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Abstract.—We modified the phylogenetic program MrBayes 3.1.2 to incorporate the compound Dirichlet priors for branch
lengths proposed recently by Rannala, Zhu, and Yang (2012. Tail paradox, partial identifiability and influential priors in
Bayesian branch length inference. Mol. Biol. Evol. 29:325–335.) as a solution to the problem of branch-length overestimation
in Bayesian phylogenetic inference. The compound Dirichlet prior specifies a fairly diffuse prior on the tree length (the sum
of branch lengths) and uses a Dirichlet distribution to partition the tree length into branch lengths. Six problematic data sets
originally analyzed by Brown, Hedtke, Lemmon, and Lemmon (2010. When trees grow too long: investigating the causes
of highly inaccurate Bayesian branch-length estimates. Syst. Biol. 59:145–161) are reanalyzed using the modified version of
MrBayes to investigate properties of Bayesian branch-length estimation using the new priors. While the default exponential
priors for branch lengths produced extremely long trees, the compound Dirichlet priors produced posterior estimates that
are much closer to the maximum likelihood estimates. Furthermore, the posterior tree lengths were quite robust to changes
in the parameter values in the compound Dirichlet priors, for example, when the prior mean of tree length changed over
several orders of magnitude. Our results suggest that the compound Dirichlet priors may be useful for correcting branch-
length overestimation in phylogenetic analyses of empirical data sets. [Bayesian phylogenetics; branch lengths; compound
Dirichlet prior; MrBayes.]

It has recently been noted that Bayesian analyses of
phylogenies using the program MrBayes (Ronquist and
Huelsenbeck 2003) may produce unreasonably large
trees; the tree length (the sum of branch lengths) may
be orders of magnitude greater than the maximum
likelihood estimate (MLE) under the same model. The
phenomenon was investigated by Brown et al. (2010),
Marshall (2010), and Rannala et al. (2012). Brown et al.
(2010) proposed several hypotheses for possible causes
of the problem, such as the existence of multiple lo-
cal peaks or large nearly flat regions in the posterior
that cause mixing problems for the Markov chain Monte
Carlo (MCMC), or an overly informative prior favor-
ing unreasonably large branch lengths. A detailed anal-
ysis by Rannala et al. (2012) led to the suggestion that
the fundamental cause of the problem is the poor de-
fault prior on branch lengths used in MrBayes, which as-
signs independent and identical distributions (i.i.d.) for
branch lengths on the tree. This prior places too much
probability density on large tree lengths, and the de-
gree of misspecification increases for large trees com-
prising many taxa because the prior mean and variance
of the tree length increase linearly with the number of
taxa.

To resolve the problem of extreme posterior branch
lengths, Rannala et al. (2012) suggested the use of com-
pound Dirichlet priors on branch lengths, in which a dif-
fuse gamma or inverse gamma distribution is assigned
on the tree length, and the Dirichlet distribution (condi-
tional on tree length) is applied to partition the total tree
length into branch lengths. The compound Dirichlet pri-
ors provide flexible distributions on the tree length and

branch lengths, and the prior mean of tree length does
not necessarily increase with an increase of the number
of taxa. Rannala et al. (2012) implemented the priors to
estimate branch lengths on a star tree. Tests on simu-
lated data suggested that the priors appeared to be dif-
fuse enough to allow the data to dominate the posterior
estimates of branch lengths and tree length. However,
the priors have not been implemented in any tree infer-
ence programs.

We implemented the compound Dirichlet priors
(Rannala et al. 2012), as well as the two-exponential
prior (Yang and Rannala 2005; Yang 2007), by modi-
fying the source code of MrBayes 3.1.2 (Ronquist and
Huelsenbeck 2003). We then used the modified pro-
gram to analyze the six (two simulated and four em-
pirical) data sets of Brown et al. (2010). While the
default i.i.d. exponential prior implemented in MrBayes
generated unreasonably large tree lengths and branch
lengths for those data sets, the Bayesian estimates are
all reasonable under the new compound Dirichlet pri-
ors; for example, the posterior means are now close to
the MLEs. The two-exponential prior, with the mean
of internal branch lengths smaller than for external
ones, performed better than the default i.i.d. exponen-
tial prior but not as well as the compound Dirichlet
priors.

MATERIALS AND METHODS

The Exponential and Compound Dirichlet Priors

By default, MrBayes uses i.i.d. exponential priors
on branch lengths (Ronquist and Huelsenbeck 2003).
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The probability density function of each branch length
ti is

f (ti|β) = βe−βti , i= 1, 2, . . . , (2s− 3), (1)

where 1/β is the mean and s is the number of taxa. The
prior distribution of the tree length, T=

∑2s−3
i=1 ti, has the

gamma distribution with shape parameter (2s − 3) and
rate parameter β.

f (T|β, s) =
β2s−3

(2s− 4)!
T2s−4e−βT. (2)

When s � 1, the gamma distribution is approximately
normal, with a very large mean (2s− 3)/β and a moder-
ate standard deviation

√
2s− 3

/
β. For example, if s=100

and β= 10, the prior mean of tree length is 19.7 and the
99% interval is (16.3, 22.9). For data sets of highly similar
sequences, this will be an extremely informative prior,
favoring unreasonably large branch and tree lengths.

The compound Dirichlet prior specifies a fairly diffuse
prior on the tree length T and then partitions the tree
length into the branch lengths according to a Dirichlet
distribution with concentration parameter α (Rannala
et al. 2012). If T ∼ Gamma (αT, βT):

f (T) =
βαT

T

Γ(αT)
TαT−1e−βTT, αT > 0,βT > 0, (3)

with mean αT/βT and variance αT
/
β2

T, the joint distri-
bution of branch lengths t = {t1, t2, . . . , t2s−3} is

f (t|αT,βT, α, c) =
βαT

T

Γ(αT)
e−βT

∑2s−3
i=1 ti

×
1

B(α, c)

s∏

j=1

tα−1
j

s−3∏

k=1

tαc−1
k ×

(
2s−3∑

i=1

ti

)αT−αs−αc(s−3)

(4)

(Rannala et al. 2012, Equation 36). Here, the concen-
tration parameter α of the Dirichlet distribution is in-
versely related to the variance of the branch lengths,
while c is the ratio of the prior means for the internal
and external branch lengths. Rannala et al. (2012) rec-
ommended αT = 1 in the gamma prior, while βT should
be chosen so that the prior mean of T is reasonable for
the data set being analyzed.

Alternatively if T ∼ invGamma (αT, βT):

f (T) =
βαT

T

Γ(αT)
T−αT−1e−βT/T, αT > 2,βT > 0, (5)

with mean βT/(αT − 1) and variance β2
T

/
((αT − 1)2

(αT − 2)), and if the same Dirichlet distribution is used
to partition the tree length into branch lengths, the joint
distribution of branch lengths is

f (t|αT,βT, α, c) =
βαT

T

Γ(αT)
e−βT/

∑2s−3
i=1 ti

×
1

B(α, c)

s∏

j=1

tα−1
j

s−3∏

k=1

tαc−1
k ×

(
2s−3∑

i=1

ti

)−αT−αs−αc(s−3)

(6)

(Rannala et al. 2012, Equation 39). Rannala et al. (2012)
recommended αT = 3 in the inverse gamma prior, while
βT should be chosen so that the prior mean fits the data
set.

Note that the default i.i.d. exponential prior is a spe-
cial case of the compound gamma–Dirichlet prior. If we
set αT=2s−3, βT=β, and α= c=1, Equation 4 becomes

f (t) = β2s−3
T e−βT

∑2s−3
i=1 ti . (7)

This is the joint probability density of 2s − 3 i.i.d. ex-
ponential random variables with common rate βT (cf.
Equation 1).

We implemented the compound Dirichlet priors (Ran-
nala et al. 2012) and the two-exponential prior (Yang
and Rannala 2005; Yang 2007) by modifying the source
code of MrBayes 3.1.2 (Ronquist and Huelsenbeck 2003).
We validated our modification to the program by mak-
ing use of the fact that the posterior should become the
prior when the likelihood is set to a constant. We thus
compared the posterior of branch and tree lengths sam-
pled using the MCMC when no sequence data are used
(a constant likelihood) with the theoretical expectations
from the priors (see supplementary material for our test
results: DOI:10.5061/dryad.j1kn5tq6). The test indicates
that our modifications are correct.

Reanalysis of the Six Data Sets of Brown et al. (2010)

We applied the modified program to analyze the six
data sets of Brown et al. (2010). Two of the six data
sets are simulated (Brown and Lemmon 2007), while the
other four are for lizards (Leache and Mulcahy 2007),
frogs (Gamble et al. 2008), clams (Hedtke et al. 2008),
and froglets (Symula et al. 2008). See Brown et al. (2010)
for more details of the data sets.

We set the prior mean on the tree length to be
0.01, 0.1, 0.2, 0.5, 1, 2, 10, and 100, respectively. In the
compound Dirichlet priors, we used the recommended
value αT = 1, so that βT = 100, 10, 5, 2, 1, 0.5, 0.1, and
0.01, respectively, for the gamma prior on tree length.
For the inverse gamma prior, we used the recommended
value αT = 3, so that βT= 0.02, 0.2, 0.4, 1, 2, 4, 20, and 200,
respectively. Parameters α=c=1 are fixed, which specify
a uniform Dirichlet distribution of branch lengths given
the tree length. For empirical data analysis, we recom-
mend that the βT parameter be chosen to reflect the se-
quence divergence level in the data set being analyzed.
Here, we used many different values to assess the im-
pact of the prior on the posterior estimates of branch
lengths and tree length.

For comparison, we also used the default exponential
priors for branch lengths implemented in MrBayes. We
analyzed the data sets using both the default prior mean
of 0.1 and using several different prior means for the tree
length. For the i.i.d. exponential prior, the rate is set to
β = (2s− 3)/T. For the two-exponential prior, the inter-
nal branch branches are set to one-tenth of the external
ones; that is, the internal rate is set toβI=(10s + s− 3)/T,
and the external rate is set toβE = (10s + s− 3)/(10T). We
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note that the two-exponential priors were proposed to re-
duce the spuriously high posterior probabilities for trees
or clades and not intended for branch-length estimation.

We initially used the substitution model GTR + I +
Γ4 (Yang 1994a, 1994b) in the Bayesian analysis because
this was the model used by Brown et al. (2010). How-
ever, as pointed out by several authors (e.g., Minin et al.
2003; Ren et al. 2005), the widely used I + Γ4 model is
pathological because both the invariable sites (“I”) and
the gamma distribution (“Γ”) describe the same phe-
nomenon of variable rates among sites, and the use of
both in the same model leads to a strong correlation in
the estimates of the proportion of the invariable sites
p0 and the gamma shape parameter α. The correlation
may in turn impact estimation of branch lengths and
tree length, especially in the maximum likelihood (ML)
analysis. Thus, we also conducted the Bayesian analy-
sis under GTR + Γ4 without the I component. For each
parameter setting, we ran four MCMC chains (one cold
and three hot), 10 million iterations, and took samples
every 1000 iterations. The last 8000 samples were used to
calculate the posterior distributions for the parameters.

RESULTS AND DISCUSSION

The results of analyzing the six data sets of Brown
et al. (2010) under the GTR + I + Γ4 model and a vari-
ety of branch-length priors are shown in Figure 1 and
Table 1. For each data set, the posterior means and me-
dians of tree lengths are very similar, so only the means
are shown.

The Exponential Priors

The default exponential prior for branch lengths in
MrBayes causes the posterior tree lengths to be domi-
nated by the prior (Table 1: OneExp). The posterior tree
length is either too small, or too large, by comparison
with the MLE depending on whether the prior mean is
smaller, or larger, than the MLE. The default prior mean
0.1 (β=10) gives posterior tree length 5.25 (3.91, 6.72) for
simulated data set A, 5.25 (3.86, 6.83) for simulated data
set B, 0.96 (0.83, 1.11) for the frogs data set, 14.0 (10.86,
17.59) for clams, 4.54 (3.81, 5.47) for the lizards data set,
and 2.49 (1.62, 3.34) for the froglets data set (Brown et al.
2010). All these estimates are too large by comparison
with the MLEs. If one uses the MLE of tree length to
calculate the mean branch length and uses it as the prior
mean (instead of the default prior mean 0.1) for the inde-
pendent exponential prior, the posterior will be close to
the MLE. However, the procedure is non-Bayesian, and
the resulting exponential prior will be too informative
(and thus will produce credible intervals for the branch
lengths that are too narrow). The two-exponential prior
performs slightly better than the default independent
exponentials but it also has too much influence on the
posterior (Table 1: twoExp).

The Compound Dirichlet Priors

The compound Dirichlet priors have much less influ-
ence on the posterior estimates. With the default shape

FIGURE 1. The posterior means and 95% CIs obtained in reanalysis
of the six data sets of Brown et al. (2010) using the compound Dirichlet
priors of Rannala et al. (2012). For the gamma prior on tree length, the
shape parameter is fixed at αT = 1, while the prior mean of tree length
is fixed at 0.01, 0.1, 0.2, 0.5, 1, 2, 10, 100, so that βT = 100, 10, 5, 2, 1, 0.5,
0.1, 0.01. For the inverse gamma prior, αT = 3, so that βT = 0.02, 0.2,
0.4, 1, 2, 4, 20, 200. The x-axis is on the logarithmic scale. The concen-
tration parameter of the Dirichlet distribution is fixed at α=1. We used
c = 1, so that the prior means of internal and external branch lengths
are the same. The MLEs are indicated by the dashed lines.

parameter αT = 1 for the gamma Dirichlet prior, the
posterior tree lengths are quite stable for all six data
sets when the prior mean (or βT) varied over four or-
ders of magnitude (Fig. 1 and Table 1: GammaDir). Even
though the inverse gamma–Dirichlet prior (with the de-
fault shape parameter αT = 3) shows more sensitivity,
the posterior tree lengths are stable for the six data sets
when the prior mean (or βT) varied over two or three
orders of magnitude (Fig. 1 and Table 1: invGammaDir).
In real data analysis, one will usually have prior infor-
mation about the level of sequence divergence that pro-
vides an order-of-magnitude estimate of the tree length,
so that a more informative prior mean can be specified
in the inverse gamma–Dirichlet prior.

For the two simulated data sets, the posterior means
are close to the MLEs and the 95% credibility intervals
(CIs) cover the MLEs. For the frogs and froglets data set,
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TABLE 1. Posterior means and 95% CIs of the tree length

Tree length (mean, 95% CI)

Data set Prior mean T GammaDir(1, β1, 1, 1) invGamDir(3, β2, 1, 1) oneExp(β) twoExp(βI , βE)

Simulated A: s = 29,
MLE = 0.12 (0.12, α =
0.02) (Brown and
Lemmon 2007)

0.01 0.109 (0.092, 0.126) 0.114 (0.097, 0.131) 0.034 (0.030, 0.038) 0.028 (0.024, 0.032)
0.1 0.115 (0.099, 0.135) 0.115 (0.098, 0.134) 0.111 (0.097, 0.126) 0.087 (0.075, 0.100)

1 0.116 (0.099, 0.135) 0.126 (0.108, 0.145) 0.155 (0.133, 0.182) 0.143 (0.123, 0.165)
10 0.116 (0.099, 0.135) 0.221 (0.190, 0.256) 9.746 (7.334, 12.67) 3.809 (2.722, 5.151)

100 0.116 (0.099, 0.136) 78.73 (28.78, 203.4) 98.37 (73.72, 127.7) 41.02 (30.12, 54.13)

Simulated B: s = 29,
MLE = 0.11 (0.11, α =
0.14) (Brown and
Lemmon 2007)

0.01 0.107 (0.094, 0.122) 0.111 (0.096, 0.126) 0.038 (0.034, 0.042) 0.032 (0.028, 0.037)
0.1 0.113 (0.098, 0.128) 0.112 (0.098, 0.128) 0.110 (0.097, 0.123) 0.090 (0.079, 0.101)

1 0.113 (0.098, 0.128) 0.120 (0.105, 0.136) 0.139 (0.123, 0.158) 0.133 (0.117, 0.150)
10 0.113 (0.098, 0.129) 0.181 (0.163, 0.202) 9.686 (7.262, 12.54) 3.839 (2.726,5.113)

100 0.113 (0.099, 0.129) 88.90 (26.47, 244.9) 98.86 (74.16, 127.3) 41.58 (29.88,55.02)

Frogs: s = 66, MLE =
0.64 (0.61, α = 0.20)
(Gamble et al. 2008)

0.01 0.499 (0.450, 0.552) 0.580 (0.516, 0.648) 0.043 (0.040, 0.047) 0.038 (0.032, 0.043)
0.1 0.574 (0.510, 0.642) 0.579 (0.517, 0.647) 0.272 (0.251, 0.295) 0.194 (0.173, 0.216)

1 0.584 (0.522, 0.653) 0.586 (0.523, 0.654) 0.673 (0.608, 0.743) 0.503 (0.457, 0.551)
10 0.585 (0.523, 0.655) 0.641 (0.574, 0.715) 0.941 (0.815, 1.089) 0.836 (0.738, 0.950)

100 0.586 (0.523, 0.655) 1.285 (1.129, 1.468) 69.94 (57.34, 83.99) 19.48 (12.05, 29.96)

Clams: s = 93, MLE =
1.96 (1.75, α = 0.25)
(Hedtke et al. 2008)

0.01 0.707 (0.620, 0.802) 1.055 (0.908, 1.231) 0.022 (0.020, 0.025) 0.021 (0.019, 0.024)
0.1 1.019 (0.871, 1.184) 1.055 (0.901, 1.227) 0.202 (0.183, 0.222) 0.188 (0.167, 0.210)

1 1.073 (0.919, 1.246) 1.066 (0.914, 1.239) 1.033 (0.928, 1.148) 0.963 (0.850, 1.085)
10 1.079 (0.930, 1.249) 1.170 (1.008, 1.351) 5.730 (4.033, 7.610) 3.318 (2.616, 4.132)

100 1.080 (0.923, 1.256) 2.204 (1.894, 2.600) 99.21 (85.67, 114.6) 66.14 (54.95, 78.47)

Lizards: s = 123,
MLE = 2.48 (2.11,
α = 0.19) (Leache and
Mulcahy 2007)

0.01 1.361 (1.243, 1.484) 1.939 (1.755, 2.147) 0.034 (0.032, 0.037) 0.027 (0.025, 0.029)
0.1 1.858 (1.677, 2.044) 1.938 (1.747, 2.155) 0.303 (0.281, 0.325) 0.235 (0.216, 0.256)

1 1.948 (1.758, 2.147) 1.935 (1.744, 2.140) 1.457 (1.351, 1.565) 1.190 (1.096, 1.289)
10 1.947 (1.751, 2.164) 1.986 (1.789, 2.189) 3.379 (3.006, 3.800) 2.873 (2.584, 3.204)

100 1.956 (1.748, 2.176) 2.448 (2.221, 2.699) 57.38 (19.82, 74.43) 24.34 (18.71, 29.74)

Froglets: s = 92, MLE =
0.55 0.55, α = 0.12)
(Symula et al. 2008)

0.01 0.426 (0.380, 0.477) 0.494 (0.437, 0.555) 0.032 (0.029, 0.034) 0.016 (0.015, 0.018)
0.1 0.493 (0.437, 0.556) 0.495 (0.438, 0.557) 0.214 (0.197, 0.232) 0.115 (0.103, 0.127)

1 0.503 (0.443, 0.568) 0.503 (0.444, 0.565) 0.648 (0.581, 0.720) 0.389 (0.354, 0.426)
10 0.501 (0.446, 0.564) 0.568 (0.507, 0.637) 1.609 (1.208, 2.170) 0.868 (0.755, 0.996)

100 0.502 (0.444, 0.568) 1.318 (1.146, 1.528) 98.96 (84.45, 113.5) 4.854 (2.094, 11.44)

Notes: The first column shows summary information for each data set: taxonomic group, number of taxa, MLE of the tree length, and reference.
The MLEs outside the brackets are calculated using PAUP* 4b10 (Swofford 2003) under the GTR + I + Γ4 model, as in Brown et al. (2010); those
inside the brackets are calculated using PhyML (Guindon et al. 2010) under the GTR + Γ4 model (subtree pruning and regrafting (SPR) moves),
with inferred gamma shape parameters. The data sets are then reanalyzed using the modified MrBayes under the GTR + I + Γ4 model and four
priors: the gamma–Dirichlet prior (column 3), the inverse gamma–Dirichlet prior (column 4), the i.i.d. exponential prior (column 5, the default
in the original MrBayes), and the two-exponential prior (column 6). For the gamma–Dirichlet prior, αT = 1, βT = 100, 10, 1, 0.1, 0.01; for the
inverse gamma–Dirichlet prior, αT = 3, βT = 0.02, 0.2, 2, 20, 200; for the i.i.d. exponential prior, β = (2s− 3)/T; for the two-exponential prior,
βI = (10s + s− 3)/T and βE = (10s + s− 3)/(10T). The posterior mean and 95% CI of the tree length are shown for each analysis.

the posterior means/medians are very near the MLEs
but are slightly smaller. For the clams and lizards data
set, most of the 95% CIs do not cover the MLEs, and the
Bayesian estimates of tree lengths are smaller than the
MLEs. This appears to be a defect of the MLEs, rather
than the Bayesian estimates (see below). In summary,
the posterior mean tree lengths (branch lengths) under
the compound Dirichlet priors are much closer to the
MLEs than those under the exponential priors.

Model Complexity and Partial Identifiability

We investigated the possible reasons for the greater
differences observed between the Bayesian and ML
estimates of tree length in the clams and lizards data
sets. We conducted both ML and Bayesian analyses (us-
ing GammaDir(1, 1, 1, 1)) under several additional sub-
stitution models: JC69, JC69 + Γ4, JC69 + I + Γ4, GTR,
GTR + Γ4, and GTR + I + Γ4. The results are summarized
in Table 2. For the clams data set, the Bayesian poste-
rior estimates of tree length were smaller than the MLEs

under both GTR + Γ4 and GTR + I + Γ4, mainly because
the MLEs of the branch lengths to two outgroup species

TABLE 2. MLEs and posterior means of the tree length for the clams
and lizards date sets

Tree length

Model PAUP* MrBayes
Clams data set

JC69 0.89 0.88
JC69 + Γ4 1.15 1.04
JC69 + I + Γ4 1.17 1.04
GTR 0.93 0.90
GTR + Γ4 1.75 1.08
GTR + I + Γ4 1.96 1.07

Lizards data set
JC69 1.50 1.42
JC69 + Γ4 1.77 1.62
JC69 + I + Γ4 1.77 1.60
GTR 1.53 1.43
GTR + Γ4 2.11 1.83
GTR + I + Γ4 2.48 1.95

Note: The branch-length prior used in the MrBayes analysis is
GammaDir(1, 1, 1, 1).
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TABLE 3. Posterior means and 95% CIs of the tree length under the GTR + Γ4 model

Tree length (mean, 95% CI)

Data set Prior mean T GammaDir(1, β1, 1, 1) invGamDir(3, β2, 1, 1) oneExp(β) twoExp(βI , βE)

Simulated A 0.01 0.118 (0.103, 0.134) 0.123 (0.107, 0.141) 0.041 (0.037, 0.046) 0.037 (0.032, 0.042)
0.1 0.125 (0.108, 0.143) 0.124 (0.108, 0.142) 0.118 (0.104, 0.133) 0.096 (0.084, 0.108)

1 0.125 (0.109, 0.143) 0.133 (0.115, 0.152) 0.158 (0.138, 0.181) 0.148 (0.129, 0.169)
10 0.125 (0.109, 0.144) 0.205 (0.182, 0.230) 0.165 (0.143, 0.189) 0.164 (0.142, 0.187)

100 0.125 (0.108, 0.144) 1.368 (1.159, 1.605) 0.166 (0.143, 0.190) 0.165 (0.143, 0.190)

Simulated B 0.01 0.108 (0.094, 0.123) 0.111 (0.097, 0.127) 0.040 (0.036, 0.045) 0.036 (0.032, 0.041)
0.1 0.113 (0.098, 0.129) 0.112 (0.098, 0.127) 0.110 (0.097, 0.123) 0.090 (0.080, 0.102)

1 0.113 (0.098, 0.129) 0.120 (0.106, 0.136) 0.140 (0.123, 0.158) 0.133 (0.117, 0.150)
10 0.113 (0.098, 0.129) 0.182 (0.163, 0.202) 0.144 (0.126, 0.163) 0.143 (0.125, 0.163)

100 0.113 (0.099, 0.129) 3.558 (2.579, 4.887) 0.145 (0.127, 0.165) 0.144 (0.127, 0.164)

Frogs 0.01 0.507 (0.459, 0.557) 0.580 (0.521, 0.642) 0.061 (0.057, 0.065) 0.057 (0.052, 0.069)
0.1 0.577 (0.518, 0.639) 0.580 (0.520, 0.645) 0.286 (0.265, 0.308) 0.225 (0.205, 0.246)

1 0.585 (0.526, 0.648) 0.585 (0.526, 0.649) 0.665 (0.601, 0.732) 0.509 (0.465, 0.557)
10 0.586 (0.527, 0.650) 0.633 (0.571, 0.701) 0.866 (0.768, 0.977) 0.791 (0.704, 0.884)

100 0.587 (0.528, 0.650) 1.138 (1.023, 1.267) 98.17 (81.52, 115.1) 0.888 (0.780, 1.004)

Clams 0.01 0.728 (0.643, 0.820) 1.062 (0.917, 1.226) 0.034 (0.031, 0.038) 0.032 (0.030, 0.035)
0.1 1.023 (0.885, 1.179) 1.065 (0.919, 1.230) 0.242 (0.220, 0.267) 0.234 (0.215, 0.254)

1 1.081 (0.930, 1.253) 1.075 (0.927, 1.235) 1.036 (0.936, 1.146) 0.964 (0.856, 1.084)
10 1.084 (0.933, 1.259) 1.174 (1.015, 1.355) 4.548 (3.513, 6.073) 2.897 (2.267, 3.620)

100 1.092 (0.940, 1.264) 2.112 (1.833, 2.445) 98.62 (84.42, 113.7) 65.64 (54.27, 78.15)

Lizards 0.01 1.498 (1.404, 1.596) 1.817 (1.690, 1.958) 0.066 (0.062, 0.070) 0.064 (0.061, 0.066)
0.1 1.785 (1.661, 1.920) 1.821 (1.692, 1.963) 0.479 (0.457, 0.501) 0.472 (0.449, 0.497)

1 1.825 (1.693, 1.970) 1.822 (1.701, 1.963) 1.535 (1.452, 1.623) 1.383 (1.299, 1.473)
10 1.828 (1.697, 1.968) 1.847 (1.717, 1.989) 2.549 (2.336, 2.786) 2.328 (2.137, 2.539)

100 1.831 (1.701, 1.972) 2.108 (1.957, 2.274) 68.03 (57.65, 80.30) 37.07 (31.89, 43.27)

Froglets 0.01 0.460 (0.414, 0.510) 0.525 (0.470, 0.584) 0.049 (0.046, 0.052) 0.040 (0.037, 0.043)
0.1 0.523 (0.470, 0.580) 0.525 (0.471, 0.584) 0.253 (0.236, 0.270) 0.173 (0.159, 0.187)

1 0.529 (0.474, 0.590) 0.532 (0.478, 0.591) 0.647 (0.587, 0.711) 0.418 (0.384, 0.456)
10 0.530 (0.476, 0.590) 0.582 (0.523, 0.645) 0.947 (0.834, 1.075) 0.797 (0.711, 0.888)

100 0.530 (0.476, 0.593) 1.054 (0.956, 1.166) 100.0 (85.71, 115.4) 0.988 (0.865, 1.130)

Note: See legend to Table 1.

(Neocorbicula and Polymesoda) were very large, while
the Bayesian estimates are less extreme due to the in-
fluence of the prior. In such cases of extreme branch
lengths, the Bayesian method is expected to outper-
form ML, even if judged by Frequentist properties
(see, e.g., Berger et al. 1999). Note that the MLE
of branch lengths and tree length can be infinite so
that neither the mean nor the variance of the MLE
exists. We also used another prior, GammaDir(1, 1,
0.5, 0.2), which favors variable branch lengths and
longer external branches. The posterior tree length is
1.42 under GTR + Γ4, closer to the MLE under this
model.

For the lizards data set, there is no clear pattern of
long branches as in the clams data set. Nevertheless,
the Bayesian analysis showed a moderating or shrinking
effect compared with the MLEs, as in the clams data set.
The ML analysis, in particular, is heavily impacted by
the use of the GTR + I + Γ4 model (Table 2). With the
prior GammaDir(1, 1, 0.5, 0.2), the posterior tree length
under GTR + Γ4 is 2.00, quite similar to the MLE under
this model.

The results for the GTR + Γ4 model are summa-
rized in Table 3. Similar patterns are observed as
were discussed above with respect to the sensitiv-
ity of the posterior to the exponential priors and the

robustness of the compound Dirichlet priors. How-
ever, it is notable that the independent exponen-
tial prior did not produce extremely long branch
lengths in the two simulated data sets, and esti-
mates were stable over a wider range of prior mean
(Table 3). The use of the complex GTR + I + Γ4 model
thus appears to have exacerbated the problem of ex-
tremely long branch lengths (Rannala et al. 2012).

In summary, the compound Dirichlet priors appear to
provide more robust and reasonable results and greatly
reduce the discrepancy between posterior mean branch
lengths and MLEs. For the clams and lizards data sets
we analyzed, in which the MLEs are much larger than
the posterior estimates, we suggest that the MLEs may
be worse estimators, at least partly due to the use of an
overparameterized substitution model (GTR + I + Γ4)
with strong correlations between parameter estimates.
We suggest that the compound Dirichlet priors gener-
ally perform better (producing more reasonable branch
length estimates) than the independent exponential
priors implemented in the current version of MrBayes
and therefore represent a better choice of default prior.

Program availability.—The modified MrBayes 3.1.2
source code is available from http://abacus.gene.ucl.
ac.uk/software/ or http://www.rannala.org.
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SUPPLEMENTARY MATERIAL

Supplementary material, including data files and/or
online-only appendices, can be found in the Dryad data
repository (DOI:10.5061/dryad.j1kn5tq6).
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