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The metabaging cycle promotes non-metabolic chronic
diseases of ageing

The global trend of population ageing is intertwined with the rising

incidence of metabolic diseases such as obesity and muscle atrophy,

posing a formidable challenge to human health. A more profound

understanding of the mechanisms linking metabolic and chronic dis-

eases can enhance the standard of human health and contribute to

achieving healthy ageing.1–4 The Metabaging Cycle concept intro-

duced by Ma and Shyh-Chang in 20225 unveiled the intricate inter-

play between metabolic dysregulation and inflammation in both

adipose and muscle tissue, ultimately leading to the occurrence of

obesity and muscle atrophy. Specifically, excesive lipids not only pro-

mote inflammation and ageing processes in adipose tissue, diminishing

the secretion of beneficial adipose factors, but also triggers muscle fat

infiltration and mitochondrial dysfunction. The interaction between

inflammatory factors and adipose or muscle tissue further exacerbates

systemic insulin resistance and chronic inflammation.

The Metabaging Cycle theory underscores the close connection

between metabolic health in muscle and adipose tissue and overall

well-being, which manifests especially clearly in pathological condi-

tions like obesity, insulin resistance and cachexia. This vicious cycle

serves as a driving force for various chronic metabolic syndrome dis-

eases and further promotes the pathogenesis of non-metabolic

chronic diseases of ageing such as neurodegenerative diseases, osteo-

porosis, arthritis and cancer (Figure 1).6–10 Hence, from the perspec-

tive of the Metabaging Cycle theory, disrupting this malignant cycle

stands as a key strategy in preventing and treating a large variety of

chronic diseases of ageing, holding significant importance in reducing

the incidence risk of chronic diseases and enhancing overall health.

In the field of neuroscience, chronic inflammatory states have been

confirmed as a critical pathogenic factor.11 This inflammatory state,

through sustained stimulation by inflammatory mediators such as cyto-

kines and free radicals, triggers neuronal damage and neurodegenera-

tive changes. Specifically, cytokines such as tumour necrosis factor-

alpha (TNF-α) and interleukin-1 beta (IL-1β) play essential roles in the

process of neuroinflammation, activating microglial cells and astrocytes

to produce more inflammatory mediators, creating a vicious cycle and

positive feedback loop that exacerbates neuronal damage.12–14 Fur-

thermore, free radicals such as reactive oxygen species (ROS) and reac-

tive nitrogen species (RNS) can directly damage neuronal membranes,

leading to lipid peroxidation and protein oxidation, disrupting the nor-

mal function and structure of neurons.15 This inflammation disrupts

neuronal function and structure and interferes with nerve cell metabo-

lism and signal transduction, accelerating the development of neurode-

generative diseases.16 For instance, chronic inflammation can result in

mitochondrial dysfunction, reducing energy supply, impacting the sur-

vival and function of nerve cells.17 Additionally, inflammatory mediators

can interfere with signalling pathways within nerve cells, such as the

NF-κB pathway, affecting gene expression and cellular function.18

Moreover, inflammation can lead to the breakdown of the blood–brain

barrier (BBB), making it easier for peripheral immune cells to enter the

brain, exacerbating neuroinflammation.19 Concurrently, systemic insulin

resistance and adipose tissue inflammation act on brain energy metabo-

lism, leading to insufficient energy supply, further affecting the function

of nerve cells. Insulin resistance, characterized by reduced sensitivity of

target tissues to insulin, results in elevated blood sugar and triggers var-

ious metabolic disruptions. In the field of neuroscience, insulin resis-

tance not only impacts brain energy metabolism but also influences

neuronal growth, differentiation and survival through the insulin-like

growth factor 1 (IGF-1) pathway.20,21

Systemic insulin resistance also severely affects bone and muscle

health. Insulin resistance-induced metabolic disturbances in bones

and muscles not only impair the health of the nervous system but also

contribute to the development of osteoporosis and muscle atrophy.

Osteoporosis is a disease in which bone integrity and strength are

impaired and results from decreased bone density and microstructural

deterioration, a pathophysiology that increases susceptibility to frac-

tures. Insulin resistance, in turn, disrupts the normal balance of bone

remodelling by impairing the differentiation and activity of both oste-

oblasts, which are responsible for bone formation and osteoclasts,

involved in bone resorption. This dysregulation culminates in a net

decrease in bone mass, thereby triggering osteoporosis.22,23 Addition-

ally, muscle atrophy refers to the reduction in muscle mass and

strength, mainly manifested as decreased muscle volume

and decreased muscle strength.24 Insulin resistance influences the

energy metabolism and protein synthesis of muscle cells, resulting in

decreased muscle mass and strength, thereby increasing the risk of

falls and fractures.25 Adverse effects on joint health are also observed

due to adipose tissue inflammation and muscle fat infiltration, exacer-

bating arthritis symptoms. Previous research has demonstrated that

Lin28a expression in the skeletal muscles can lead to enhanced insulin

sensitivity, reduced ectopic adiposity and maintenance of a subset of
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adult muscle stem cells in an embryonic-like state, which is important

for musculoskeletal regeneration and resistance to muscle

atrophy.26–29 Conversely, deficiency in muscle Lin28a and accumula-

tion of let-7 microRNAs can lead to insulin resistance and the prema-

ture ageing or dysfunction of musculoskeletal progenitor cells. These

research suggest that insulin resistance may also impact stem cell

function, further exacerbating musculoskeletal health.

Adipose tissue inflammation also triggers the secretion of

adipocyte-derived factors such as tumour necrosis factor-alpha (TNF-

α) and interleukin-6 (IL-6), which promote inflammatory responses,

stem cell dysfunction and musculoskeletal damage. In fact, excessive

inflammation-fatty acid oxidation-mtROS-p38 signalling is a major

contributing factor to the muscle progenitor death and severe muscle

atrophy observed in cachexia, a syndrome similar to ageing-associated

sarcopenia and its reversal can ameliorate musculoskeletal atro-

phy.30,31 Simultaneously, muscle fat infiltration also adversely affects

normal muscle function and bone density, thereby increasing joint

stress and the risk of arthritis.32,33 The presence of obesity and insulin

resistance further exacerbates these issues. Obesity increases the

joint stress, resulting in cartilage wear and chondrocyte inflammation

and consequently increases the risk of arthritis.

Concurrently, the intricate connection between obesity and cancer

is undeniable.34 The tissues in the bodies of obese individuals generate

inflammatory mediators, which heighten the risk of cancer develop-

ment in various organs,35–37 including colorectal, endometrial, ovarian,

breast, prostate, thyroid, oesophageal, liver, pancreatic, kidney cancer,

and so forth. During insulin resistance, tissues such as muscle, fat and

liver exhibit reduced sensitivity to insulin, prompting the pancreas to

secrete more insulin to lower blood sugar levels, resulting in hyperinsu-

linemia. This elevated insulin level fosters cell proliferation and inhibits

apoptosis, providing a conducive environment for cancer cell growth

and metastasis, leading to malignancy.38–40 The exacerbation of the

inflammatory response by hyperglycemia, another consequence of

peripheral insulin resistance during obesity, further creates a vicious

cycle that promotes tumour cell proliferation and metastasis. Moreover,

hyperinsulinemia also raises the levels of insulin-like growth factor-1

(IGF-1), which not only stimulates cell proliferation but also inhibits

apoptosis and senescence, further fueling the growth and spread of

cancer cells.41,42 Muscle fat infiltration may also lead to muscle atrophy,

compromising patients' protein stores and adaptive immune system,

subsequently impacting chemotherapy and radiotherapy options, treat-

ment outcomes and quality of life. In summary, factors such as obesity,

F IGURE 1 The Metabaging Cycle Promotes Non-Metabolic Chronic Diseases of Ageing: Exploring the link between metabolic disorders,
inflammation and chronic diseases like neurodegeneration, osteoporosis, arthritis and cancer. Chronic inflammation and the associated systemic
insulin resistance are two major underlying causes.
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insulin resistance and hyperglycemia intensify proliferative signalling,

oxidative stress and inflammatory responses within the body, causing

DNA damage, selecting for cancerous genetic mutations, promoting the

growth and spread of cancer cells, thus rendering them more malignant

and invasive.

In summary, metabolic disorders like obesity, insulin resistance and

muscle atrophy are significant risk factors for various chronic diseases.

These conditions interact through inflammatory factors and metabolic

disruptions, affecting the insulin sensitivity and muscle function,

thereby increasing the risk of neurodegenerative diseases, osteoporo-

sis, arthritis, cancer and other chronic illnesses. Nevertheless, it is

important to acknowledge the limitations of the current understanding

of the Metabaging Cycle and its implications for chronic disease devel-

opment and progression. Despite the growing recognition of the intri-

cate relationship between metabolic disorders and chronic diseases, the

exact mechanisms and pathways by which these elements influence

the onset and progression of diseases remain incompletely elucidated.

Future research should focus on addressing these gaps in knowledge.

Future research and medical practices should also focus on comprehen-

sive interventions, such as improving dietary habits, increasing physical

activity,43,44 managing weight and pharmacological therapies,45–47 to

prevent and treat these diseases. Through these efforts, we can effec-

tively mitigate the rising trend of global chronic diseases, enhance

human health and contribute to achieving ageing.
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