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Abstract

Single copy nuclear polymorphic (scnp) DNA is potentially a powerful molecular marker
for evolutionary studies of populations. However, a practical obstacle to its employment is
the general problem of haplotype determination due to the common occurrence of heterozy-
gosity in diploid organisms. We explore here a ‘consensus vote’ (CV) approach to this question,
combining statistical haplotype reconstruction and experimental verification using as an
example an indel-free scnp DNA marker from the flanking region of a microsatellite locus
of the migratory locust. The raw data comprise 251-bp sequences from 526 locust individuals
(1052 chromosomes), with 71 (28.3%) polymorphic nucleotide sites (including seven triallelic
sites) and 141 distinct genotypes (with frequencies ranging from 0.2 to 25.5%). Six repre-
sentative statistical haplotype reconstruction algorithms are employed in our CV approach,
including one parsimony method, two expectation–maximization (EM) methods and three
Bayesian methods. The phases of 116 ambiguous individuals inferred by this approach are
verified by molecular cloning experiments. We demonstrate the effectiveness of the CV
approach compared to inferences based on individual statistical algorithms. First, it has the
unique power to partition the inferrals into a reliable group and an uncertain group,
thereby allowing the identification of the inferrals with greater uncertainty (12.7% of the
total sample in this case). This considerably reduces subsequent efforts of experimental
verification. Second, this approach is capable of handling genotype data pooled from many
geographical populations, thus tolerating heterogeneity of genetic diversity among popu-
lations. Third, the performance of the CV approach is not influenced by the number of
heterozygous sites in the ambiguous genotypes. Therefore, the CV approach is potentially
a reliable strategy for effective haplotype determination of nuclear DNA markers. Our
results also show that rare variations and rare inferrals tend to be more vulnerable to inference
error, and hence deserve extra surveillance.
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Introduction

Molecular population genetic and evolutionary studies
increasingly rely on genealogical data for a better under-

standing of the effects of both historical evolutionary
processes and contemporary ecological factors on popu-
lations and species. In addition to mitochondrial DNA
markers, which have been popularly employed in metazoan
animals in particular, single copy nuclear polymorphic
(scnp) DNA is becoming the marker of choice for more
comprehensive investigations (Zhang & Hewitt 2003).
Scnp DNA refers to any DNA segment that is present as a
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single copy in the haploid genome and polymorphic in
the population. For diploid organisms, there is a pair of
homologous alleles at any scnp DNA locus, with the two
sequence copies being either identical (homozygous) or
nonidentical (heterozygous). The molecular description of
the particular DNA segments at a locus in an individual is
called its ‘genotype’, with each copy form being termed a
‘haplotype’. From a population genetic viewpoint, the
term haplotype refers collectively to a set of identical alleles
in populations; from a genomic viewpoint, it refers to a
distinct set of nucleotide sites linked on the same chro-
mosome and inherited together in meiosis. Because it has
the highest resolution and contains genealogical information,
haplotype sequence has been the key ingredient in many
fine-scale analyses in molecular evolutionary and population
genetic studies. However, haplotype determination is a
challenging task when using scnp DNA in diploid organ-
isms, because for multisite heterozygotes (i.e. more than
one heterozygous site along an scnp DNA sequence), current
sequencing techniques provide ambiguous genotype data
and haplotypes are not directly discernible. For example,
for the following ambiguous genotype data from a diploid
organism at two nucleotide sites — RY (here R signifies
an A or a G, Y a C or T), there are two possible haplotype
assignments (i.e. either AC and GT, or AT and GC). The
more heterozygous sites occurring in an scnp DNA sequence,
the more complicated is the haplotype assignment (an
exponential increase of possible solutions). Note that
both homozygotes and one-site heterozygotes have clear
haplotype phases.

A number of experimental haplotyping methods have
been developed to circumvent the difficulty (for review, see
Zhang & Hewitt 2003). However, all these methods have
some important limitations in efficiency, cost and labour,
or safety when applied in large-scale studies. Each also has
its individual advantages, and recent attempts show some
promise for a reasonably high throughput (Tost et al. 2002;
Hurley et al. 2005). Consequently, these experimental
methods have not been widely employed. Alternatively,
statistical methods for inferring and reconstructing haplo-
type phase have blossomed in recent years largely as a
result of the increasing demands of genetic and genomic
studies such as the Human International HapMap Project
(International HapMap Consortium 2005), with the attraction
that they are more practical and cost-effective compared
to experimental approaches. There are two classes of statis-
tical methods, namely haplotype assembly and haplotype
reconstruction. Haplotype assembly, which is also called
single individual haplotyping, is based on aligned sequences
for the retrieval of a pair of haplotypes (Lancia et al. 2001;
Lippert et al. 2002). Haplotype reconstruction infers haplo-
types from unrelated genotype data collected from samples
from natural populations or related genotype data from
families and/or pedigrees. Although pedigree information

can improve haplotype reconstruction (Rohde & Fuerst
2001; Becker & Knapp 2002; Schaid 2002; Lin et al. 2004),
such information is rarely available for natural populations.
Hence, we focus here on population-based haplotyping.
Numerous statistical algorithms have been published for
haplotype reconstruction during the past two decades,
which can be approximately divided into parsimony-based
and likelihood-based methods.

Parsimony-based methods. In his seminal paper, Clark (1990)
proposed a rule-based haplotype-subtraction algorithm
for finding the solution with the fewest orphans and fewest
anomalous matches. The modified program, hapinferx, is
computationally very efficient and used to be one of the
most popular algorithms for haplotype reconstruction
(e.g. Clark et al. 1998; Olsen & Schaal 1999; Antunes et al. 2002;
Bartish et al. 2006). Recently, various extensions of parsimony
algorithms have been developed (Gusfield 2003; Wang &
Xu 2003; Lancia et al. 2004; Huang et al. 2005; Li et al. 2005;
Brown & Harrower 2006), including those based on the
‘perfect phylogeny’ assumption (e.g. Gusfield 2002; Halperin
& Eskin 2004). However, the pure parsimony approach for
finding a minimum set of haplotypes that explains a given
set of genotypes has been shown to be an NP-hard (and
even APX-hard) problem (i.e. not solvable in polynomial
time; Gusfield 2001; Lancia et al. 2004; Sharan et al. 2006).

Likelihood-based methods. Several expectation–maximization
(EM) methods were reported independently by three
research groups in 1995 (Excoffier & Slatkin 1995; Hawley
& Kidd 1995; Long et al. 1995). They estimate population
haplotype probabilities under the maximum likelihood
(ML) principle based on assumption of Hardy–Weinberg
equilibrium (HWE), so the resolution will maximize the
probability of the observed genotype data. Subsequently,
diverse EM programs (Hoehe et al. 2000; Clayton 2001; Qin
et al. 2002; Li et al. 2003; Thomas 2003a, b; Excoffier et al.
2005; Kimmel & Shamir 2005; Eronen et al. 2006; Scheet &
Stephens 2006; Landwehr et al. 2007) were developed to
improve the computational efficiency by employing various
more efficient techniques (e.g. considering only subsets of
the polymorphic sites at a time and/or minimizing the
number of potential haplotypes that must be considered).
For example, gchap (Thomas 2003a, b) can quickly obtain
maximum likelihood estimates (MLE) of haplotype
frequencies using the gene counting method, detecting
and eliminating all subhaplotypes whose MLE frequency
from one round of EM is exactly zero at the step of
progressively building haplotypes.

Bayesian methods, as alternative likelihood-based appro-
aches, incorporate different models and prior assumptions,
thus extending their application. Numerous Bayesian
methods are available (Stephens et al. 2001; Lin et al. 2002;
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Niu et al. 2002; Excoffier et al. 2003; Eronen et al. 2004;
Greenspan & Geiger 2004; Xing et al. 2006; Zhang et al. 2006;
Ayers et al. 2007); among them, the coalescent-based phase
(Stephens et al. 2001; Stephens & Donnelly 2003) currently
appears to be most widely used (e.g. Ryynanen & Primmer
2004; Sotka et al. 2004; Taylor & Hellberg 2006). The
state-of-the-art phase program is based on the important
assumption of conditional distribution of the inferred
haplotypes, that is, the next inferred haplotype tends to
be either identical or similar to a haplotype that has
already been observed or inferred. Another Bayesian
program, haplotyper (Niu et al. 2002), employs the
novel partition-ligation (PL) technique. The PL technique
first resolves haplotypes within smaller segments of
consecutive sites, and then links them into a complete
haplotype either hierarchically or progressively. It is
remarkably valuable because of its great computational
efficiency and has been incorporated into other likelihood-
based methods [e.g. phase and haplorec (Eronen et al.
2004)].

Clearly, the boom in statistical methods for haplotype
reconstruction should drive wide implementation of scnp
markers in genetic studies of populations. Nevertheless,
we need to answer a key question before any statistical
haplotyping method is implemented: how can we be
confident that the results deduced by statistical methods
have acceptable reliability to safeguard subsequent data
analyses, given the complexity of population genetic data?
One common way to address this question is to combine
statistical and experimental analyses to verify all inferred

haplotypes and phased genotypes. Such combined appro-
aches have been rather limited to date due to cost and
labour (e.g. Clark et al. 1998; Antunes et al. 2002; Bartish
et al. 2006). Theoretically, there is another more effective
means of addressing this question. For statistical haplotype
inference, every deduced haplotype and phase assignment
is only a statistical solution, and the estimates of confidence
suggested by such analyses can serve only as a reference
(Xu et al. 2002; Sabbagh & Darlu 2005); thus, all inferrals
bear some uncertainty. Also, because they differ in the
underlying theories and techniques employed, different
algorithms have different sensitivity to various genetic
factors (Niu et al. 2002; Zhang et al. 2002; Niu 2004), and
hence perform differently. Thus, solutions shared by inde-
pendent statistical algorithms should be a good indication
of their reliability if biases of different algorithms are
independent. Therefore, if we compare the inference
results of multiple algorithms on a given data set, the
haplotypes and phase assignments that are completely
agreed among all algorithms (thus with the highest con-
sensus votes) should be most likely to be reliable; similarly,
those with lower consensus votes should be less reliable,
and hence need further experimental verification. We
termed such an analysis ‘consensus vote’ (CV) approach
(Box 1). If proven effective, such an approach would allow
us to confine experimental verification to those individuals
whose phase assignment really deserves confirmation while
maintaining the quality of statistical inference.

We report here such a study on a large data set with no
prior phase information (except for homozygotes and

Box 1 Abbreviations and terms

Ambiguous individual: any multisite heterozygote
whose phase is unresolved.
Ambiguous genotype: the genotype of any ambiguous
individual.
CV: consensus vote.
CV category: vote category established in the consensus
vote approach where the multisite heterozygotes
receiving the same number of votes were classified into
the same category. Six categories were established in
this study with I–IV having the number of votes 6, 5, 4,
3 and 2 (pooled), respectively, and H for homozygotes
and S for one-site heterozygotes.
Genotyping error: refers to nucleotides originally
scored from the direct sequencing of PCR products that
were found to be in error based on subsequent sequ-
encing of multiple clones of (independent) PCR products.
HID: haplotype-inferring discrepancy, i.e. the dis-
crepancy of distinct haplotypes between two solutions.

HWD: Hardy–Weinberg disequilibrium.
IRD: individual-resolving discrepancy, i.e. the proportion
(number) of individuals whose genotypes were resolved
differently between two solutions.
Lost haplotypes: the distinct haplotypes that an
approach fails to infer in its solution (i.e. the haplotype
that was absent in the solution of an approach compared
to the true solution).
NDH: number of distinct haplotypes in a solution.
NLCP: number of individuals whose haplotype pair is
of low confidence probability in a solution.
PL: partition–ligation.
Scnp: single copy nuclear polymorphic (DNA).
Uncertain individual: any multisite heterozygote
without the highest consensus votes (here votes < 6).
Uncertain genotype: the genotype of any uncertain
individual.
Variation: refers to the nucleotide state at a polymorphic
site the frequency of which is lower than the most
frequent state in population.
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one-site heterozygotes) from the migratory locust (Locusta
migratoria), characterized using an scnp DNA marker. The
genotype data from 526 locusts sampled across a broad
geographical range were analysed employing six statistical
haplotype reconstruction methods, including one parsi-
mony method (hapinferx), two EM methods [gchap and
arlequin 3.11-EM (Excoffier et al. 2005)], and three
Bayesian methods (phase 2.1.1, haplotyper 1.0 and
haplorec 1.0). The inferred haplotypes and phase assign-
ments were then experimentally verified by cloning. We
aimed to (i) evaluate the performance of the CV approach
and the six algorithms on extensive population genetic
data, (ii) most importantly, examine the effectiveness of
the CV approach for guiding experimental verification of
uncertain inferrals, and (iii) infer some rules of statistical
haplotype inference from large genetic data sets from
natural populations.

Materials and methods

Population sampling

Thirty-one populations of the migratory locust were
sampled during 1998–2005, with 28 of them from China
covering the main distributional range of this insect in
the country, and one each from Japan, France and Eritrea.
These samples are ascribed to five Locusta migratoria sub-
species (i.e. L. m. manilensis, L. m. migratoria, L. m. tibetensis,
L. m. cinerascens and L. m. migratorioides). Locusts were
randomly collected in the field, and preserved in absolute
alcohol at 4–6 °C. Thirteen to 30 samples of each population
were sequenced in this study with an scnp marker.
Detailed information on the samples is given in Table S1
(Supplementary material).

Laboratory techniques

Genomic DNA was extracted from muscle of a hind leg
using a modified phenol-chloroform method (Zhang &
Hewitt 1998). The screening process of scnp DNA markers
was similar to the protocol for development of an SNPSTR
system by Mountain et al. (2002), but here we focused on
the flanking regions of the highly variable microsatellite
loci developed in our laboratory (Zhang et al. 2003). Poly-
merase chain reaction (PCR) primers were designed in
the flanking regions of the eight microsatellite loci of the
migratory locust using Oligo 6 (National Biosciences, Inc.)
and synthesized by Sangon Biotech. Amplification from
genomic DNA was performed using Taq DNA polymerase
(HuaMei Biotech) on Perkin Elmer GeneAmp 9700 systems.
Specific PCR products were obtained from the flanking
regions of seven microsatellite loci. Pilot tests were carried
out by sequencing 24 locusts at each of the seven loci on an
ABI PRISM 3100 automated sequencer (Applied Biosystems).

The downstream flanking region of the locus LmIOZc76
(hereafter referred to scnpc76) was chosen for the subsequent
large-scale study because it is highly polymorphic, and
most importantly, it lacks indel mutation in the region we
investigated.

For each of the 526 individuals, a ~300 bp fragment of
scnpc76 was amplified using the primers C76F144 (5′-TATCC
TAAGCGTCTTCATCTC-3′) and C76B436 (5′-TGTTTGCCCG
TCTTTGGTTATT-3′). PCR was performed in a total volume
of 30μL containing 1× Taq reaction buffer, 1.5 mm MgCl2,
0.2 mm of each dNTPs, 0.3 μm of each primer, 1.35 U of
Taq DNA polymerase, about 50 ng of the template DNA.
The temperature profile was as follows: 94 °C for 4 min,
followed by 10 cycles of 95 °C for 15 s, 51 °C for 30 s and
72 °C for 10 s, then 27 cycles of 89 °C for 15 s, 49 °C for 30 s
and 72 °C for 10 s, and finally an extension at 72 °C for
2 min. PCR products were checked on a 1.5% agarose gel
containing 0.5 μg/mL of ethidium bromide. Purified PCR
products were directly sequenced using the PCR primers
with the ABI BigDye Terminators Cycle Sequencing Kit
(version 2.0). Genotype data were carefully inspected at
least three times by eye using sequencher (Gene Codes).
Sequences immediately next to the sequencing primer
often are of lower quality and were excluded. Heterozygous
sites were identified as sites having double peaks clearly
different from the baseline signal, and missing or over-
accounting for such sites constitutes a potential source of error.
When there was any doubt, the individual was then
resequenced or sequenced from the complementary strand
(about a quarter of multisite heterozygotes were sequenced
from both strands in the initial analysis).

In total, 116 multisite heterozygotes (with 85 distinct
genotypes) were verified by molecular cloning based on
the results of the CV approach (see below). Two homozy-
gotes were included as controls for experimental error (the
other distinct homozygotes, they were resequenced at
least once from independent genomic PCR, and no error
or allele-drop was observed). High-fidelity PCR was
performed in a total volume of 30 μL containing 1× Pfu
reaction buffer (Stratagene), 0.2 mm of each dNTPs, 0.3 μm
of each primer, 0.75 U of Pfu DNA polymerase (Strata-
gene), about 50 ng of the template DNA. The temperature
profile was as follows: 94 °C for 2 min, followed by 10
cycles of 95 °C for 30 s, 51 °C for 30 s and 72 °C for 1 min,
then 25 cycles of 89 °C for 30 s, 49 °C for 30 s and 72 °C for
1 min, and finally, an extension at 72 °C for 4  min. Purified
Pfu PCR products were ligated into EcoRV-cut pBluescript
II SK(+) phagemid (Stratagene) using T4 DNA ligase
(Promega), and Escherichia coli TOP10 competent cells
(Tiangen Biotech) were transformed according to the manu-
facturer’s instructions and plated on standard white–blue
selection Luria-Bertani (LB) plates. Colonies were transferred
into 200 μL LB liquid medium and cultured overnight at
37 °C with shaking. Recombinant phagemid DNA was
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extracted using an alkali method (Sambrook et al. 1989)
and dissolved in 70 μL 10 mm Tris HCl (pH 8.0). Four
microlitres of extract was used for subsequent PCR using
the primers C76F144 and C76B436. Then, purified PCR
products were sequenced as above. To control for allele-drop
effect so that both alleles (haplotypes) were obtained and
genotyping errors verified, three to seven independent
clones were sequenced for each genomic Pfu-PCR assay,
and about one-third of individuals were cloned twice from
independent genomic PCR. In several cases, apparently
‘recombinant’ artefact sequences were observed in the
replicate clones analysed.

Specific terms and basic summary statistics

Several specific terms employed in this study are defined
as follows (see also Box 1). ‘Variation’ refers to the nucleotide
state at a polymorphic site the frequency of which is lower
than the most frequent state in population. ‘Ambiguous
individual’ refers to any multisite heterozygote whose
phase is unresolved, and the corresponding genotype is
referred to as ‘ambiguous genotype’. ‘Uncertain individual’
refers to any multisite heterozygote without the highest
consensus votes, and the corresponding genotype is referred
to as ‘uncertain genotype’. ‘CV category’ refers to the vote
category established in the CV approach containing the
multisite heterozygotes receiving the same number of
votes (see below). ‘CV solution’ refers to the solution inferred
by the CV approach, and ‘true solution’ to the solution
determined by molecular cloning experiments. ‘Lost
haplotypes’ refer to the distinct haplotypes that were absent
in the solution of an approach compared to the true
solution. ‘Genotyping errors’ refer to nucleotides originally
scored from the direct sequencing of PCR products that
were found to be in error based on subsequent sequencing
of multiple clones of (independent) PCR products. These
include sites that were originally scored as a single peak
and later found to be heterozygous. The following basic
statistics were used to summarize our scnpc76 data: number
(percentage) of polymorphic sites, number (percentage) of
triallelic sites, number of homozygotes, number of one-
site heterozygotes, number of multisite heterozygotes,
frequencies of variations and heterozygosities of poly-
morphic sites.

Statistical haplotype reconstruction using 
the CV approach

Over 14 algorithms were tested for our data. hapinferx
and slhap (Lin et al. 2002) were kindly provided by Dr Clark
and Dr Lin, the remaining algorithms were downloaded
from their websites (listed at the end of the main text).
Because the size of the data set exceeded the maximum
capacity of several algorithms (e.g. haplotyper), 30 homozy-

gotes with an identical phase (being the most predominant
genotype in our samples, with a percentage of 25.5%) were
excluded at the initial stage of analysis (and readmitted
later, see below). Thus, a data set of 496 individuals was
analysed following these steps:

1 Algorithm examination. Several indices, i.e. the number of
distinct haplotypes (NDH) in a solution, the number of
individuals whose haplotype pair is of low confidence
probability (NLCP) and the likelihood value of the solu-
tion, were used to examine the suitability of an algorithm
to the data. Here, the threshold of low confidence
probability is defined as follows: 0.05 for hapinferx
(probability of the second solution), 0.5 for haplorec,
and 0.95 for the others. Some algorithms may assign
more than one pair of haplotypes to a given individual
with different levels of certainty when confronted with
phase-ambiguous sites. We would like to emphasize
that the NDH value should not be much larger than
the number of polymorphic sites observed in the data
(see Discussion). Note that some algorithms (e.g. haplo-
typer and gchap) employed a coding switch technique
which encoded a triallelic site as two biallelic ones in
order to handle triallelic sites in analysis.

2 Consistency test. Comparison between solutions from
independent runs of the same algorithm was performed
to examine the consistency of that algorithm, a practical
way to further evaluate if an algorithm is suitable for a
data set. Here, ‘independent run’ means separate runs
using different initial random seeds (e.g. phase) or input
order (hapinferx), or iteration numbers with equilibrium
likelihood value (haplorec). Two features were exam-
ined for this. One is the individual-resolving discrepancy
(IRD), that is, the proportion (number) of individuals
whose genotypes were resolved differently between two
solutions. It verifies individual-resolving consistency.
The other is the haplotype-inferring discrepancy (HID),
that is, the discrepancy of distinct haplotypes between
two solutions. HIDab = 1−[2 ki/(ka + kb)], where ki is the
number of identical distinct haplotypes between two
solutions, and ka and kb are the number of distinct
haplotypes in two solutions, respectively. HID evaluates
haplotype-inferring consistency. In addition, all algorithms
were inspected for inconsistencies between input and
output files (i.e. heterozygous sites of some individuals
in the input file were reported as homozygous in the
output file), which were observed in some simulation
studies (Excoffier et al. 2003). This was not observed in
our study. Finally, six algorithms within three theoretical
frameworks (hapinferx, arlequin 3.11-EM, gchap, phase
2.1.1, haplotyper 1.0 and haplorec 1.0) were employed
in our CV approach (see Discussion).

3 Data grouping according to consensus votes. We sorted
homozygotes and one-site heterozygotes into two
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categories, H and S, respectively. Then, for each ambiguous
individual, we examined the sameness of six solutions.
Each is the most likely solution with high confidence
probability from the corresponding algorithm. Here,
the solution with low confidence probability was not
considered. We then conducted a consensus vote to
choose the best-matched solution. We put equal weight
to each algorithm, except for individuals having two
primary haplotype pairs which obtained equal votes. In
the latter case, we preferred to choose the non-hapinferx
solution. This is because hapinferx is sensitive to input
order (Clark 1990), and more sensitive to departure from
HWE and genetic diversity level than other algorithms
(Niu et al. 2002; Niu 2004). Individuals were grouped
into different CV categories according to their consensus
votes. Here, we ignored a special bias which haplotyper
generated — a low confidence probability (0.5 or so) was
given to nine individuals with the same genotype in the
category with six votes. Such a bias occurring at multi-
individual level is extremely rare, and disappeared when
only a subset of the data was analysed.

Using the above methods, a set of grouped data was
obtained, in which each individual bearing two defined or
inferred haplotypes was classified into a certain category,
and with the 30 homozygotes dropped out earlier (due to
data set size constraint, see above) readmitted. The total
data were partitioned into six categories: H, S, I, II, III, and
IV. Category H is composed of homozygotes, and thus
with clear phases; category S consists of one-site heterozy-
gotes, the phase of which can be unambiguously deduced;
categories I to III contain individuals with six to four votes,
respectively; the last category (IV) comprises individuals
with two and three votes. This also formed the CV solution
of the total data.

Evaluation of the performance of the statistical methods 
and the CV approach

Besides the several diagnostic indices described above (e.g.
NDH and NLCP) for individual algorithms, we performed
pairwise comparisons both between the CV solution and
those individual algorithms and between the six algori-
thms themselves by examining their IRD and HID. The
two measures (IRD and HID) indirectly (compared to the
CV solution) and directly (compared with each other)
reflect the different performance of the six algorithms on
our data.

After we obtained the true solution through experimental
verification, the performance of haplotype inference by the
six algorithms and the CV approach was examined through
five accuracy measures. The first four are: (i) the error rate
of individuals (the proportion of individuals whose haplo-
types are not correct; Niu et al. 2002), (ii) the error rate of

distinct genotypes (the proportion of distinct genotypes
whose haplotypes are not correct), (iii) the switch error (a
measure of the similarity between the estimated haplo-
types and the true haplotypes from the switch accuracy
defined by Lin et al. (2002), averaged over the ambiguous
individuals in the sample), and (iv) the haplotype-inferring
error (the errors of distinct haplotypes between the
solution of the statistical approach and the true solution,
calculated using the HID formula, see above). The switch
error for an individual is defined as sw/(n − 1), where n
denotes the number of heterozygous sites and sw the
number of phase switches required to recover the correct
haplotype pair from the reconstructed pair. The haplotype-
inferring error considers both the incorrectly inferred
haplotypes (not actually present) and the lost haplotypes
(present but not inferred). The fifth measure is the mean
squared error (MSEte), a global measure of discrepancy of
haplotype frequencies between the estimated and the
true values for a data set (Fallin & Schork 2000). This
allows comparison of the haplotype frequencies in the true
solution (Tk) to the corresponding estimates (Ek) of the six
algorithms and the CV approach. MSEte = [Σk(Tk−Ek)2]/n,
where k = 1 ... n, where n is the number of distinct haplo-
types in the true solution. Note that smaller values of
these measures indicate a better performance. For sim-
plicity and clarity, individuals with genotyping errors
were excluded from analysis (this does not affect the
conclusion obtained).

Analysis of the grouped data

Separate HWE tests (Guo & Thompson 1992) were performed
for each polymorphic site on genotype data using arlequin
3.11 (Excoffier et al. 2005). Genetic diversity within popu-
lations was measured by nucleotide diversity (π) and
haplotype diversity (h) calculated using arlequin 3.11.
Correlation analysis was performed using statistica 6.0
(StatSoft).

The amount and quality of phase information extracted
from the genotype data varied considerably among cate-
gories. To characterize the sensitivity of the CV approach to
genetic diversity within populations, we examined the
correlations between genetic diversity of populations and
the increments in category I of resolved distinct genotypes,
distinct haplotypes and polymorphic sites in the 31 studied
populations. In addition, for inspecting the effect of the
number of heterozygous sites on haplotype reconstruction
in multisite heterozygotes, we examined the cumulative
resolutions of resolved individuals and resolved genotypes
as the functions of the number of heterozygous sites and
the CV categories (I–IV).

In many haplotype reconstruction studies using real
data (e.g. in linkage analysis), rare variations (defined as
those whose frequency at the relevant polymorphic site
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is ≤ 5%) were excluded because they contributed very little
information to the whole data. But here we included them
since rare variations in population genetic studies provide
important information about the evolutionary and
demographical history of the species. Thus, it is essential
to understand the effect of rare variations on haplotype
reconstruction. We inspected the patterns of distribution of
heterozygous sites in the four CV categories (I–IV) on two
frequency thresholds of 1% and 5%.

We have written a Perl script CVhaplot to automatically
perform the CV analysis described above. It is freely available
from the website for noncommercial purpose (http://
www.ioz.ac.cn/department/agripest/group/zhangdx/
ZhangDX_E.htm).

Results

Characteristics of the raw scnpc76 data set

The length of the scnpc76 sequences used in our analysis is
251 bp (sites 182–432 of the GenBank sequence AJ558251),
with 71 (28.3%) nucleotide sites being polymorphic in the
total data, of which seven are triallelic (9.9%) and the rest
biallelic (90.1%). All polymorphic changes are nucleotide
substitutions. The average probability that an individual is
heterozygous at a nucleotide site is 0.021, that is, an
individual is expected to be heterozygous at one of every
48 sites at this locus. The number of heterozygous sites
in heterozygotes varies from one to 18 (but 10 and 11 not
being observed). Our data also revealed that sites that
host variations with higher population frequency are
more likely to be in Hardy–Weinberg disequilibrium
(HWD), with an excess of homozygosity. This considerably
decreases the complexity of our data. The detailed infor-

mation (including frequencies of variations, heterozygosities
of polymorphic sites and HWD at polymorphic sites) is
provided in Table S2 (Supplementary material).

Among the 526 individuals sequenced, there are 179
homozygotes, 15 one-site heterozygotes and 332 multisite
heterozygotes. The most predominant homozygotes have
a frequency of 25.5% (134 individuals). The raw data con-
tain 141 distinct genotypes with their frequencies ranging
from 0.2% (one individual) to 25.5% (134 individuals), of
which 17 are from homozygous, nine from one-site hetero-
zygous, and 115 from multisite heterozygous (Fig. S1,
Supplementary material). A large proportion (87.8%) of
ambiguous genotypes occurred at extremely low frequency
(< 1%). Twenty-four distinct haplotypes were unambi-
guously defined from the first two categories (H and S),
which is an essential prerequisite for starting the program
hapinferx.

Haplotype reconstruction using the CV approach

The number of distinct haplotypes (NDH) inferred by the
six algorithms varies from 67 to 78. The CV solution
consists of 68 distinct haplotypes, which were partitioned
into six categories (H, S, I–IV) according to the char-
acteristics of the raw genotype data and their consensus
votes (Table 1). The 24 haplotypes determined directly
and unambiguously from the sequences of homozygotes
(category H) and one-site heterozygotes (category S) account
in frequency for 91.4% of haplotypes of the entire sample
(1052 chromosomes). The frequency distributions of the
68 haplotypes of the CV solution are shown in Fig. S1. An
l-shaped highly skewed distribution is evident, with a
long tail containing the inferred haplotypes. Haplotype 1
has a much higher frequency (46.2%, 486 out of 1052

Table 1 Summary statistics on the consensus vote approach and experimental verification over the CV categories

CV category H S I II III IV Overall

Consensus votes NA NA 6 5 4 3 & 2 NA
Individuals 179 15 265 32 25 10 526
Number of distinct genotypes 17 9 64 22 20 9 141
Total distinct haplotypes 17 15 30 28 26 13 68
Number of category-unique haplotypes* 17 7 11 11 16 6 68
Frequency (%) of category-unique 

haplotypes in the total sample
85.6 5.8 4.3 1.8 1.8 0.7 100

Cloned individuals† 2¶ 0 50 25 21 8 106
Genotyping error NA NA 6 6 1 1 14
Individual-resolving error‡ NA NA 0 40.0% 28.6% 25.0% 5.8%
Error rate of haplotypes§ NA NA 0 28.6% 53.3% 25.0% 19.3%

NA, not applicable. *Refers to haplotypes that were newly observed in a category (i.e. not observed in the previous categories). †For each 
category-unique haplotype in categories I–IV, at least one individual was verified via molecular cloning and sequencing. ‡Error rate of 
individuals. §Denotes the proportion of incorrectly inferred haplotypes in the solution of the approach. ¶For the other distinct 
homozygotes, they were resequenced at least once from independent genomic PCR, and no error or allele-drop was observed.

http://www.ioz.ac.cn/department/agripest/group/zhangdx/ZhangDX_E.htm
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haplotypes) than the others. The remaining 67 haplotypes
vary in frequency from 6.7 to 0.1%. Fifty-three haplotypes,
including all 44 haplotypes inferred by the CV approach,
are extremely rare (frequency below 1%), with 30
haplotypes occurring only once (28 inferred). Experimental
verification confirmed that the CV approach has the best
overall performance (Table 2), with more than 96% of
individuals assigned correct haplotypes, and the accuracy
of haplotype-inferring was the highest (80%). It also has the
lowest switch error.

The CV approach has the unique ability to identify
uncertain inferrals (those in categories II-IV). Figure 1
shows the cumulative resolution of individuals, genotypes,
haplotypes and polymorphic sites over the CV categories.
The sharp increase in the percentage of resolved individuals
(from 36.9 to 87.3%) and resolved genotypes (from 18.4 to

63.8%) is most notable from S to I, despite the only modest
increase of distinct haplotypes (from 35.3 to 51.5%) and
polymorphic sites (from 52.1 to 62.0%). Experimental
verification confirmed that there is no error for inferrals
in category I (Table 1).

The sensitivity of the CV approach to levels of genetic
diversity was investigated. Here, we characterized genetic
diversity within populations by nucleotide diversity (π)
and haplotype diversity (h). The values of these two meas-
ures of the total sample are 0.0243 and 0.775, respectively.
In the 31 populations studied, nucleotide diversity (π) ranges
from 0.0119 to 0.0355, and haplotype diversity (h) from
0.437 to 0.938. There was a significant correlation between
π and h in populations (Pearson correlation coefficient,
0.807, d.f. = 30, P < 0.001). There were significant negative
correlations between the increments of the resolved geno-
types/haplotypes/polymorphic sites from S to I and
the levels of haplotype diversity (or nucleotide diversity)
(Fig. S2A–C, Supplementary material. Pearson correlation
coefficients: with haplotype diversity, –0.478/–0.488/–0.484,
P = 0.007/0.005/0.006 for genotypes/haplotypes/poly-
morphic sites, respectively, d.f. = 30; with nucleotide
diversity –0.500/–0.427/–0.437, P = 0.004/0.017/0.014 for
genotypes/haplotypes/polymorphic sites, respectively,
d.f. = 30). In addition, statistical inference errors occurred
significantly more frequently in populations with high
haplotype diversity (Fig. S3, Supplementary material;
Pearson correlation coefficients, 0.531/0.409, P = 0.002/0.022
for individuals/genotypes, respectively, d.f. = 30), and
significant correlations between inference error rates
and the levels of haplotype diversity (Fig. S2D–E) were
observed (Pearson correlation coefficients, 0.507/0.382,
P = 0.004/0.034 for individuals/genotypes, respectively,
d.f. = 30).

Table 2 Performance and reliability of the consensus vote approach and the solutions of the six statistical algorithms with the scnpc76 data

Methods

Error rate (%)

MSE** (E-06)Individuals* Genotypes† Switch‡ Haplotype-inferring§ Haplotypes¶

Consensus vote 3.6 (5.8) 8.7 (11.0) 1.5 20.0 19.3/20.7 2.8
hapinferx 6.1 (9.9) 15.9 (20.0) 3.3 26.8 30.8/22.4 9.7
phase 2.1.1 3.9 (6.4) 9.5 (12.0) 1.7 22.4 22.4/22.4 2.9
haplotyper 1.0 3.6 (5.8) 8.7 (11.0) 1.6 20.0 19.3/20.7 2.6
haplorec 1.0 4.1 (6.7) 10.3 (13.0) 2.3 20.7 23.8/17.2 2.8
arlequin 3 .11-em 5.3 (8.6) 12.7 (16.0) 2.7 24.4 26.2/22.4 6.8
gchap 3.7 (6.1) 11.9 (15.0) 1.9 28.2 28.8/27.6 2.1

Values in italics indicate the best performance value. *Inference error rate of individuals. Value in parenthesis is the value if only the 
ambiguous individuals were considered. †Inference error rate of genotypes. Value in parenthesis is the value if only the ambiguous 
genotypes were considered. ‡Switch error, see the text. §Haplotype-inferring error, i.e. the errors of distinct haplotypes between the solution 
of a statistical approach and the true solution. It considers both the incorrectly inferred haplotypes (not actually present) and the lost 
haplotypes (present but not inferred). ¶Haplotype-inferring error shown as the proportion of incorrectly inferred haplotypes in the solution 
of the approach and the proportion of lost haplotypes compared to the true solution. **Mean squared error.

Fig. 1 Cumulative resolution of statistical inference over the CV
categories using the CV approach. The cumulative percentages of
resolved individuals, resolved genotypes, distinct haplotypes and
polymorphic sites were plotted against the six CV categories.
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Figure 2(a–b) shows the cumulative frequency distribu-
tion of the resolved individuals and resolved genotypes as
the functions of the number of heterozygous sites and the
CV categories (I–IV). All cumulative distributions approx-
imate a bimodal distribution. The number of uncertain
individuals (genotypes) is proportional to the number of
ambiguous individuals (genotypes) but not to the number
of heterozygous sites. Also, the inference error rate does
not increase with the increase of the number of heterozygous
sites (Fig. 2c–d. Spearman rank correlation coefficients,
–0.079/–0.083, P = 0.779/0.769 for individuals/genotypes,
respectively, d.f. = 14). It is interesting to observe the
bimodal distribution of heterozygotes in regard to the
number of heterozygous sites they carry. This is owing to
the presence of two highly diverged lineages of haplotypes

in the migratory locust, presumably a result of ancient
population isolation.

A closer inspection of 115 ambiguous genotypes shows
that rare variations (frequency ≤ 5%) can influence haplo-
type reconstruction of genotypes (individuals) bearing such
variations, with the resolution of genotypes tending not to
be accepted by all algorithms. Figure 3 shows the distribu-
tional patterns of heterozygous sites in the four CV categories
(I–IV). Clearly, there are relatively less rare variations in
category I than in the other three categories (II–IV). This is
especially true for those with extremely rare variation
(frequency < 1%, red boxes in Fig. 3). The extremely rare
variations occurred 45% less frequently, and 2.5 times, 3.3
times and 2.4 times more frequently than expected in the
CV categories I, and II, III and IV, respectively, and this

Fig. 2 Frequency distribution of the resolved individuals, resolved genotypes and inference errors on functions of the number of
heterozygous sites. (a) Comparison of the cumulative frequency distribution of the resolved individuals among the CV categories (I–IV).
(b) Comparison of the cumulative frequency distribution of the resolved genotypes among the CV categories (I–IV). (c) Comparison of the
distribution of the inference errors of ambiguous individuals among the six inference methods and the CV approach. (d) Comparison of
the distribution of the inference errors of ambiguous genotypes among the six inference methods and the CV approach. Note that the dark
blue line in C and D, as the reference line, plotted the total numbers of individuals (genotypes) that were experimentally verified by high-
fidelity Pfu PCR cloning and sequencing; the other lines, the number of observed errors of the seven different approaches.

Fig. 3 Distribution patterns of the heterozygous sites of the 115 ambiguous genotypes over the four CV categories (I–IV). The Arabic
numbers on the top are the nucleotide positions of the polymorphic sites with reference to the GenBank sequence AJ558251. The Arabic
numbers on the left-hand side are the serial number of the ambiguous genotype (note: genotypes 1–26 are in the category H and S). The
Arabic numbers on the right-hand side are the frequency of the correspondent genotype in the total sample. The roman numerals on the
right-hand side indicate the CV categories to which the corresponding genotypes belong. Category I is composed of 64 distinct genotypes
(No. 27–90), the other three categories include 22, 20 and nine distinct genotypes, respectively. A blue box represents the common
heterozygotes (frequency > 5%) at the site, a green box the rare heterozygotes (1–5%), and a red box the extremely rare heterozygotes (< 1%).
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uneven distribution is statistically significant (χ2 = 90.14,
d.f. = 3, P < 0.001). Moreover, 22 of the 23 singleton varia-
tions fell into the categories II to IV (the only remaining
one in S). Our experimental study revealed that 83.3% of
inference errors resulted from rare variations, with 33.3%
from extremely rare variations (frequency < 1%). In addition,
the phase of 26.3% heterozygous sites with singleton
variation was incorrectly inferred.

Experimental verification

Five independent clones have been sequenced for each of
the two homozygote controls and no error was observed,
indicating that the high-fidelity PCR and cloning system
was reliable. Among the 116 ambiguous individuals (with
85 genotypes) verified by cloning experiment (Table 1),
statistical inference errors were observed in 33% of uncertain
individuals (categories II–IV), and no such errors in indi-
viduals of category I. Overall, 20 haplotypes and 67
haplotype pairs inferred from the CV approach were
confirmed by experiments, and 14 new haplotypes and 18
new haplotype pairs uncovered. Thus, after experimental
verification, the final numbers of segregating sites, distinct
haplotypes and distinct genotypes for the locust data
were reduced to 70, 63 and 138, respectively (The EMBL
database accession numbers of the 63 haplotype sequences
are AM889405–AM889467). The highest frequency of any
haplotype in our data is 45.5% (479 out of 1052 haplotypes).
The top four common haplotypes (those with a frequency
> 5%), the top nine common haplotypes (those with a
frequency > 2%) and the first 24 unambiguous haplotypes
account for 65.0%, 78.8% and 91.3% of haplotypes of the
entire sample, respectively. Sequencing bias (refers to
nonhuman-mediated errors) is the main contributor of
genotyping errors. The overall genotyping error is about
2.7% for our raw data (that is, 2.7% of total individuals
encountered some genotyping error); such quality is
essential for a successful statistical haplotype reconstruction
and frequency estimation (Kirk & Cardon 2002; Niu 2004).
This amount of genotyping errors does not change the
significance of statistical test results, nor does it modify the
conclusions. Therefore, for the sake of clarity and simplicity,
we do not include them in the following discussion unless
otherwise specified (but their effects were considered in
our analyses).

Discussion

The performance of statistical haplotype reconstruction 
methods

The six algorithms all performed quite well in either
haplotype assignment to individuals or estimation of
haplotype frequencies (Table 2). In general, more than 90%

of ambiguous individuals were assigned correct haplotypes.
The accuracy of the estimation of haplotype frequencies
can be seen from the small values of the mean squared
error (MSE). Such a performance is due to several particular
proprieties of the data, including: (i) large sample size (526
individuals), (ii) a significant proportion of individuals
with clear phase (34% homozygotes and 2.9% one-site
heterozygotes), with 24 distinct haplotypes defined, (iii) a
much smaller number of distinct haplotypes (63) compared
to the total (1052), and highly skewed frequency dis-
tribution (0.1%–45.5%, l-shaped), (iv) HWD at variable
sites with excess homozygosity, and (v) moderate haplotype
diversity of the entire sample (0.775). These archetypal
characteristics (Fallin & Schork 2000; Niu et al. 2002;
Eronen et al. 2006) make the scnpc76 data most favourable
for statistical haplotype inference. Nevertheless, in this
case, haplotype-inferring appears to be more problematic
than individual-resolving in statistical haplotype recon-
struction (Tables 2–4), as indicated by the generally larger
haplotype-inferring discrepancy (HID) than individual-
resolving discrepancy (IRD), both among independent
runs of the same algorithm (Table 3) and among different
algorithms (Table 4). The haplotype-inferring error is
around 20% (and can be as higher as 28.2% for gchap, for
example; Table 2). Much of the bias in haplotype frequency
estimation results from common haplotypes (frequency >
5%), especially from the most frequent one (data not shown).

The solutions of the six algorithms produce different fea-
tures, as shown in Tables 3 and 4. For example, the different
values of NLCP suggest that these algorithms could not
always assign confident haplotypes to a varying portion of
ambiguous individuals. While hapinferx and haplorec
appeared to be sensitive to the running conditions, phase,
haplotyper, arlequin-EM and gchap showed little
sensitivity. Inference consistency was inspected in five
of the six algorithms (hapinferx, phase, haplotyper,
arlequin-EM and haplorec) by comparing solutions of
independent runs (gchap did not show any difference
between runs). The consistency of the last four algorithms
(i.e. except hapinferx) was found to be fairly good, with
the values of the discrepancy measures being very small
(< 1% for IRD and < 5% for HID). However, input order
resulted in inconsistency among solutions of hapinferx.

Our results also demonstrated that no individual
algorithm is free from inference errors. For example, phase
is one of the most popular algorithms due to its excellent
performance (e.g. Stephens & Donnelly 2003; Adkins 2004;
Marchini et al. 2006), but based on the confidence probability
of haplotype assignment on our data, its solution is not
reliable (as noticed by Sabbagh & Darlu 2005. Here, we
have summarized its performance over independent
analyses from multiple runs). It should be noted that
gchap performed well in our study, and yielded an excep-
tionally low value of NLCP (Table 3). However, it would be
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imprudent to directly employ its solution in downstream
analyses, because it gave high confidence probabilities to
many incorrect inferrals in its solution. Therefore, behind
its superficial least value of NLCP is rather frequent
misassignment.

Statistical haplotyping using the CV approach

The CV approach partitions the ambiguous genotype data
into different categories according to the number of votes
a solution has received. It is expected that solutions that
were supported by all algorithms should be mostly likely
correct because they pass the test of all algorithms with
different underlying statistical assumptions and computa-

tional techniques. This expectation has been confirmed in
our study. The incorrect haplotypes inferred in the CV
solution only occurred in categories II–IV and not in the
category I (Table 1). Therefore, the CV approach allows us
to focus on solutions with greater uncertainty in experi-
mental verification, i.e. those in categories II–IV. This
considerably reduces experimental work while acknow-
ledging uncertainty in statistical haplotype inference.
Our experimental work proved the effectiveness of such
an approach.

Our results indicate that pooled data from multiple
geographical populations with varying levels of genetic
diversity do not affect much the overall performance of
the CV approach, provided that populations do not have

Table 3 Running specifications of the six selected algorithms and basic statistics of their solutions on the scnpc76 genotype data of Locusta
migratoria

Algorithms Coding switch Initial conditions

Diagnostic indices

NDH* NLCP† IRD(SD)‡ HID(SD)§

hapinferx – Variable input order 78 14 3.4% (2.0%) 13.7% (8.4%)
phase 2.1.1 – MR, 2000 iterations 67 30 0.3% (0.3%) 2.1% (1.5%)
haplotyper 1.0 + Default 67 31 0.7% (0.4%) 4.1% (2.0%)
haplorec 1.0 – VMM 76 47 0.7% (0.4%) 3.7% (2.3%)
arlequin 3.11-em – Default 73 15 0.04% (0.08%) 0.3% (0.6%)
gchap + Default 70 2 NA NA

NA, not applicable. The two statistics of consistency (IRD and HID) resulted from the pairwise comparisons of 10 independent runs. 
*Number of distinct haplotypes in a solution. †Number of individuals whose haplotype pair is of low confidence probability in a solution. 
‡Individual-resolving discrepancy, the proportion of individuals whose genotypes were resolved differently between two solutions. 
§Haplotype-inferring discrepancy, i.e. the discrepancy of distinct haplotypes between two solutions. SD, standard deviation.

Table 4 Pairwise comparisons of the
solutions of the CV approach and the six
algorithms according to the haplotype-
inferring discrepancy (above diagonal) and
individual-resolving discrepancy (below
diagonal). All values in %

HIF PHA HTY HAR AEM GCH CV

Mean discrepancy*

IRD† HID‡

HIF 24.1 17.2 33.8 6.0 16.2 12.3 5.1 19.5
PHA 6.1 16.4 30.1 21.4 24.1 15.6 4.4 23.2
HTY 5.3 2.3 27.3 14.3 18.2 5.2 3.7 18.7
HAR 6.7 4.8 4.2 32.9 37.0 26.4 5.6 32.2
AEM 2.3 4.2 3.4 5.9 16.1 9.2 4.0 18.1
GCH 5.3 4.2 3.6 6.3 4.2 14.5 4.8 22.3
CV 4.0 2.5 1.0 3.8 2.5 2.9 NA NA

NA, not applicable. Values in italics indicate the largest discrepancy. Abbreviations used: 
HIF, hapinferx; PHA, phase 2.1.1; HTY, haplotyper 1.0; HAR, haplorec 1.0; AEM, 
arlequin 3.11-EM; GCH, gchap; CV, consensus vote. *The mean values only consider 
pairwise comparison among the solutions of the six algorithms. †Individual-resolving 
discrepancy, i.e. the proportion of individuals whose genotypes were resolved differently in 
two solutions. ‡Haplotype-inferring discrepancy, i.e. the discrepancy of distinct haplotypes 
between two solutions.
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extremely high genetic diversity. This considerably extends
the conclusions from studies treating only two subsamples
with conventional statistical approaches (Stephens & Scheet
2005; Scheet & Stephens 2006; Andres et al. 2007). Another
feature worth pointing out is that the elevated number of
heterozygous sites in scnpc76 marker has little influence
on the inference quality in our study — both the resolution
of the CV approach and the error rate of the six algorithms
were independent of the number of heterozygous sites in
ambiguous individuals (Fig. 2). Therefore, Adkins’ warning
that ‘computationally assigned haplotypes for subjects
heterozygous at more than four single nucleoutide poly-
morphisms (SNPs) should be viewed with extreme caution’
(Adkins 2004) may not be generally applicable in scnp
DNA studies.

Several qualities makes the CV approach a potentially
effective strategy for haplotype reconstruction, viz. its
considerable tolerance of pooled population samples with
varying genetic diversity (even population substructure),
insensitivity to the number of heterozygous sites borne
in ambiguous genotypes, and the aforementioned unique
power to partition the inferrals into a reliable group and an
uncertain group. However, there are some imperfections of
this approach as seen in our analysis. First, we observed
that some statistical biases generated by different algorithms
are not independent, which may somehow compromise
this approach. A closer inspection reveals that several algo-
rithms gave wrong solutions to a number of identical
individuals in category II, producing an unexpected
elevated error rate of individuals in this category (Table 1).
Qin et al. (2002) also noticed that algorithms can make
inference errors on the same individuals. This is a limitation
of current statistical haplotype inference algorithms that
may unexpectedly reduce the effectiveness of the CV
approach. Second, because the CV approach is an algorithm-
dependent strategy, its performance is inevitably affected
by the algorithms included. Therefore, the CV approach
retains some characteristics common to the individual
algorithms it includes. For example, it shows some sensi-
tivity to high genetic diversity in populations, because each
of the six individual algorithms employed in this study
(hapinferx, phase, haplotyper, arlequin-EM, haplorec,
and gchap) produced significantly more inference errors
in populations with high genetic diversity (Fig. S3) (Pearson
correlation coefficients: with haplotype diversity, 0.518/
0.530/0.491/0.551/0.505/0.459, P = 0.003/0.002/0.005/
0.001/0.004/0.009, respectively, d.f. = 30; with nucleotide
diversity, 0.521/0.448/0.473/0.551/0.472/0.442, P = 0.003/
0.011/0.007/0.001/0.007/0.013, respectively, d.f. = 30).
Third, for some algorithms, data pooling may occasionally
decrease the confidence probability of the correct solution
of certain low frequency genotypes. In our case, this was
observed for one genotype (frequency 1.7%) in haplotyper.
Fourth, further examination is needed to see how robustly

the CV approach can deal with pooled population data in
a much wider context.

Rare variations and rare haplotypes

In applications such as linkage analysis or trait mapping,
rare variations can be ignored without losing much
information. However, rare variations and rare haplotypes
can be very important, for example in the genetic study of
complex human diseases (Pritchard 2001; Cohen et al. 2004),
or even essential, for example in evolutionary analysis of
natural populations (Crandall & Templeton 1993; Brumfield
et al. 2003; Templeton 2004). Thus, it is important to
understand the behaviours and effects of rare variations
and rare haplotypes in statistical haplotype reconstruction
for scnp markers. As an important feature, our data contain
a large proportion (about 90%) of rare ambiguous geno-
types (i.e. those with frequency < 1%) which harbour a
large portion (> 70%) of rare variations (i.e. those with
frequency ≤ 5%) and a large number (47) of rare haplotypes
(i.e. those with frequency < 1%).

Rare variations may have an important impact on
statistical inference if the reliability of haplotype phases
rather than the haplotype frequencies in a population is the
central concern (Fallin & Schork 2000; Stephens et al. 2001;
Lin et al. 2002). With the CV approach, the high proportion
of rare variations in our data leads to increased genotype-
resolving uncertainty and error (Fig. 3). Statistically,
genotypes with heterozygous sites bearing extremely rare
variation tend not to be identically resolved by all algo-
rithms (Fisher’s exact test, P < 0.001), thus leading to more
inference uncertainties and errors. The test is still significant
even when the variations were extended to those with a
frequency of ≤ 5% (P = 0.012). We observed that 72.7%
inference errors of distinct genotypes directly resulted from
heterozygous sites with rare variation, and all incorrectly
resolved genotypes contained heterozygous sites with rare
variation. For the six statistical haplotype reconstruction
methods, both the incorrect haplotypes and the lost haplo-
types have an extremely low population frequency (< 0.7%).
In the CV solution, 11 of the 44 inferred haplotypes (all in
categories II–IV and with a frequency < 0.5%) are inference
artefacts. This indicates that the haplotype-inferring errors
resulted entirely from extremely rare haplotypes in our
study. Such a tendency was also observed in other studies
(e.g. Tishkoff et al. 2000 and Adkins 2004). Dramatic changes
of haplotype frequency estimates between the values of the
solution of a given approach and the true solution occurred
only with the low frequency haplotypes, as noticed by
Tishkoff et al. (2000) and Sabbagh & Darlu (2005). The
above observations call for extra surveillance of rare varia-
tions and haplotypes in the inferred solutions. This also
means that empirical verification should focus more on
such haplotypes.
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Application of the CV approach: some practical 
considerations

The potential value of nuclear DNA analysis in genetic
studies of populations has greatly stimulated the
development of haplotype reconstruction algorithms. In
consequence, the recent rapid development of statistical
haplotying algorithms (see review, Salem et al. 2005)
provides the basis to develop the CV approach. This has
the potential to become a cost-effective strategy for haplo-
typing in large-scale investigations such as population
genetic studies with scnp markers. Thus, an interesting
question is which (and also how many) algorithms should
be included in the CV approach. A large number of
algorithms will in general increase the reliability but at the
expense of more effort and time, whereas fewer algorithms
or a poor combination of algorithms will impair the power
of the CV approach. It is a challenging task to find the
best combination of algorithms, since the actual phase
information of the raw genotype data is unclear.

We recommend the following operational procedures
when the CV approach is applied. First, the characteristics
of the genotype data should be reviewed to see how close
they fit to the theoretical expectations (see above). If the
data fit well, less difficulty is expected for haplotype infer-
ence. Second, a pilot test of algorithms should be per-
formed to examine the relevant diagnostic indices on initial
conditions and consistency (see Materials and methods).
Most algorithms developed so far are orientated, either
explicitly or implicitly, to particular applications. The
theories and computational techniques embedded in an
algorithm (for reviews, see Halldorsson et al. 2004; Niu
2004) reflect the authors’ opinions on the specific data in
question (e.g. type of data, haplotype structure, etc.).
Therefore, the performance of these methods is likely to be
different when they are applied to other data. For example,
the human genome contains millions of SNPs (Kruglyak &
Nickerson 2001; International HapMap Consortium 2005),
most of which are biallelic. Thus, many algorithms were
especially designed for biallelic SNP data, and hence
unable to satisfy genealogical research requirements with
scnp marker containing triallelic sites. These are rather
common in large-scale population genetic analysis; for
example, 10% polymorphic sites are triallelic in our case.
In this regard, phase assumes a special model of parent-
independent mutation  that is quite appropriate for triallelic
sites, and performs well on our genotype data (as well as its
stepwise mutation model). Some biallelic data-orientated
algorithms (e.g. haplotyper, gchap) can use the coding
switch technique to accommodate triallelic sites. But the
coding switch technique occasionally can lead to inference
errors; for example, it has falsely chosen the fictitious
haplotype created by some redundant coding in gchap in
our study.

Third, a careful selection of representative algorithms
should be undertaken. Basing on the type of technical
framework with which a program handles segregating
sites in long sequence data (i.e. data bearing a large number
of segregating sites), statistical haplotype reconstruction
methods can be divided into four groups: PL-based (e.g.
haplotyper), sequential-based (e.g. gchap), block parti-
tioning-based [e.g. gerbil (Kimmel & Shamir 2005)] and
others (e.g. hapinferx). Therefore, there are three different
strategies for selecting the statistical methods in a CV
approach. The first is to select methods basing on different
theoretical frameworks (parsimony, EM or Bayesian, see
Introduction); the second is to select methods basing on
different technical frameworks; and the third is a combina-
tion of the above two strategies. A retrospective examination
showed that each of these strategies can produce an optimal
combination of algorithms for our data (here, optimal
combination refers to a combination that has the least
number of algorithms and the best performance power).
It is encouraging to see that there are multiple optimal
combinations, and the minimum number of algorithms
required can be just three for our data (gchap, haplorec
and gerbil). This further suggests the power and effective-
ness of the CV approach in population genetic study. A
good rule of thumb is that a fair number of disparate
algorithms should be included in the CV approach to safe-
guard the inference results, since the optimal combination
can not be known ahead of analysis. As a good starting
point, we recommend that the following algorithms,
hapinferx, phase, haplotyper, arlequin-EM, gchap,
haplorec and gerbil, should be first tested in haplotype
reconstruction with scnp DNA markers.

Fourth, we strongly suggest considering carefully the
confidence probabilities proposed by individual algorithms.
When ambiguous individuals have two solutions with
equal votes with some algorithm, a lower weight should be
accorded by the particular rules mentioned above. In such
cases, the accuracy of the CV approach can be improved by
giving a lower weight to hapinferx, or to the solution with
the largest NDH value if hapinferx is not involved.

Finally, some parsimonious criteria assist in statistical
haplotype reconstruction. First, the more distinct haplo-
types a solution of a given algorithm contains, the more
uncertainties and/or errors it includes. A similar observa-
tion was made in the study of the human apolipoprotein
E locus using some rule-based algorithms (Orzack et al.
2003). Moreover, there is a significant correlation between
the number of distinct haplotypes resolved by statistical
methods and inference errors (Spearman rank correlation
coefficient, 0.674 for haplotype-inferring error, d.f. = 11,
P = 0.016; 0.857 for the individual error, d.f. = 11, P < 0.001).
In general, solutions that contain fewer distinct haplotypes
are more accurate. This is true both for comparison among
algorithms and among independent runs of a given
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algorithm. Second, the true solution of our data contains
63 haplotypes, which is smaller than the number of poly-
morphic sites (N = 70). This is consistent with the parsimonious
prediction that if there is no recombination and no recur-
rent mutation, the number of observed haplotypes should
be in general no greater than (N + 1) despite of the fact that
N biallelic sites can generate up to 2N different haplotypes.
Thus, the parsimonious expectation defines the upper limit
of the number of distinct haplotypes contained in the data.
Third, haplotypes in a short nuclear genomic region should
typically have an extremely skewed frequency distribution.
At the scnpc76 locus of the migratory locust, the top four
common haplotypes (frequency > 5%) and the top nine
common haplotypes (frequency > 2%) account for 65.0%
and 78.8% of haplotypes of the entire sample (1052 chromo-
somes), respectively. This is analogous with the observation
that a few (two to five) common haplotypes constituted
some 70–90% of the haplotypes in population in the analysis
of human chromosome 21 (Patil et al. 2001). These features
provide a practical tool for identifying anomaly in statistical
haplotype reconstruction.

In population genetic studies, often it is more effective to
sample more populations than to increase the number of
samples per population if the total number of samples to be
analysed is constrained, provided that a minimum sample
size per population (e.g. 15–20) can be guaranteed. It is not
uncommon in practice that the number of samples that can
be collected from natural populations is limited for various
reasons. The performance of statistical algorithms in
such situations can be problematic, due to higher error rate
when individual populations are used as the analysis unit
in haplotype reconstruction (see Stephens et al. 2001; Wang
& Xu 2003; Zhang et al. 2006). In addition, the reliability of
the inferrals cannot always be guaranteed by the confidence
probability of haplotype assignment suggested by individual
algorithms, although a number of statistical methods
can somehow accommodate population pooling. In such
cases, the CV approach can be an effective strategy for
statistical haplotype reconstruction by pooling data from
all sampling sites.
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Websites

The Websites of haplotype reconstruction software used in 
this article are as follows:
arlequin, http://cmpg.unibe.ch/software/arlequin3/
gchap, http://www-genepi.med.utah.edu/~alun/software/
gerbil, http://acgt.cs.tau.ac.il/gevalt/
hap, http://research.calit2.net/hap/
haplorec, http://www.cs.helsinki.fi/group/genetics/

haplotyping.html
haplotyper, http://www.people.fas.harvard.edu/~junliu/ 

Haplo/docMain.htm
hplus, http://qge.fhcrc.org/hplus/
phase, http://www.stat.washington.edu/stephens/

software.html
pl-em, http://www.people.fas.harvard.edu/~junliu/plem/
ptg, http://zhangroup.aporc.org/bioinfo/ptg/
snphap, http://www-gene.cimr.cam.ac.uk/clayton/

software/
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