in each group. Yellow nodes represent no significant differences. (F) The LDA
histogram represents the bacterial groups with significant differences between groups (P < 0.05, Kruskal-Wallis test; logarithmic LDA score > 4.0).

Gut bacterial community assembly process

To further evaluate the ecological processes of the gut
bacterial community assembly among sympatric desert
rodents from different geographic sources, null model
analyses based on taxonomic and phylogenetic metrics
were performed (Ning et al. 2020). According to the anal-
ysis, dispersal limitation was more important than other
processes in bacterial community assembly, with average
relative importance values of 52.89% in HD, 67.83% in

LD, 60.59% in HM, and 64.79% in LM (Figure 4B). On
the basis of the principle of the null models employed by
iCAMP, the dispersal limitation, homogenizing dispersal,
and drift fractions were stochastic. Thus, the sum of their
estimated relative importance can be used to estimate the
stochasticity of the community assembly. The relative
importance of stochastic processes were 83.10%, 87.79%,
83.01%, and 81.14% in the HD, LD, HM, and LM groups,
respectively (Figure 4A). These results revealed that the
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biogeographic patterns of the microbiome were driven by
dispersal limitation and then drift. This might be due to
long geographic distances limiting host dispersal in various
desert ecosystems.

Table 1. Liner mixed model (LMM) analysis testing the effects of
species, environment, and the species x environment interaction on
microbial community measured using richness

Variable Estimate Std. error df t Value Pr(>l#)
Intercept 791.747 114.290 0.394 6.928 0.310
Species 163.835  64.892 34.881 2.525 0.016
Environment -0.770 1.126 0.797 -0.684 0.640

Species: environment 0.194 0.771  34.909 0.251 0.803
Model fit R 0.284 R* 0.555

Tuoliu et al. - Microbiome assembly in sympatric desert rodents

Discussion

This study was conducted to explore the microbial commu-
nity ecology of 2 sympatric desert rodents (D. sagitta and
M. meridianus) from different geographic sources, with a
special interest in microbial community assembly processes.
Contrary to our initial expectations, this study revealed that
the microbiome differed significantly both between sympatric
and allopatric species (Figure 2A—C). In addition, we detected
a significant positive correlation between species and micro-
biome richness (Table 1). These findings suggest that, across
sympatric rodents of different families, species have a greater
influence on bacterial communities than do environmental
factors. Unexpectedly, our results also do not support our
second hypothesis: as allopatric species, both D. sagitta and
M. meridianus presented similar patterns. Rodents in the L
region, where low precipitation and high temperatures are
present, harbor bacterial communities with relatively high

ABC transporters I 21

Amino sugar and nucleotide sugar metabolism 19
Aminoacyl-tRNA biosynthesis 18
Arginine and proline metabolism 17
Bacterial motility proteins I 16

Chromosome

DNA repair and recombination proteins

DNA replication proteins
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Methane metabolism

Other ion—coupled transporters

Oxidative phosphorylation

Peptidases

Purine metabolism

Pyrimidine metabolism

Pyruvate metabolism

Ribosome

Ribosome Biogenesis

Secretion system

Transcription factors

Transcription machinery

Two-component system

Carbon fixation pathways in prokaryotes
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Figure 3 Heatmap illustrating the function traits (top 25 core functions at level 3) of bacteria community among each group. The abundance of

functional traits was normalized, and the scale bar referred to the log10 value.
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Figure 4 Relative importance of different ecological processes. (A) The relative importance of deterministic and stochastic processes on bacterial
community assembly in each group. (B) Bar plot of relative contributions of different ecological processes in each group (HeS: heterogeneous selection;
HoS: homogeneous selection; HD: homogenizing dispersal; DL: dispersal limitation; and DR: drift).

alpha diversity (Figure 2A-C ). The data also revealed evi-
dence contrary to our third hypothesis we found that stochas-
tic processes (e.g., dispersal limitation) dominated in shaping
desert rodent microbiota composition (Figure 3). Although
there are several reports on the soil microbiota composition,
diversity and assembly process in different desert ecosystems
(Feng et al. 2018; Bay et al. 2021; Dong et al. 2024), we are
the first to study the microbial community assembly process
in desert rodents across a large geographic span. These results
expand our understanding of bacterial community assembly
patterns in mammals.

We detected significant differences in alpha and beta diver-
sity within the bacterial communities of different rodent
species. Moreover, LMM analysis was carried out (Table 1),
which revealed that microbial richness can be affected mostly
by species. These results are similar to those of other studies
in wild rodents (Knowles et al. 2019; Anders et al. 2021),
in which species identity dominated over environment in
shaping the microbiota of small mammals. In our study, the
2 sympatric species (D. sagitta and M. meridianus) were from
different rodent families, which may have contributed to the
differences observed across these rodent hosts. In addition,
we found that, compared with D. sagitta, M. meridianus pre-
sented greater microbial diversity in each region. Previous
studies have shown that herbivores have greater microbial
diversity in their guts than mammals with other feeding strat-
egies (Ley et al. 2008). It is hypothesized that this greater
diversity is related to the complexity of fibers present in plant
material, and so the diversity of bacterial communities in her-
bivorous rodents may assist them in digestion. Interestingly,
there are also relationships between body size and micro-
bial diversity, such that larger animals tend to have greater
diversity, and this relationship is exaggerated in herbivorous
species (Nishida and Ochman 2018). In addition, we identi-
fied different core genera in each host species, and the core
genus Lactobacillus has been reported to perform essential
functions in herbivore adaptation (Yu et al. 2018). Compared
with D. sagitta, which consumes small amounts of insects,
M. meridianus is entirely herbivorous. M. meridianus are
also considerably larger than D. sagitta, which may also con-
tribute to the differences observed across these rodent hosts.
However, these ideas require validation and further study. In

our future research, we will analyze their phylogenetic rela-
tionships, dietary habits, and morphological data in detail.

As allopatric species, both D. sagitta and M. meridianus
presented similar patterns. Rodents in the L region, where
low precipitation and high temperatures are present, harbor
bacterial communities with relatively high richness. However,
these results are not consistent with the findings of Li et al.
(2020) and Brown et al. (2024). The former demonstrated
that there was no significant difference in the alpha diversity
of rodent bacterial communities under different precipitation
manipulation conditions. The latter showed that high rainfall
was associated with greater microbial richness in co-occurring
rodent species. The metabolic diversity harbored by microbial
communities facilitates an array of unique functions that may
directly benefit hosts thus these communities may be routes of
rapid ecological and evolutionary adaptation for their hosts
(Alberdi et al. 20165 Henry et al. 2021). These microbial com-
munities can be especially important for the degradation of
complex biopolymers that animal hosts cannot metabolize
themselves. For example, plant material contains cell walls
and structural components made of carbohydrate monomers
linked by B-1,4 glycosidic bonds, which cannot be broken
down by vertebrate enzymes (Karasov and Martinez 2007).
Therefore, many herbivorous mammals rely on the activity of
microbial symbionts to conduct fermentative processes and
then they absorb the microbial byproducts of this metabolism.
We speculate that the bacterial communities of low-rainfall
desert rodents with greater alpha diversity probably exhibit
greater adaptation to desert habitats. The functional predic-
tion results revealed that the bacterial community functions
in transport were the highest across groups, but the differ-
ences between groups were not significant (Figure 3). In the
future, metagenomic sequencing approaches will be needed to
specifically elucidate their specific functions.

To further explore bacterial community turnover in differ-
ent ecological desert niches and hosts, null model analysis was
carried out using the framework described by Stegen et al.
(2013). Selection is the result of biotic and abiotic pressures
that cause variation in reproductive success across species.
Dispersal is the degree to which individuals move between
communities, and drift results from population size. In this
study, our results suggested the predominant importance of
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dispersal limitation and ecological drift in shaping bacterial
microbiome variation among groups (Figure 3A and B), which
indicated that dispersal between the sympatric and allopatric
species was very limited and involved undominated processes
(Dini Andreote et al. 2015; Zhou and Ning 2017). The bac-
terial communities were affected by both biotic (species) and
abiotic (environment) pressure, but overall, the null model-
ling results suggested that the bacterial communities were
dominated by stochastic processes rather than deterministic
processes, indicating that random birth, death, and disper-
sal events can strongly affect the distribution of the bacterial
communities of desert rodents, resulting in a species composi-
tion that is indistinguishable from patterns arising randomly.
Furthermore, when a response of the microbiome to environ-
mental or physiological variation is observed, deterministic
processes must not be assumed as the sole causal process.

In summary, deserts present formidable challenges for
desert mammal life because of their different arid conditions.
Therefore, this study was conducted with the hypothesis that
habitat specialization due to climate change-related aridity
levels drives the differentiation of bacterial diversity patterns,
community functions, and assembly processes across vari-
ous ecosystems within the vast deserts of China. The results
revealed that the microbiomes of both sympatric and allo-
patric species significantly differ. In addition, M. meridianus
had greater microbiome diversity than D. sagitta, and both
rodent microbiome diversity indices were greater in low-
rainfall regions, as confirmed by the alpha and beta diver-
sity indices. The correlations among species, the environment,
and sites with microbiome richness revealed that the species
highly influences microbial richness. The bacterial commu-
nity composition revealed that each group had specific core
genera, and the species in the low-rainfall regions presented
greater specific bacterial abundances. Moreover, microbial
community assembly process analysis revealed that gut bacte-
rial diversity followed the dispersal limitation pattern (which
involves undominated processes). These results elucidated
the diversity patterns and assembly processes of microor-
ganisms in small desert mammals and provided fundamental
information necessary to understand the microbiome com-
position of different desert mammals in diverse desert eco-
systems exposed to severe climate change. However, there
are still some limitations in the microscopic-level functional
analysis (metagenomics and metatranscriptomics) that need
to be addressed in future research. To further explore micro-
bial functions in desert rodents, we recommend conducting
metagenomic, meta-transcriptomic, and metabolomic studies.
Furthermore, it would be beneficial to compare the patterns
of desert rodent microbial communities with those of soil and
plant microbial communities. By comparing the microbial
communities across desert mammals, soil, and plants, we can
identify unique adaptations and interactions, which occur in
these environments. This comparative analysis enhances our
understanding of the functional dynamics of desert microbial
communities.
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