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Abstract

Population-genetic studies have been remarkably productive and successful in the last dec-
ade following the invention of PCR technology and the introduction of mitochondrial and
microsatellite DNA markers. While mitochondrial DNA has proven powerful for genea-
logical and evolutionary studies of animal populations, and microsatellite sequences are
the most revealing DNA markers available so far for inferring population structure and
dynamics, they both have important and unavoidable limitations. To obtain a fuller picture
of the history and evolutionary potential of populations, genealogical data from nuclear
loci are essential, and the inclusion of other nuclear markers, i.e. single copy nuclear poly-
morphic (scnp) sequences, is clearly needed. Four major uncertainties for nuclear DNA
analyses of populations have been facing us, i.e. the availability of scnp markers for carry-
ing out such analysis, technical laboratory hurdles for resolving haplotypes, difficulty in
data analysis because of recombination, low divergence levels and intraspecific multi-
furcation evolution, and the utility of scnp markers for addressing population-genetic ques-
tions. In this review, we discuss the availability of highly polymorphic single copy DNA
in the nuclear genome, describe patterns and rate of evolution of nuclear sequences, sum-
marize past empirical and theoretical efforts to recover and analyse data from scnp markers,
and examine the difficulties, challenges and opportunities faced in such studies. We show
that although challenges still exist, the above-mentioned obstacles are now being removed.
Recent advances in technology and increases in statistical power provide the prospect of
nuclear DNA analyses becoming routine practice, allowing allele-discriminating character-
ization of scnp loci and microsatellite loci. This certainly will increase our ability to address
more complex questions, and thereby the sophistication of genetic analyses of populations.
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Introduction

 

In the last decade of the 20th century, we have seen a
considerable impact of population-genetic studies on our
understanding of evolutionary processes, population and
species history, and even our own relationship to nature.
Indeed, never before have we been able to understand
so much about the evolution and natural history of our
own species, 

 

Homo sapiens

 

. Theoretical, analytical and

methodological advances have revolutionized population-
genetic research to such a degree that this discipline is no
longer largely a debating field of mathematics and theory,
but has become an explanatory science and is attracting
more popular attention. This is by any standard a great
achievement and will further promote the development of
the field. Conceptually, this remarkably productive and
successful period relied strongly on population-genetics
theory established from the 1930s. The recent develop-
ment of coalescent and phylogenetic theory has changed
fundamentally the way we analyse and interpret mole-
cular data. Methodologically, this blossoming is due largely
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to the invention of polymerase chain reaction (PCR) techno-
logy and the introduction of sensitive molecular markers,
most notably using mitochondrial and microsatellite
DNA. The effects of such technical advance are so pro-
found that they have ‘transformed the mainstream of
population-genetics research from prospective to retro-
spective, from demonstration of principles to inference of
events that happened in the past’ (Fu & Li 1999). Further
advances in the field will continue to be influenced greatly
by technical developments.

In the large body of recent work employing molecular
markers, the aforementioned two classes of DNA markers
are clearly predominant. Taking the new discipline ‘phyl-
ogeography’, for example, as pointed by Avise (1998),
some 70% of studies carried out thus far involved analyses
of animal mitochondrial DNA. Similarly, although it is dif-
ficult to provide an exact figure, the majority of ongoing
research projects using nuclear DNA markers involve
microsatellite DNA. For instance, among the 1758 primary
papers and primer notes published in the last 9 years in the
journal 

 

Molecular Ecology

 

 we analysed, 29.8% and 42.5%
are indexed with mitochondrial and microsatellite DNA
markers, respectively. While mitochondrial DNA has proved
to be powerful for genealogical and evolutionary studies
of animal populations, and while microsatellite sequences
are the most revealing DNA markers available so far for
inferring population-genetic structure and dynamics, these
markers have some important and unavoidable limita-
tions. These limitations, on one hand, restrict further
research development, and on the other hand strongly
signal the need for other markers—markers that comple-
ment the aforesaid ones and have potential to advance
further genetic analyses of populations. Justifiably, single
copy nuclear polymorphic (scnp) DNA is becoming the
marker of choice.

In this review, we intend to show that, although chal-
lenges still exist, recent progress in genomic studies and
molecular biology technologies, and increase of statistical
power provide a basis for nuclear DNA analyses to be
widely applicable. They will allow allele-discriminating
characterization of scnp loci and microsatellite loci, thus
making genealogical data largely accessible. This will
increase significantly our ability to address more difficult
population-genetic questions, and lead the genetic analysis
of populations into a new and flourishing era. Given limits
on space, the complexity of the subject and the wide spec-
trum of audience, we will not discuss all aspects in detail;
rather we attempt to make a balanced treatment on the
present status and future trends of this field.

 

Current DNA markers and their limitations

 

There are a number of recent reviews dealing extensively
with various molecular markers employed in genetic

studies of populations, for example the volumes by Avise
(1994, 2000), Karp 

 

et al

 

. (1998), Goldstein & Schlötterer
1999), and journal reviews such as Estoup 

 

et al

 

. (2002).
Interested readers are directed to these sources. Here,
we would like to provide a short overview of two classes
of most popular DNA markers: mitochondrial DNA
(mtDNA, see Box 1) which represents organellar DNA
markers based on sequence analysis, and microsatellite
DNA, which represents nuclear DNA markers based on
fragment analysis. The advantages of these markers are
already well known; it is thus more important to outline
the problems associated with them.

 

Mitochondrial DNA markers

 

Depending on which organism(s) one is working on,
mitochondrial DNA can be the cause of fortune, regret or
headache. Its applicability is limited largely to metazoan
animals. It is good fortune that many metazoan animals
have mtDNA that possesses a set of characteristics which
makes it an almost ideal molecular marker for
evolutionary and population-genetic studies (Avise 

 

et al

 

.
1987; Moritz 

 

et al

 

. 1987; Harrison 1989; Avise 1991; Simon
1991). The contribution it has made to our understanding
of evolution and natural history is enormous (see Avise
1994 for a fuller discussion).

In plants, except for a few peculiar groups (Palmer 

 

et al

 

.
2000), the rate of evolution of mtDNA is the slowest among
their three genomes (Wolfe 

 

et al

 

. 1987). However, it mani-
fests a very elevated recombination rate (Palmer & Herbon
1988). Consequently, mtDNA is practically of little use for
population-genetic studies, which is regrettable for plant
population biologists. The unavailability of suitable DNA
markers in plants is the single most limiting factor in mak-
ing molecular population-genetic studies in plants lag far
behind those in animals (Schaal 

 

et al

 

. 1998).
Nevertheless, its application in animals is not without

problems. The recent demonstration of the presence of
mitochondrial pseudogenes in the nuclear genome of a
wide range of organisms is, for population studies, an
unwanted reality (for reviews, see Zhang & Hewitt 1996a;
Bensasson 

 

et al

 

. 2001). Although there exist methods and
techniques to reduce the interference of mtDNA pseudo-
genes in sample preparation and data analysis (see the
aforementioned reviews and references therein), they have
only limited resolving power. The effectiveness of using
mtDNA in population-genetic studies has been greatly
weakened by this. It has been shown that mitochondrial-
like sequences can exist in high copy number with little dif-
ference among members in many organisms, sometimes
group-wide as in the acridid grasshoppers and locusts,
making mtDNA of little practical value for population-
genetic studies in these groups (Zhang & Hewitt 1996b;
Bensasson 

 

et al

 

. 2000). The employment of mtDNA marker
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in such organisms without first being aware of this phe-
nomenon can be a real headache. Ironically, the great value
of mitochondrial DNA is nowhere better appreciated than
in these situations where it can not be employed, as in cases
where numerous nuclear pseudogenes exist very similar to
the authentic mitochondrial sequences.

Apart from this taxonomic patchiness of applicability,
mitochondrial DNA data on their own have some import-
ant limitations. First, mtDNA represents only a single
locus. No matter how much effort we have spent on
mtDNA as a marker and how much information we have
collected from this source, we have looked only through
a single window (among countless others) of evolution.
This window reflects at best only the matrilineal history
(mtDNA in animals is maternally inherited, with some
exceptions, see Kondo 

 

et al

 

. 1990; Gyllensten 

 

et al

 

. 1991;
Skibinski 

 

et al

 

. 1994), which could well differ from that
overall of populations or species. Therefore, the inference
we make on species/population history is likely to be
highly biased. Second, the effective population size of
mtDNA is only a fourth of that of nuclear autosomal

sequences, therefore mtDNA lineages have a much faster
lineage sorting rate and higher allele extinction rate. The
consequences of this are as follows: (i) evolutionary rela-
tionships could be oversimplified by mtDNA data; (ii)
genetic diversity can be underestimated by mtDNA
markers; (iii) uncertainty in genealogical analysis may
increase due to the increased probability of more missing
links in mitochondrial haplotypes; and (iv) remote popu-
lation processes may not be detected correctly with mtDNA
markers.

 

Microsatellite DNA markers

 

The popularity of microsatellite DNA markers among
molecular population biologists is not surprising, con-
sidering the special features of these markers and the
apparent reliability of data produced from them. For use in
intraspecific analyses, microsatellite markers have over-
taken mitochondrial and other DNA markers currently
employed (see above). These simple repetitive sequences
are present widely throughout eukaryote organisms

 

Information Box 1. Terms, abbreviations and acronyms

 

Synonymous site: sites at which nucleotide sub-
stitutions do not cause amino acid changes. Many third
codon positions are synonymous sites. Also referred
to as silent sites.

Nonsynonymous site: sites at which nucleotide sub-
stitutions will lead to amino acid changes or create
a stop codon. Also referred to as replacement sites.

Silent site: see synonymous site.
Replacement site: see nonsynonymous site.
Indel: abbreviation of insertion/deletion mutation.
ScnDNA: single copy nuclear DNA.
CpDNA: chloroplast DNA.
MtDNA: mitochondrial DNA.
Numt: nuclear mitochondrial-like sequences (nuclear

copies of mtDNA, or nuclear mitochondrial
pseudogenes).

Scnp: 

 

s

 

ingle 

 

c

 

opy 

 

n

 

uclear 

 

p

 

olymorphic (DNA,
sequences, loci, markers).

SNP: single nucleotide polymorphism. The common
name given to biallelic genetic variation. A piece
of DNA may carry several SNPs. It is not a new
type of polymorphic marker. Rather, it is a modern
term given to a class of well-known DNA poly-
morphisms. Brookes (1999) define SNPs as ‘single
base pair positions in genomic DNA at which
different sequence alternatives (alleles) exist in
normal individuals in some population(s), wherein

the least frequent allele has an abundance of 1%
or greater’. SNPs in coding region are sometimes
refered as cSNPs, those in noncoding regions as
ncSNPs.

(

 

π

 

) the observed average number of nucleotide dif-
ferences per site between two alleles in populations.
Often referred to as nucleotide diversity.

(

 

θ

 

) the average number of segregating sites per
nucleotide site based on the expected distribution of
neutral variants in a panmictic population at equi-
librium. Also referred to as the heterozygosity. This
can be called the population mutation rate, because
it is a measure of the nucleotide substitution per site
per population.

Allele: refers to any variant of DNA sequence observed
at a given locus (gene).

Haplotype: refers to the genotype of a set of linked loci
on a single stretch of DNA.

D(T)GGE: denaturing (temperature) gradient gel
electrophoresis.

SSCP: single strand conformation polymorphism.
RFLP: restriction fragment length polymorphism.
AFLP: amplified fragment length polymorphism.
RAPD: randomly amplified polymorphic DNA.
DHPLC: denaturing high performance liquid

chromatography, also referred to as temperature-
modulated heteroduplex Chromatography (TMHC),
or recently ‘DNA chromatography’.

SCAR: sequence characterized amplified region(s).
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Table 1

 

Rate of evolution of various DNA markers

DNA markers Organism
Average rate* 
(%/Myr) Reference

Microsatellite DNA
Dinucleotide (autosomal) Human 5.6 

 

× 

 

10

 

−

 

4

 

Weber & Wang (1993)
Tetranucleotide (autosomal) Human 2 

 

× 

 

10

 

−

 

4

 

Weber & Wang (1993)
Human 1 

 

× 

 

10

 

−

 

3

 

Xu 

 

et al

 

. (2000)
Human 2.1 

 

× 

 

10

 

−

 

3

 

Brinkmann 

 

et al

 

. (1998)
Combined (Y chromosome) Human 2.8 

 

× 

 

10

 

−

 

3

 

Kayser 

 

et al

 

. 2000
Dinucleotide (Y chromosome) Human 2.04 

 

× 

 

10

 

−

 

3

 

Kayser 

 

et al

 

. 2000
Tetranucleotide (Y chromosome) Human 3.17 

 

× 

 

10

 

−

 

3

 

Kayser 

 

et al

 

. 2000
Dinucleotide Green turtle 2 

 

× 

 

10

 

−

 

3

 

FitzSimmons (1998)
Lizard 1.84 

 

× 

 

10

 

−

 

3

 

Gardner 

 

et al

 

. (2000)
Zebrafish 1.5 

 

× 

 

10

 

−

 

4

 

Shimoda 

 

et al

 

. (1999)
Combined Alligator 1.73 

 

× 

 

10

 

−

 

3

 

Davis 

 

et al

 

. 2001
Combined

 

Drosophila

 

6.3 

 

× 

 

10

 

−

 

6

 

Schug 

 

et al

 

. (1997)
Dinucleotide

 

Drosophila

 

9.3 

 

× 

 

10

 

−

 

6

 

Schug 

 

et al

 

. (1998)

 

Drosophila

 

6.3 

 

× 

 

10

 

−

 

6

 

Schlötterer 

 

et al

 

. (1998)
Trinucleotide (inferred)

 

Drosophila

 

1.5 

 

× 

 

10

 

−

 

6

 

Schug 

 

et al

 

. (1998)
Tetranucleotide (inferred)

 

Drosophila

 

1.1 

 

× 

 

10

 

−

 

6

 

Schug 

 

et al

 

. (1998)
Dinucleotide Ant 7.2 

 

× 

 

10

 

−

 

4

 

Crozier 

 

et al

 

. (1999)
Trinucleotide (TAA)

 

n

 

Chickpea 1.0 

 

× 

 

10

 

−

 

2

 

Udupa & Baum 2001
(var. Ghab 2)
Chickpea 3.9 

 

× 

 

10

 

−

 

3

 

Udupa & Baum 2001
(var. Syrian Local)

Other Nuclear DNA
Nonsynonymous sites Mammals 0.15 Li 1997

 

Drosophila

 

0.38 Li 1997
Plant (monocot) 0.014 Li 1997

Synonymous (silent) sites Mammals 0.7 Li 1997

 

Drosophila

 

3.12 Li 1997

 

Drosophila

 

3.0 Rowan & Hunt (1991)
Plant (monocot) 0.114 Li 1997

Intron Mammals 0.7 Li 1997, Li & Graur (1991)
3

 

′

 

 nontranscribed region

 

Drosophila

 

2.0 Rowan & Hunt (1991)

Chloroplast DNA
Nonsynonymous sites Plant (Angiosperm) 0.004–0.01 Li 1997
Synonymous (silent) sites Plant (Angiosperm) 0.024–0.116 Li 1997

Mitochondrial DNA
Nonsynonymous sites Plant (Angiosperm) 0.004–0.008 Li 1997
Synonymous (silent) sites Plant (Angiosperm) 0.01–0.042 Li 1997

Human 7.8 Horai 

 

et al

 

. (1995)
Protein-coding regions Mammals 2.0 Brown 

 

et al

 

. (1979)
Pesole 

 

et al

 

. (1999)

 

Drosophila

 

2.0 DeSalle 

 

et al

 

. 1987
COI

 

Alpheus

 

 (shrimps) 1.4 Knowlton & Weigt (1998)
D-loop Human 14 Horai 

 

et al

 

. (1995)
Human 17.5 Tamura & Nei (1993)
Human 23.6 Stoneking 

 

et al

 

. (1992)
Human 260 Howell 

 

et al

 

. (1996)
Human 270 Parsons & Holland (1998)

*Mutation rate of microsatellite DNA is in unit of mutation per locus per meiosis; estimated here as the average values over several loci. 
Individual loci may have a much higher mutation rate, for example, 4.2 

 

×

 

 10

 

−

 

2

 

 at the lizard tetranucleotide locus EST2 compared to the 
average 1.84 

 

×

 

 10

 

−

 

3

 

 (Gardner 

 

et al

 

. 2000).
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investigated, having high levels of polymorphism
(high mutation rates, Table 1), obeying Mendelian inheri-
tance and following apparently simple modes of evolution.
Their introduction to population-genetic studies has greatly
advanced our ability to detect population-genetic struc-
ture, to test parentage and relatedness, to assess genetic
diversity, and to study recent population history. Without
doubt, these markers will continue to dominate related
research fields in the foreseeable future.

However, on the whole, although our knowledge of
these simple repetitive sequences is better than some
10 years ago when their potential for population-genetic
studies was first discussed (Bruford & Wayne 1993), it is in
fact still far from complete, in spite of the large number of
publications indexed with ‘microsatellite(s)’. This is largely
because study on the molecular evolution of these
sequences lags far behind their application. Their modes
and patterns of molecular evolution and their muta-
tion mechanisms need to be addressed by extensive and
systematic sequence analysis of microsatellite alleles.
Without some firm knowledge of these the use of micro-
satellite markers will not reach its full potential, and hence
their role in the history of population-genetic studies
will become secondary. The following issues deserve our
attention when employing microsatellite sequences in
population-genetic studies:

 

1

 

Evolutionary relationships among microsatellite alleles
are complicated. Allele size difference may not be directly
related to divergence. The assumption of all variation
being due to the changes of the copy number of the repeat
unit requires careful examination. Homoplasy has been
frequently observed, and it is known that allele difference
can be produced by both repeat number variation and base
variation, with the latter occurring within the repeat
regions as well as in the flanking nonrepeated regions
(reviewed in Jarne & Lagoda 1996; Culver 

 

et al

 

. 2001).
Although some form of homoplasies (size homoplasy)
may not represent a significant problem for estimating cer-
tain population parameters in genetic analysis (for review,
see Estoup 

 

et al

 

. 2002), it should not be so assumed a priori,
particularly when no complementary data from other
types of molecular markers are available for the study sys-
tems (Queney 

 

et al

 

. 2001).

 

2

 

Mutation rate varies considerably among organisms and
even between varieties (Table 1). Also, substantial inter-
locus and within-locus variation of mutation rates has been
observed (e.g. Brinkmann 

 

et al

 

. 1998; Crozier 

 

et al

 

. 1999;
Ellegren 2000a; Gardner 

 

et al

 

. 2000; Xu 

 

et al

 

. 2000). Because
constraints appear to exist on allele sizes (e.g. Garza 

 

et al

 

.
1995), mutation rate of microsatellite at a given locus is not
even among alleles and not constant over time. Both muta-
tion rate and the direction of mutation are found to be
affected by allele length (Ellegren 2000a; Xu 

 

et al

 

. 2000).

However, there appears to exist considerable heterogene-
ity among microsatellite loci, mutation and evolution of
these simple sequence repeats are possibly a dynamic
and variable process (Brohede 

 

et al

 

. 2002).

 

3

 

The neutrality of some microsatellite sequences is
increasingly questionable. Kashi 

 

et al

 

. (1997) speculated
that these simple sequence repeats could be an abundant
source of mutations contributing to quantitative trait
variation. The conservation of some microsatellite loci
across large evolutionary distance (i.e. their antiquity),
shown in a number of studies (e.g. FitzSimmons 

 

et al

 

.
1995; Rico 

 

et al

 

. 1996; Ezenwa 

 

et al

 

. 1998; Martin 

 

et al

 

.
2002), on its own provides strong evidence against selec-
tive neutrality of these loci (conservation for up to a bil-
lion years has been documented, see Martin 

 

et al

 

. 2002).
While these are intriguing observations, employment
of such conserved microsatellite loci as neutral markers
in population-genetic studies should be very cautious
before the reason for such conservation is understood.
Evidence is accumulating rapidly that these simple
repetitive sequences are far more complex than thought
previously (for review see Ellegren 2000b), and they
can be of functional importance. For example, it has
been demonstrated recently that a sequence element Z1
containing (CA/TG)

 

n

 

, the most abundant dinucle-
otide repeats in mammals, forms Z-DNA and inhibits
promoter activity in the rat nucleolin (

 

Ncl

 

) gene
(Rothenburg 

 

et al

 

. 2001). Z1 has been found to be poly-
morphic with regard to dinucleotide repeat number.
The five allelic variants identified show differences in
their inhibitory ability and thus are capable of modu-
lating promoter activity differently. It is also interesting
to note that the Z1 element exhibits a high degree of con-
servation between rodent species (Bourbon 

 

et al

 

. 1988;
Rothenburg 

 

et al

 

. 2001).

A notable shortcoming of the present microsatellite data
is that ancestral information they contain is often ambigu-
ous (multiple state allele), therefore genealogical patterns
of relationships cannot be deduced with certainty. Data
produced by other size-based methods, such as RFLP
(restriction fragment length polymorphism), RAPD (ran-
domly amplified polymorphic DNA), AFLP (amplified
fragment length polymorphism), SSCP (single strand con-
formation polymorphism) and D/TGGE (denaturing/
temperature gradient gel electrophoresis), have similar
weakness. That is, like allozyme allele data, they are un-
ordered, hence genealogies cannot be inferred easily.

An important task of genetic analyses of populations is
to infer their evolutionary history and to deduce the con-
sequence or impact of related demographic, ecological and
climatic changes. To fulfil this, DNA sequence data are
required. Sequence data available so far are almost exclu-
sively mitochondrial, genealogical data from nuclear loci
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are lacking. As we can see in the next section, single copy
nuclear polymorphic sequences (hereafter referred as scnp
sequences) exist commonly in the nuclear genome, ample
fuel for a boom in population-genetic studies.

Scnp markers: availability, patterns and rate of 
evolution

Availability

Data from genome projects and pioneer studies in model
organisms provide excellent examples, demonstrating
the availability of scnp markers in the nuclear genome.
The nucleotide diversity of the human nuclear genome
is around 0.1% (Li & Sadler 1991; International SNP
Map Working Group 2001). This means that there are
approximately three million nucleotide differences be-
tween any two individuals. For population studies,
where usually a large number of sequences are sampled,
the expected percentage of polymorphic sites is 0.2–0.5%
(Fu & Li 1999). Considering the relatively young history of
modern human populations (less than 200 000 years from
the most recent common ancestor, or less than 10 000
generations), the above value is encouraging. It raises
confidence in the common availability of scnp loci in the
nuclear genome of any eukaryotic organism. Indeed, other
genome projects and population-genetic studies carried
out in other model organisms, such as rice, Drosophila and
Arabidopsis, confirm this finding. Data from the rice
genome sequencing project revealed that the overall
polymorphism level in rice is 0.67% (Yu et al. 2002). From a
pooled analysis of available Drosophila nuclear DNA data,

Moriyama & Powell (1996) concluded that for genes
located in normal genomic regions the ‘amount of
variation is sufficiently large that virtually every diploid
individual is heterozygous at every locus’. The nucleotide
diversity in Drosophila is about one order of magnitude
higher than that in human. Even for the highly selfing
weed Arabidopsis thaliana, a mean nucleotide diversity of
0.74% (π varies between 0.0021 and 0.0104) at several
nuclear loci is observed (e.g. Innan et al. 1996; Kawabe et al.
1997; Purugganan & Suddith 1998, 1999; see Table 2),
although genome-wide the frequency of SNPs is one in
every 3.3 kb (International SNP Map Working Group
2001). Data on chromosome 1 of maize indicated that on
average the frequency of SNP is one in every 104 base pairs
(bp) between two randomly sampled sequences (Tenaillon
et al. 2001). Our work on the desert locust Schistocerca
gregaria, a highly migratory insect, employing a 3′ non-
coding scnp marker, revealed that about 7% of nucleotide
sites are segregating (Zhang & Hewitt 1996c; unpublished
data). Table 2 summarizes polymorphic levels of nuclear
DNA observed in various organisms.

Patterns of nuclear DNA variation

The data available so far show clearly that the distribution
of polymorphic sites is not random along the nuclear
genome nor within a gene. This unevenness is associated
with differences in recombination rate, gene density in the
genomic region, transmission pattern, selection strength
and compositional pressure. Genomic regions with low
recombination rates generally have reduced levels of
polymorphisms (Begun & Aquadro 1992; Nachman et al.

Table 2 Polymorphic levels of nuclear DNA markers observed in various organisms

Organism Nuclear locus
Nucleotide 
diversity (%)* References

Human 49 loci 0.1 Li & Sadler (1991)
Genome-wide 0.075 International SNP Map Working Group (2001)

Dolphins 4 loci (introns) 0.05–0.22 Hare et al. 2002
Birds 22 loci 0.23–0.25 Primmer et al. 2002
Fruit flies 24 loci 0.403 (c), 1.05 (nc) Moriyama & Powell (1996)

D. melanogaster
D. simulans 12 loci 0.799 (c), 1.877 (nc) Moriyama & Powell (1996)
C. capitata 4 loci 0.727–1.477 Villablanca et al. (1998)

Arabidopsis thaliana Various loci 0.21–1.09 Innan et al. (1996)
Kawabe et al. (1997)
Purugganan & Suddith (1998), (1999)
Miyashita 2001
Le Corre et al. 2002

Rice Genome-wide 0.67 Yu et al. (2002)
Pine Pal1 0.17 Dvornyk et al. 2002

*Nucleotide diversity (%) refers to π (or θ) × 100; ‘c’ denotes ‘coding region’ and ‘nc’ ‘noncoding region’. Values shown in the table are values 
averaged over loci, except where a range is given.
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1998; Nachman 2001; Lercher & Hurst 2002). Payseur &
Nachman (2002) showed that nucleotide diversity and
gene density in the surrounding genomic regions are
negatively correlated in humans. Regions subject to strong
balancing selection, such as genes involved in the immune
defence system (e.g. the MHC loci, also known as HLA loci
in man) or loci involved in disease resistance show the
greatest diversity (Noël et al. 1999; Arabidopsis Genome
Initiative 2000; International SNP Map Working Group
2001). Sex chromosomes appear to vary the least in man
and Drosophila, due to possibly a combination of low
recombination rate, reduced mutation rate and reduced
effective population size (Moriyama & Powell 1996;
International SNP Map Working Group 2001; Venter et al.
2001). Therefore, it is difficult to draw a general conclusion
on the potential variability of different genomic or genic
regions (intergenic, coding, noncoding introns and non-
coding flanking regions, see Box 2) without consider-
ing the function and genomic location of the sequences in
question.

While limited largely to the few model organisms,
including man, Drosophila and Arabidopsis, scnp data from
population-genetics studies shows that the substitution
rate at synonymous sites is often higher than that of
introns, and the rate of introns is higher than that of the
immediate nontranslated flanking regions (Boxes 1 and 2).
This characterization of rate differences sometimes leads to
incorrect interpretation of such observations in the liter-
ature. An important issue concerning intraspecific variabil-
ity of introns deserves clarification. Higher substitution

rate, or higher nucleotide diversity at synonymous sites
than in introns is often erroneously taken as evidence for
less variability in introns than in nuclear coding regions
(see review Caterino et al. 2000: 17). We explain here why
this is not so.

For biologists studying molecular evolution of DNA
sequences, the term ‘per site substitution rate’ (or nucle-
otide diversity in an intraspecific context) is employed as a
measure of the rate of evolution. To facilitate comparison
among different genic regions, genes and taxa, silent site
substitution rate is used because these sites are apparently
neutral or nearly neutral. However, for population bio-
logists who are interested in comparing genetic variations
among individuals and populations and who are looking
for pieces of DNA capable of providing as much variation
as possible with the minimum expense, silent site substitu-
tion rate is a quite obscure measure, because it cannot
reflect the overall genetic variability of the region involved.
The reason for this is as follows. For any normal protein
coding region, the number of silent sites in the total
sequence is always much smaller than the number of non-
silent sites. A reasonable ratio of silent sites to nonsilent
sites can be expressed as 1:2.5 (in a random protein coding
sequence, assuming that there is equal use of all codons
and that at twofold degenerate sites, 50% of the changes are
silent, the ratio is 1:2.66, see Ochman & Wilson 1987). Thus,
in coding regions only about 28% of sites are the effective
‘silent sites’. Therefore, given the same length of the coding
region as intron, unless the substitution rate at silent sites
are more than 3.5-fold higher than that of intron, the coding

Information Box 2. Classification of genic regions

A gene, from 5′ to 3′ ends, can be divided into different
parts according to their function or location.

Exon: refers to the part(s) that can be transcribed into
RNA. It may encode peptide, transfer RNA (tRNA) or
ribosomal RNA (rRNA).

Intron: refers to the part(s) between exons. During RNA
maturation, introns are removed from the precursor
RNAs. Introns are mainly present in eukaryotic
genes, and occasionally are found in prokaryotic
(viral or organellar) tRNA and rRNA genes.

Non-coding region: refers to the total noncoding parts,
i.e. the 5′ and 3′ noncoding sequences plus introns. It
does not code for mRNA, rRNA, tRNA, etc. Parts of
the first and the last exons are usually noncoding.

Transcribed region: refers to the parts that are
transcribed to RNA sequences. Introns, parts of the 5′
and 3′ noncoding regions, as well as exons, constitute
the transcribed region.

Nontranscribed region: also known as untranscribed
region. Refers to the 5′ and 3′ noncoding sequences
flanking the transcribed region. 5′ nontranscribed
region sometimes are further divided into distal,
central and proximal parts.

Translated region: refers to the part(s) that will be
translated to peptide(s), i.e. beginning with the
initiation codon ATG and ending at the stop codon.
Exons are translated regions, except for parts of the
first and the last exons in the gene.

Nontranslated region: usually refers to the 5′ and 3′
parts that are transcribed but not translated. It
consists of 5′ untranslated region which is the
transcribed part before the initiation codon ATG, and
3′ untranslated region which is the transcribed
sequence after the stop codon.

Intergenic region: refers to genomic sequences between
two neighbouring genes. This is usually defined as
regions located more than 5 kb away from any
(predicted) transcription unit.
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region is unlikely to harbour more polymorphic sites than
the intron (of course subject to statistical error). Such a high
rate at silent sites has hardly ever been observed. This
means that, although silent site substitution rates of coding
regions are often higher than that of introns, their overall
variability is often lower than that of introns.

To simplify the issue, we propose to use the mean per-
centage of polymorphic sites observed in a DNA region as
a rough measure of the potential variability, i.e. the ‘poly-
morphicity’ (denoted as Pm) of a DNA region. Clearly Pm
is sensitive to sample size and the populations sampled,
and is a measure of the frequency of segregating sites in
populations. The relationship between Pm and the esti-
mated population mutation rate (or heterozygosity, θ, see
Box 1) can be expressed as

Pm  =  (θ/100) · ah−1

where ah−1 is a modifier whose value depends on the
number of haplotypes (alleles) observed (h), i.e.

(Watterson 1975). Figure 1 shows the correlation of Pm
and θ under various number of haplotypes sampled
from populations. It can be seen that Pm is a fair indicator
of the variability of a DNA region. Using this measure,
the patterns of sequence variation of nuclear genes
from various organisms are illustrated in  Figs 2–4. Figure
2 shows the polymorphicity of exon and noncoding
sequences from 15 D. melanogaster genes, of which six
are X chromosome-linked genes and nine autosomal
genes (data modified from Moriyama & Powell 1996).
Two features emerge from this comparison: first, there
is evident heterogeneity among genes for variability for
both coding and noncoding regions, and these two are

correlated, as noticed by Moriyama & Powell; second, in
the majority of cases (14 of 15), polymorphicity (Pm) of
noncoding regions is higher than that of exons. Because for
most loci analysed here variability of the noncoding
regions overall is largely contributed by introns, it suggests
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Fig. 1 Effect of the number of haplotypes sampled from
populations on the correlation of Pm (the ‘polymorphicity’) and θ
(the estimated population mutation rate, or the heterozygosity).
See text for the definition of Pm. Fig. 2 Polymorphicity (Pm) of exon and noncoding regions of 15

D. melanogaster genes, of which six are X chromosome-linked
genes and nine autosomal genes (data modified from Moriyama &
Powell 1996). Pm of noncoding regions (light columns), which is
largely contributed by introns, is clearly higher than that of exons
(dark columns).

Fig. 3 Polymorphicity (Pm) and the population mutation rate (θ)
of various genic regions of the Est-6 gene of Drosophila simulans
(data modified from Karotam et al. 1995). Columns in the front
row are θ-values; columns at the back are Pm. It can be seen that
Pm and θ are highly correlated. As shown in the figure, from left
to right, a gene can be divided into 5′ far distal region, 5′
untranscribed region (which can further be fragmented to distal,
central and proximal regions), and transcribed region (which
comprises exons, introns, 5′ untranslated and 3′ untranslated
regions) (see Box 2). ‘Overall’ refers to a gene as a whole, ‘exon
silent’ and ‘exon replacement’ refer to the total of silent sites and
replacement sites in all exons, respectively.
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that introns have a higher polymorphicity than exons. This
is true for other Drosophila loci as well, such as the runt
locus (Labate et al. 1999), Est-5 locus (King 1998), Est-6 and
Sod loci (Karotam et al. 1995; Hudson et al. 1997; Balakirev
et al. 1999), Adh locus (Kreitman & Hudson 1991), Tpi locus
(Hasson et al. 1998), and also the AdhA locus in cottons
(interspecific comparisons, Small & Wendel 2000), ChiB,
AP3 and PI loci in Arabidospsis thaliana (Kawabe &
Miyashita 1999; Purugganan & Suddith 1999), glb1 locus
of maize (Hilton & Gaut 1998) (see Fig. 4). Large-scale
analyses of the distribution frequency of SNPs in the
Arabidopsis, human and rice genomes strongly support
this conclusion: SNPs are found much more frequently
in introns than coding regions, or intergenic regions
(Arabidopsis Genome Initiative 2000; Venter et al. 2001;
J. Wang, personal communication).

Figure 3 contrasts the polymorphicity and the popu-
lation mutation rate (θ) of various genic regions using
the Est-6 gene of Drosophila simulans as an example (data
modified from Karotam et al. 1995). It can be seen that for
this locus the intron is the most variable part, followed
by the 5′ distal untranscribed region, then the 5′ far distal
untranscribed region and 3′ untranslated region, then the
exons, and with the 5′ proximal untranscribed and 5′ untrans-
lated noncoding regions being the least variable parts. Again,
it is shown here that Pm and θ are highly correlated. The
relative variability of various noncoding regions mani-
fested in the Est6 locus is, however, not universal; it varies
considerably from gene to gene, as shown in Fig. 4.

The above data, taken together, suggest that introns and
5′ and 3′ flanking noncoding regions are also under vary-
ing degrees of functional constraint. Introns do not appear
to be just nonfunctional junk sequences (Duret 2001). For
example, it is well known that introns contain signal
sequences important for splicing and even for regulation of
transcription (for reviews, see Mattick & Gagen 2001;
Zieler & Huynh 2002). Promoters and other regulatory ele-
ments are present at the 5′ flanking region of a gene, and
sequences at the 3′ noncoding region are necessary for
post-transcriptional processing, transcription and trans-
lation regulation, and/or stability of mRNA (Ross 1996;
Wickens et al. 2002). Nevertheless, compared to the coding
regions, in general introns and distal flanking regions
could serve as reasonable markers for population-genetic
analyses. Introns in particular, because of their general
higher polymorphicity and the ease of primer design in
the flanking coding sequences (normally well conserved
among closely related taxa), will be probably the most used
nuclear markers in the coming years.

Rate of evolution of nuclear DNA

The slow rate of evolution of nuclear DNA has often been
considered a factor limiting its use in intraspecific studies.
It is known widely that in many vertebrates the rate of
evolution of single copy nuclear sequences is much lower
than that of mitochondrial DNA (Brown et al. 1979, 1982).
However, this is not a general rule. It has long been

Fig. 4 Among gene variation of the relative variability (Pm) of different nuclear noncoding regions. Compared here are the 5′ noncoding
region, introns, 3′ noncoding region and coding regions (data based on Kreitman & Hudson 1991; Karotam et al. 1995; Hilton & Gaut 1998;
King 1998; Kawabe & Miyashita 1999).
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recognized in plants that nuclear DNA is the fastest
evolving among the three genomes they harbour (Wolfe
et al. 1987). In animals other than mammals, the rate of
evolution of nuclear DNA is not in general lower than
mtDNA. For example, the substitution rates of mtDNA
and scnDNA in fruitfly do not appear to differ significantly
(see Table 1; Caccone et al. 1988), possibly due to an
increased substitution rate in the nuclear genome, which is
eight times or more higher than that of primates (Sharp &
Li 1989; Moriyama & Gojobori 1992). Table 1 lists the rate
of evolution of various DNA markers currently employed
in evolutionary studies.

It should be emphasized that substitution rate esti-
mated from interspecific comparisons may not reflect the
intraspecific variability of a given DNA region, and often it
is an underestimate of that variability. The reason for this
is simple, in the context of the neutral or nearly neutral
theory of molecular evolution (Kimura 1983; Ohta 1992). Most
interspecific differences represent fixed differences among
the taxa compared. They are the final products of selection
and drift on mutations, hence they represent only a small
fraction of the mutations that ever occurred. In contrast,
intraspecific polymorphisms represent an earlier transi-
tional stage in the evolution of species. Many or most of the
intraspecific differences observed are still on their way
to fixation or extinction. That is, there has been less time
for selection and drift to shape genetic differences in
populations. Therefore, intraspecific polymorphisms
represent a closer view of the raw mutations occurring in
the populations. This leads us to think that intraspecific
polymorphisms may be much more pronounced than
usually thought.

Challenges faced in the applications of nuclear 
DNA markers

Nuclear DNA polymorphisms that exist widely in
eukaryotic organisms provide virtually unlimited oppor-
tunities for studying the mechanisms of evolution. How-
ever, when working with nuclear DNA markers, we face
challenges at almost every stage of a study. These include
recombination, selection (non-neutrality), heterozygosity,
insertion/deletion polymorphism, low divergence and poly-
tomy, gene-specific variation in rate and history, PCR and
sequencing difficulty, and so forth. Some of these do not
occur with mitochondrial DNA markers and are therefore
specific to nuclear markers.

1. Recombination

Recombination occurs frequently in nuclear genomes.
Recombination rate varies considerably from locus to
locus, influenced by various factors such as the chromo-
somal location of the locus involved or the structural

features of the sequence. The information on evolutionary
histories carried by DNA sequence haplotype data will
be distorted by recombination, and if ignored will produce
false inferred history. Where recombination had occurred,
the evolutionary history of the sequences splits into a
group of trees instead of being represented by a single
tree (Posada 2001; Wiuf et al. 2001). Compared to the rate
of spontaneous mutations (substitutions, small inser-
tions and deletions), recombination rate is significant (e.g.
≈ 4 × 10−7 for maize, Wang et al. 1999). It is not unusual to
find regions where recombination rate is higher than
mutation rate (Morgan & Strobeck 1979; Hilton & Gaut
1998; Wang et al. 1999). There are two kinds of strategies to
deal with recombination. One is to employ nuclear regions
with very low recombination rate, such as the fourth
chromosome of D. melanogaster and the NRY region of
human Y chromosome, or regions near centromeres and
telomeres. However, it has been shown in Drosophila,
mammals including man, and plants that there is a positive
correlation between recombination rate and the level of
polymorphism (Moriyama & Powell 1996; Dvorák et al.
1998; Stephan & Langley 1998; International Human
Genome Sequencing Consortium 2001; reviewed in
Payseur & Nachman 2002; but see also Payseur &
Nachman 2000). This is probably a general phenomenon in
eukaryotic organisms. Therefore, genomic regions with
low or no recombination may not provide enough vari-
ation to address many questions.

The second strategy is to detect recombination events
from the data set and then incorporate recombination into
models of evolution during the analysis of the data. This
is likely to become the mainstream of nuclear data ana-
lysis, as it allows a fuller exploration of the nuclear DNA
resources. A body of literature already exists on this
subject, developing a number of recombination detec-
tion methods (e.g. Stephens 1985; Hudson & Kaplan 1988;
Maynard Smith 1992; Hein 1993; Templeton & Sing 1993;
Innan et al. 1996; Maynard Smith & Smith 1998; Wiuf
& Hein 1999; McGuire et al. 2000; Schierup & Hein 2000;
Xu 2000; Strimmer et al. 2001; reviewed in Posada 2002).
David Robertson at the University of Oxford has set up a
website with links to many recombination detection pro-
grams available so far (http://evolve.zoo.ox.ac.uk/Grinch/RAP
_links.html). The relative performance of different methods
for detecting recombination from DNA sequences has
been evaluated recently by several groups (Maynard Smith
1999; Wiuf et al. 2001; Posada 2002).

2. Selection (non-neutrality)

Levels and patterns of nucleotide variation of DNA
sequences will be affected not only by their functional
importance, but also by their genomic background. The
aforementioned correlation between genetic diversity
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and rates of recombination is in fact the result of the inter-
play between selection and recombination. Population-
genetics theory predicts that natural selection is less
effective in regions with low recombination. In such
regions, linkage between nucleotides is tight and a
large region tends to act as a single unit of selection.
Consequently, selection for or against a few, or even a
single nucleotide substitution will affect the whole
region involved. This is the well-known hitchhiking
effect (Maynard Smith & Haigh 1974; for deleterious
mutations, it is referred as background selection,
Charlesworth et al. 1993). In contrast, in regions with
high recombination rates, nucleotide sites or blocks of
nucleotides serve as independent selection units. Con-
sequently, selection on a single nucleotide site or a block of
sites affects only those sites tightly linked to it and will
have a much reduced regional effect, allowing an overall
higher substitution rate. The implication of this selection-
recombination interplay is important. It means that the
apparent neutrality of a DNA sequence is not simply
determined by its functional importance to the organism.
Regions with no function, if tightly linked to a functionally
important gene, will not follow the patterns of neutral
evolution. Thus caution should be exercised when
analysing data from nuclear loci, knowledge on the
adjacent chromosomal regions is equally important for
correct interpretation of the data.

3. Insertion/deletion polymorphism

A large proportion of nuclear DNA markers employed
for population analysis would be noncoding regions,
because they are usually more variable than the coding
regions (in contrast to mitochondral DNA markers
where coding regions are mostly used because of the
lack of introns). Apart from nucleotide substitutions,
insertions/deletions (indels) often constitute a large part
of the polymorphism detected. Thus, patterns of indels
(or gaps in the aligned sequences) contain a sufficiently
large amount of phylogenetic information that they
should not be ignored. However, most phylogenetic
inferring methods available so far do not use such gaps
efficiently. Gaps are either ignored or treated as ambi-
guities. The use of information contained in gaps is an import-
ant goal for the full interpretation and exploration of
polymorphism data from nuclear markers. Several groups
have explored the use of gaps in sequence-based phylo-
genetic analyses, for example by treating them as a fifth
character (Swofford 1993; Simmons & Ochoterena 2000;
McGuire et al. 2001, and references therein); however, the
underlying evolutionary processes responsible for indels
are different from those for substitutions. It remains a
challenge to work out how to properly handle indel
characters.

4. Low divergence and polytomy

Two other features of intraspecific variation require spe-
cial attention in nuclear data analysis. First, the level of
intraspecific divergence is low. Although polymorphism
exists in the nuclear genomes of eukaryotic organisms, the
pairwise sequence divergence is in general small, being no
more than 1–2% in most cases. Second, as summarized
recently by Posada & Crandall (2001), intraspecific DNA
evolution does not in general follow a bifurcating process;
instead multifurcation is the norm, with the additional
complications of reticulate relationships produced by
recombination, parallel mutations and recurrent mutations
(Bandelt et al. 1995; Smouse 1998, 2000). Therefore,
traditional phylogenetic analysis methods are not the most
appropriate for analysing intraspecific polymorphic data.
For instance, with the low level of divergence, traditional
phylogenetic analysis methods cannot resolve un-
ambiguously the evolutionary relationships in the data
set. Also, bootstrapping, the method commonly employed
to assess cluster reliability, loses its power. For example,
given an average pairwise divergence of 1%, one is
unlikely to obtain a high bootstrap support value from a
real data set. In addition, rare polymorphisms, such as
singletons, are treated as noninformative from a parsi-
mony perspective; a singleton is probably, however, an
important signature of recent population expansion. With
intraspecific data, allele divergence, allele frequency and
allele number are key parameters which reflect different
aspects of populations and their evolutionary history. For
neutral loci, allele divergence and the associated genealogy
reflect evolutionary events that occurred over a long
period of time, and even from before speciation; allele
frequencies are predicted to be correlated to the ages of
alleles under the coalescent theory; the number of alleles
in populations should be positively correlated to the sizes
of populations. Clearly, traditional statistics (Wright
F-statistics) alone are not sufficient to reveal all the
information contained in intraspecific polymorphic
nuclear DNA data. A number of strategies have been
explored to more fully use such information, including the
nested clade analysis method (Templeton et al. 1995;
Templeton 1998) and the network analysis method
(Bandelt et al. 1995, 1999). These methods, in combination
with coalescent analysis, appear to be able to overcome
some of the major hurdles (such as multifurcation,
recombination) of the traditional phylogenetic analysis
techniques, and capable of recovering more precisely
patterns of past population processes (Hare 2001).

5. History of gene and history of populations

DNA markers are employed to reveal genetic structure,
evolutionary history and the potential for evolution of
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populations. In reality, what has been inferred from the
data is the structure and history of the DNA regions used.
This is the so-called ‘gene tree and species tree’ problem
(Avise 1989). For nuclear DNA, the problem is further
complicated by the fact that different genomic regions may
have different rates of evolution and have been shaped
differently by different evolutionary forces. While some of
the forces (e.g. random drift, population bottleneck) have a
genome-wide effect, others (e.g. recombination, selection)
may have only a regional influence. For a given nuclear
marker, the correlation of gene tree with species tree
(population tree) depends on the interplay among these
forces. Where selection or recombination exerts a pre-
ponderant effect the recovery of the correct gene tree is
itself problematic, not to mention the population tree. At
present, except for a few model organisms, knowledge
on the evolutionary and genetic contexts of the genomic
regions employed as molecular markers is usually not
available. The best strategy for most organisms is to carry
out analysis using multiple independent nuclear markers.
A coherent pattern between independent loci would
suggest a more reliable inference of the population history.

6. Heterozygosity and allele discrimination

For outcrossing diploid organisms, heterozygosity is
common in the nuclear genome. Individuals heterozygous
at a given locus have two different alleles (haplotypes).
Except in some particular situations (for examples, where
sex-specific DNA markers are available, such as human Y-
chromosome loci, or where haploid tissue can be used as
the source of DNA, such as the megagametophytes of
gymnospermous plants), perhaps the biggest technical
challenge in the employment of nuclear DNA markers is to
separate these alleles in the analysis, so that allele-specific
characterization can be carried out. This problem (haplo-
type determination) will be addressed fully in the next
section.

Current approaches for haplotype determination in 
nuclear DNA analyses

For most organisms studied so far, the nuclear DNA
markers employed in population-genetic analysis are
almost exclusively microsatellite DNA and ribosomal
DNA (rDNA). This is simply because haplotype deter-
mination can, in practice, be performed easily for these
markers. For example, microsatellite variation is con-
sidered to be largely due to copy number variation of the
repeat unit, hence alleles from heterozygous individuals
can be distinguished on a denaturing polyacrylamide gel;
rDNA, although highly repetitive, is thought in gen-
eral to follow concerted evolution, thereby being effectively
haploid in nucleotide sequence (NB: both microsatellite

homoplasy and nonconcerted evolution of rDNA have
been documented, e.g. Schlötterer & Tautz 1994; Vogler &
deSalle 1994; Buckler et al. 1997; Onyabe & Conn 1999;
Culver et al. 2001). Single copy nuclear DNA or low copy
nuclear DNA markers have not been widely employed
for assessing intraspecific variation because of both the
limited availability of such markers in most organisms
and the difficulty for haplotype determination due to
heterozygosity. Although not all evolutionary analyses
require the phase of haplotype to be determined, such
information is essential for the inference of many
population processes. Various attempts to overcome the
latter problem have been made, with some being more
general than others. We summarize below reported
techniques, experimental and statistical, for haplotype
determination of nuclear markers.

Experimental approaches

Cloning of PCR products. While this is a universally applic-
able method for determining unambiguously the sequence
of each haplotype of heterozygous individuals, some
serious drawbacks render it practically less attractive. In
particular, it is costly and labourious, and requires the
analysis of several independent clones of each PCR
product in order to reduce polymerase-replication errors
and to pick up poorly represented alleles. Additionally,
artefacts can be produced during the cloning step due to in
vitro recombination upon transformation of bacterial cells
with heteroduplex DNA (Tang & Unnasch 1995). Study
cases using this strategy can be found in Palumbi & Baker
(1994), Duda & Palumbi (1999), and LaForest et al. (1999).

Signal-intensity dependent inference. The two alleles at a locus
in heterozygous individuals are often amplified with
different efficiency during PCR (due to a template drift
effect and/or replication advantage of one of the alleles),
and thus are represented in different proportions in the
final product. The less-represented allele should, as a
consequence, give weaker signals at the heterozygous sites
on sequencing gels. Some researchers rely on this principle
to infer the two allelic sequences from a heterogeneous
sequence. However, experience tells us that this is not a
reliable method if the two alleles differ at more than two
sites. This is because during the sequencing reaction signal
intensities of the two alleles at each heterozygous position
are subject to independent sampling variance. Therefore, a
weaker signal at the first heterozygous position for allele A
does not guarantee that its signal at, for instance, the fourth
heterozygous position will also be weaker.

Using the ‘allele-dropout-effect’. Template selection in a PCR
reaction is a stochastic process apparently following the
‘threshold model’, which posits that template molecules
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must reach a threshold number for them to be amplified
efficiently (Teng et al. 2001). If more than one templates
exists, only the one above the threshold can be reliably
amplified. Based on this, alleles from heterozygous
individuals could be stochastically separated by carrying
out PCR from suitably diluted genomic DNA template.
Once one allele has been unambiguously determined the
other allele can be inferred easily. The extreme of this
method is to dilute genomic DNA to the extent that a given
aliquot contains only a single molecule of the desired
region. This has been shown to be feasible and effective
(Ruano et al. 1990; Taberlet et al. 1996). We refer to this
phenomenon as the allele-dropout-effect. Although this
allele-dropout-effect can be used to achieve haplotype
separation, it has limitations for population analyses,
particularly when the sample size is large. Considerable
time and effort is needed in order to resolve each sample,
and overall the practice will not be cost-effective.

Allele-specific amplification. Taking advantage of the critical
importance of perfect matches between the most 3′-end
base of PCR primers and their templates, one can design
allele-specific PCR primers to selectively amplify only one
allele (e.g. Ruano & Kidd 1989). Although this may be an
effective method for clinical screening of a given genetic
variation, for population-genetic studies it is not practical.
It requires previous information about allelic sequences.
In addition, for highly polymorphic markers, many site-
specific primers are needed, and even this does not
guarantee that all haplotypes can be detected.

Physical isolation of hemizygous templates. Using flow cyto-
metry, specific chromosomes can be sorted and thus used
as hemizygous templates for PCR. Here only one allele
is amplified, allowing allele-specific characterization. Chro-
mosome sorting has been used in various applications,
including chromosome-specific genomic library construc-
tion, chromosome painting, karyotyping, mapping of genes
and genetic markers, etc. (for reviews, see Carter 1994;
Dolezel et al. 1994). The use of this technique in population-
genetic study faces the problem of large sample size, and is
very demanding in techniques and equipment.

Genetic isolation of haplotype. In model organisms, such as
Drosophila, laboratory breeding has been routinely used
to establish isofemale lines which become effectively
homozygous. Therefore, for these organisms haplotypes
can be easily determined by direct sequencing of PCR
amplified genomic regions (e.g. King 1998).

Haplotype separation by SSCP, DGGE and related techniques.
The high resolving power of SSCP (single strand con-
formation polymorphism) and DGGE (denaturing gradient
gel electrophoresis) for the detection of DNA sequence

variation allows these and related techniques to serve as
effective tools to separate heterozygous alleles on poly-
acrylamide gels. This has been demonstrated in several
studies (Orti et al. 1997a, 1997b; Aldridge et al. 1998; Bagley
& Gall 1998). While these techniques are not so difficult to
set up in established laboratories (Sunnucks et al. 2000),
they are nevertheless a challenge for many groups. In
addition, employing these techniques to isolate alleles
involves much manual work with toxic chemicals, and is
prone to cross-contamination. Although offering the desired
results, they may not be the ideal techniques for carrying
out large-scale analyses.

Allele-specific sequencing using restriction enzyme and bio-
tinylation (ASSURE B). Taking advantage of both the
specific cleavage of heterozygous sites by restriction
enzymes and the solid phase molecule separation
technique offered by the biotin/magnetic streptavidin
technology, the ASSURE B method allows the specific
isolation of one of the alleles present in a heterozygous
PCR product (Zhang & Hewitt 1996d). This method is
rapid and simple, if suitable restriction sites are available.
It works better for highly polymorphic markers. However,
it requires polymorphic restriction site information.
Furthermore, on its own it cannot generally resolve all
haplotypes. Two factors may affect the cleavage efficiency
when employing this technique (D. X. Zhang, unpublished
data): (i) ratio of the two PCR primers and (ii) heteroduplex
formation. Unbalanced primer ratios promote the pro-
duction of single-stranded DNA in PCR products, and
heteroduplexes may result in imperfect pairs at restriction
sites, both leading to incomplete cleavage by restriction
enzymes.

Resolving haplotypes with DHPLC (denaturing high perform-
ance liquid chromatography). An emerging technology,
DHPLC (Oefner & Underhill 1995; Underhill et al. 1996,
1997), has a greater potential for effective nuclear DNA
haplotype separation. DHPLC is an ion-pair reverse
phase HPLC method. For mutation detection, the essence
of DHPLC is heteroduplex analysis. Because of mis-
matches present in heteroduplexes, they have (i) differ-
ent electrophoretic mobilities and (ii) different melting
properties from homoduplexes. Therefore, under controlled
experimental conditions, the presence of heteroduplexes
can be detected. Unlike conventional heteroduplex analysis,
which only takes advantage of the first property of
heteroduplex molecules to distinguish heterozygous and
homozygous, the technique of DHPLC can exploit both
properties of heteroduplexes mentioned above and per-
form analysis under denaturing, partial denaturing or
nondenaturing conditions, thus allowing size-dependant,
conformation-dependant, or sequence-dependant separations.
Therefore, the two alleles in a heterozygous sample can
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be separated and differentially recovered for subsequent
analysis. It has been reported that DHPLC is able to
discriminate single-stranded DNA molecules of identical
size (< 100 nucleotides) that differ in a single base (Oefner
2000), and single base differences in double-stranded DNA
fragment as large as 1.5 kb can be detected (O’Donovan
et al. 1998).

The most prominent benefits of DHPLC technique are
that (i) it is a highly automated technology (automation
includes sample injection, gradient set-up, detection, sam-
ple elution and recovery), thus as long as DNA fragments
can be differentiated, they can be efficiently and separately
recovered, and (ii) recovered samples can be used directly
for subsequent analyses such as PCR or sequencing. More
studies in depth are needed to explore the potential of
DHPLC for haplotype separation. If confirmed, it is likely
to be the technique-of-choice for nuclear DNA analyses.

Statistical approaches

In theory, it is not necessary to resolve experimentally
every haplotype drawn from populations; statistical pro-
cedures exist for inferring the unresolved ones from the
determined haplotypes.

Clark (1990) proposed a parsimony algorithm to infer
haplotype sequences. This approach does not require the
physical separation of the two alleles from heterozygous
individuals before sequencing. Where reliable, this is a
shortcut to circumvent the problem. It works on sequences
obtained from direct sequencing of PCR products of dip-
loid individuals. When homozygous, the sequences are
unambiguous; when heterozygous, the sequences contain
ambiguities at positions where the two alleles differ in
sequence. The algorithm uses the unambiguous sequences
from homozygous individuals and/or single site heterozy-
gotes as reference sequences to extract allelic sequences
from the heterozygous sequences; it then uses the newly
inferred allelic sequences as reference to extract more
allelic sequences from the remaining ambiguous sequences
until it reaches a point where all sequences have been
resolved or no further advance can be made. Olsen &
Schaal (1999) employed this method in their phylogeo-
graphical study of cassava (Manihot esculenta); Antunes
et al. (2002) implemented it to determine the transferrin
gene haplotypes in the Brown trout.

Several expectation–maximization (EM)-based algo-
rithms were introduced recently (e.g. Excoffier & Slatkin
1995; Hawley & Kidd 1995; Long et al. 1995; Schaid et al.
2002) to carry out a maximum-likelihood estimation of
haplotypes and haplotype frequencies. Like Clark’s
algorithm, they are based on the assumption of Hardy–
Weinberg equilibrium; therefore, both methods should
perform better for large samples. Factors affecting the per-
formance of these algorithms include departure from Hardy–

Weinberg equilibrium, the average heterozygosity per
nucleotide site, the number of variable sites, frequency
distribution of haplotypes, sample size, recombination rate
and sequence reliability, with the last two factors being the
most difficult to deal with. For example, practical experi-
ence tells us that when directly sequencing PCR products
from heterozygous individuals, intensity of signal at hetero-
zygous sites is not always strong enough for both bases to
be called. If extreme bias for nucleotide composition exists,
noise level can easily cover up weak signals from hetero-
zygous bases, producing wrong sequence haplotypes.
Fallin & Schork (2000) carried out a simulation study to
examine the accuracy of the EM-based procedure for esti-
mating haplotype frequency as a function of some of the
above factors. They showed that (i) EM algorithm performs
quite well under the conditions tested, (ii) estimation of
the frequencies of rare haplotypes is subject to larger error,
(iii) the excess of heterozygotes cause a considerably
increase of estimation errors, and (iv) sampling errors
appear to account for a major fraction of the inaccuracies.

More recently, Bayesian methods for haplotype phase
reconstruction have also been developed. Stephens
et al. (2001) reported that their Bayesian procedure based
on coalescent theory (referred to as the ‘phase method’
after the name of the computer program developed by
the authors, available at http://www.stats.ox.ac.uk/
mathgen/software.html) outperforms both the parsimony
and EM procedures mentioned above. This method can
also estimate the uncertainty associated with each phase
call, a valuable feature not present in the above methods. In
an independent study that compares the performance of
the phase method and EM-algorithm, Zhang et al. (2001)
showed that overall there is no significant difference
between the two methods, and for haplotype reconstruc-
tion using a real data set, error rates of phase and EM
methods are 19% and 27%, respectively. Examples of applica-
tion of the phase method can be found in Hull et al. (2001),
Kaessmann et al. (2002) and Lazarus et al. (2002).

Niu et al. (2002) developed a novel Bayesian algorithm
based on a Monte Carlo approach (referred to as the
‘haplotyper method’ after the name of their computer
program, which is available at the following website:
http://www.people.fas.harvard.edu/∼ junliu/Haplo/
docMain.htm). haplotyper incorporates computational
techniques to help the algorithm to escape from a local
maximum and construct whole haplotypes from haplotype
segments. The authors reported that haplotyper, in a
comparative study, outperforms phase, EM algorithm
and Clark’s algorithm in all real data applications tested,
and only in the coalescence-based simulation did phase
perform better. It was shown that haplotyper is robust to
the violation of Hardy–Weinberg equilibrium, to the
presence of missing data and to occurrences of recombina-
tion hotspots.
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Clearly, statistical power for haplotype reconstruction
from partially resolved data has rapidly increased in recent
years. Some authors have even claimed that sufficient
accuracy in haplotype inference is available using statist-
ical methods, and ‘reconstructing haplotypes experi-
mentally, or by genotyping additional family members,
may be an inefficient use of resources’ (Stephens et al. 2001).
However, although statistical inference procedures may
provide an attractive shortcut for haplotype reconstruction,
they should not replace empirical approaches before their
performance has been extensively tested and shown to be
robust in various circumstances and with a large amount of
empirical data.

For contemporary population-genetic approaches using
nuclear DNA markers, the ideal technique for haplotype
determination should be (i) easy to employ, (ii) able to fully
separate haplotypes with high reliability and efficiency,
(iii) minimal in the steps required for subsequent analyses
such as PCR and sequencing, and (iv) manageable for auto-
mation of large-scale studies. None of the above tech-
niques, when employed alone, can provide a satisfactory
means for obtaining nuclear haplotype data in large-scale
genetic analyses of populations. The highest resolving
power could be achieved by a complementary employ-
ment of experimental approaches and statistical inference
methods, and this seems to be the future trend.

Prospects of scnp nuclear DNA markers

For analysis with nuclear DNA markers, where should
we start and how should we find scnp loci? This is not
a problem for people working with model organisms, as a
large number of scnp sequences and SNP markers are
already available from genome sequencing projects. With
nonmodel organisms, however, different strategies have to
be employed depending on the situation. Because uni-
versally conserved or versatile nuclear primers are most
welcome, we discuss this issue first.

‘Versatile’ nuclear primers for intraspecific studies

The development of conserved PCR primers has played
a key role in promoting population-genetic studies at the
molecular level in the past decade (Zhang & Hewitt 1997;
Sunnucks 2000). Enormous success has been achieved with
animal mitochondrial DNA primers (e.g. Kocher et al. 1989;
Simon 1991; Simon et al. 1994). Because of this, it has been
a common desire to find similarly conserved and useful
nuclear DNA primers. It is fortunate enough that, with
mitochondrial, and to a lesser extent chloroplast, genomes
primers amplifying DNA regions highly variable at intra-
specific level can be designed that are conserved among
very diverged organisms. With the nuclear genome, how-
ever, the situation appears to be much more complicated. So

far, only limited success has been achieved with primers
amplifying the ribosomal ITS (internal transcribed
spacer) regions (Hillis & Davis 1988; Williams et al. 1988;
White et al. 1990; Hillis & Dixon 1991) — a fairly good
conservation of primer sequences and therefore their
cross-species applicability have been observed, but the
intraspecific variability of the amplified regions is often
low. Most other ‘conserved’ primers designed so far are
intended for phylogenetic study, such as those that
amplify genes encoding the elongation factor-1α (EF-1α),
elongation factor-2 (EF-2), RNA polymerase II, dopa
decarboxylase and phosphoenolpyruvate carboxykinase
(Friedlander et al. 1994; Cho et al. 1995; Regier & Shultz
2001), or the period locus (Regier et al. 1998). Those primers
that were designed with an intraspecific perspective have
not been, in most cases, empirically tested across a
significant taxonomic range, such as the plant primers by
Strand et al. (1997), or primers amplifying introns of plant
nitrate reductase gene (Howartha & Baum 2002). A general
observation with nuclear primers is that frequently either
they fail to amplify across distant taxonomic groups or the
amplified sequences are not suitable for intraspecific
studies. This is not surprising considering the situation
with microsatellite loci most microsatellite primers are
very organism-specific and only limited conservation
among closely related species was observed.

Nuclear primers widely applicable for intraspecific
studies need to satisfy the following requirements: (i) they
should be evolutionarily well conserved across differ-
ent taxonomic groups; (ii) their amplicons (i.e. target
sequences amplified by the primers) should be of reason-
able size; (iii) target sequences should be highly variable at
the intraspecific level; and (iv) target sequences should be
single-copy or low-copy in the nuclear genome. However,
several processes of molecular evolution of nuclear DNA
counteract the search for such ‘versatile’ nuclear primers.
These include gene duplication or amplification, produc-
tion of pseudogenes, intron losts, sliding or size change,
etc. Fundamentally, the conflicting requirements for the
candidate sequences to be evolutionarily conserved but
also have high intraspecific variability are logically dif-
ficult to comply with. Recall that the variability of
introns and that of the adjacent exons is correlated (Fig. 2;
Moriyama & Powell 1996), thus the high variability of the
amplified sequences tends to reduce the level of conserva-
tion of the primer sites. Consequently, the approach of
searching for ‘versatile primers’ will not be so effective. Our
practical experience also suggests that it will be extremely
difficult at present to find many universally applicable
scnp markers meeting our expectation from mitochondrial
work. For a given project, the time and effort spent in test-
ing the suitability of ‘versatile primers’ may not be more
efficient than for developing up specific primers in the
organism involved.
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Introns as primary candidates

Although various noncoding and intergenic regions are all
in general more variable than coding sequences, introns
are the best candidates for scnp markers. This is because
flanking regions of introns are exonic sequences which are
evolutionarily more conserved and ideal places to place
PCR primers. Also, as a structural characteristic, introns
are commonly present in many genes of eukaryotic
organisms. Palumbi & Baker (1994) described a strategy
to find intron markers, the ‘exon-primed, introns-crossing
(EPIC)’ method, which is generally applicable to any
organism. With this strategy, Hassan et al. (2002) reported
17 pairs of introns-amplifying primers for fishes. Other
examples of the application of EPIC strategy include
Palumbi (1996) for invertebrates, Friesen et al. (1997) for
vertebrates, Strand et al. (1997) for plants, among many
others.

If the sequence of the 5′  or 3′  noncoding region of a
gene is known (for example, from a characterized cDNA
sequence or EST project), specific primers can be designed
in these regions. Such primers are fairly more taxon-
specific and may not be applicable even in closely related
species (e.g. Zhang & Hewitt 1996c).

Microsatellite flanking regions

In organisms in which well-characterized microsatellite
loci are available, microsatellite flanking regions are the
ideal places to locate scnp markers. This is because (i) the
majority of microsatellite loci employed in population-
genetic studies should lie in noncoding genomic regions,
their flanking regions are likely to be highly polymorphic
in populations; (ii) it should have already been established
that microsatellite loci employed in population-genetic
studies are biallelic markers, that is, they are single-copy
sequences. Therefore, so are their flanking sequences;
(iii) as a natural extension, sequencing analysis of entire
microsatellite loci will greatly increase the value of these
markers while minimizing costs and labours. It provides
an effective way to retrieve genealogical information from
an existing framework. Similarly, sequence characterized
amplified regions (SCARs, Paran & Michelmore 1993)
derived from RAPD or AFLP analyses are good targets for
scnp primers (e.g. McLenachan et al. 2000)

Genes involved in immune defence systems or disease 
resistance

Genes involved in immune defence systems (e.g. MHC loci
in animals), mating-recognition systems (e.g. S-loci in
plant) and disease resistance (e.g. the RPP5 complex locus
in Arabidopsis) have pronounced intraspecific variability.
Their high polymorphic levels make them attractive mole-

cular markers for population-genetic study. However,
these targets are believed to be under balancing selection.
It is important to note that the evolutionary dynamics
of balanced polymorphism are very different from those
of neutral genetic variation, therefore one should be
careful about the questions to be addressed and whether
this is feasible with such markers. Richman (2000) has
extensively discussed the evolution of balanced genetic
polymorphism in a recent review.

Developing specific scnp markers from the bench

If there is no shortcut for finding scnp markers in an
organism, one has to develop species-specific markers in
the laboratory. This is in fact not as difficult as it may
sound. The basic procedure for developing scnp markers
alone has long been established and is no more difficult
than for isolating microsatellite DNA loci. For example,
Karl & Avise (1993) described a universally applicable
method for isolating anonymous single-copy nuclear DNA
(scnDNA). It involves the construction of small-insert
partial genomic DNA library, and then screening of the
recombinant clones for scnDNA with labelled total DNA
as the probes. An alternative method was reported by
Bagley et al. (1997), which employs a RAPD-SSCP-based
approach and implements a prescreening step to first
identify sequences that are polymorphic before carrying
out the cloning procedures. For many organisms in which
little sequence data are available, these methods could
serve as the starting point of a nuclear DNA analysis
project. The key element in scnp development is the
verification of the biallelic status of the loci isolated.

SNP markers — a wonderland for most organisms

SNP refer to single nucleotide polymorphism, with its
essence being biallelic genetic variation (see Box 1 for
a working definition). Because of their simplicity in
character state and the ease of large-scale automated
detection, SNPs will become the marker-of-choice in
nuclear DNA analysis of populations. These markers,
however, will only be really valuable when they are
employed in numbers. At present and in the near future,
except for a few model organisms in which extensive
genetic studies and genome sequencing projects are in
place and thus a large numbers of genomewide SNPs have
been identified, the unavailability of SNP markers in most
organisms remains a big obstacle to their systematic
employment in genetic study of populations.

Concluding remarks

Four major uncertainties for nuclear DNA analyses of
populations were previously facing us, i.e. the availability
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of scnp markers for carrying out such analysis, technical
laboratory hurdles for recovering haplotype data, dif-
ficulty in data analysis because of recombination, low
divergence levels and intraspecific multifurcation evo-
lution and the utility of scnp markers for addressing
population-genetic questions. Although challenges still
exist, these obstacles are now being removed. Doubt on the
availability of scnp markers no longer exists, as shown
by data from different genome sequencing projects and
studies in model organisms. Different strategies are now
available for mining such markers from nonmodel
organisms. Haplotype recovery becomes much less a
problem if we combine empirical study with statistical
inference. A number of methods have already been
established for detecting recombination in nuclear
sequences, and the nested clade or network analysis in
combination with coalescent approach promise a fuller
exploration of the information contained in scnp data. The
utility of scnp markers for addressing population-genetic
questions has been demonstrated clearly in empirical
studies, as recently reviewed by Hare (2001). What we
need to overcome is the hidden conceptual obstacle that
nuclear DNA analysis is too complicated to implement.
The inclusion of nuclear DNA markers in evolutionary
and population-genetic studies is indispensable for a
better understanding of evolutionary processes that have
occurred, and it will considerably extend our ability to
infer the past beyond that so far allowed by other more
popular DNA markers.

This trend to nuclear DNA analyses does not, however,
mean that scnp markers are going to replace cytoplasmic
and microsatellite DNA markers. Instead, the latter will
continue to serve as powerful diagnostic tools for screen-
ing genetic variation. Scnp, mitochondrial and microsatel-
lite DNA markers are complementary in the sense that they
reveal different aspects of a complex story at different
depth of perception. It is worth noting that, unlike mtDNA,
widely applicable versatile PCR primers that amplify
regions with high intraspecific variability are scarce for
nuclear DNA. Therefore, as with microsatellite DNA
markers, one often needs to specifically develop the scnp
marker systems required for a particular project. Fin-
ally, the employment of several independent nuclear loci
is a prerequisite for inferring a general answer for any
population-genetic question.
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