
Molecular Ecology (2012) 21, 1848–1863 doi: 10.1111/j.1365-294X.2011.05235.x
A fuzzy-set-theory-based approach to analyse species
membership in DNA barcoding
A.-B . ZHANG,* C. MUSTER,† H.-B . LIANG,‡ C. -D. ZHU,‡ R. CROZIER,§ 1 P . WAN,* J . FENG–

and R. D. WARD**

*College of Life Sciences, Capital Normal University, Beijing 100048, China, †Zoological Institute and Museum, University of

Greifswald, Greifswald, Germany, ‡Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese

Academy of Sciences, Beijing 100101, China, §Department of Evolutionary Genetics, School of Marine and Tropical Biology,

DB23, James Cook University, Townsville, Qld 4811, Australia, –College of Applied Mathematics, Capital Normal University,

Beijing 100048, China, **Wealth from Oceans Flagship, CSIRO Marine and Atmospheric Research, GPO Box 1538, Hobart,

Tas. 7001, Australia
Corresponde

E-mail: zhan
1Deceased.
Abstract

Reliable assignment of an unknown query sequence to its correct species remains a

methodological problem for the growing field of DNA barcoding. While great advances

have been achieved recently, species identification from barcodes can still be unreliable

if the relevant biodiversity has been insufficiently sampled. We here propose a new

notion of species membership for DNA barcoding—fuzzy membership, based on fuzzy

set theory—and illustrate its successful application to four real data sets (bats, fishes,

butterflies and flies) with more than 5000 random simulations. Two of the data sets

comprise especially dense species/population-level samples. In comparison with current

DNA barcoding methods, the newly proposed minimum distance (MD) plus fuzzy set

approach, and another computationally simple method, ‘best close match’, outperform

two computationally sophisticated Bayesian and BootstrapNJ methods. The new method

proposed here has great power in reducing false-positive species identification compared

with other methods when conspecifics of the query are absent from the reference

database.
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Introduction

DNA barcoding (http://www.barcodinglife.org) has

gained widespread prominence during the past 8 years

as part of the worldwide campaign to develop a global

biodiversity inventory (Hebert et al. 2003a,b; Ebach &

Holdrege 2005; Gregory 2005; Marshall 2005; Savolainen

et al. 2005; Schindel & Miller 2005; Ward et al. 2005;

Abdo & Golding 2007; Hajibabaei et al. 2007a; Robin et al.

2007; Roe & Sperling 2007; Meusnier et al. 2008; Zhang

et al. 2008; Monaghan et al. 2009; Ward et al. 2009; Dinca

et al. 2011). On 11 April 2011, there were 1 181 714 bar-

code records from 99 138 species in the Barcode of Life
nce: Ai-Bing Zhang, Fax: +86 1068901860;

gab2008@mail.cnu.edu.cn
Database (BOLD) (http://www.barcodinglife.org).

Nonetheless, some reservations still remain about the

utility of DNA barcoding (Moritz & Cicero 2004; Will &

Rubinoff 2004; Prendini 2005; Brower 2006; Hickerson

et al. 2006; Meier et al. 2006; Whitworth et al. 2007; Song

et al. 2008; Silva-Brando et al. 2009; Lou & Golding 2010).

Species membership and its corresponding methodol-

ogy have been among the most contentious and ani-

mated issues in the application of DNA barcode

information to species identification and species circum-

scription (Hebert et al. 2003a,b; Hebert et al. 2004; Hick-

erson et al. 2006; Meier et al. 2006; Nielsen & Matz

2006; Rubinoff et al. 2006; Hajibabaei et al. 2007a,b;

Munch et al. 2008a,b; Ross et al. 2008; Zhang et al.

2008; Chu et al. 2009; Lou & Golding 2010). Tradition-

ally, most empirical DNA barcoding projects have

applied classical phylogenetic approaches for species
� 2011 Blackwell Publishing Ltd
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assignments, such as neighbour-joining (Saitou & Nei

1987; Hebert et al. 2003a,b), maximum parsimony

(Ekrem et al. 2007) and Bayesian methodology (Elias

et al. 2007), or pure statistical approaches based on clas-

sification algorithms (Austerlitz et al. 2009). Some new

methods have also been proposed, such as decision the-

ory (Abdo & Golding 2007) and artificial intelligence-

based approaches (Zhang et al. 2008).

Recently, considerable advances in species assign-

ment via DNA barcoding have been achieved, espe-

cially through the framework of Bayesian theory

(Munch et al. 2008a,b; Lou & Golding 2010). Bayesian

methods provide the necessary statistical strength to

distinguish between well- and poorly supported assign-

ments and, most importantly, provide a measure of sta-

tistical confidence (Munch et al. 2008a,b; Lou & Golding

2010). Three Bayesian approaches have been proposed

to date. The first is a method that calculates the likeli-

hood of coalescence for sequences known to originate

from a particular species and then calculates the change

in likelihood when the query is considered a member

of this species (Abdo & Golding 2007; Lou & Golding

2010). Coalescent methods can be time-consuming for

large data sets owing to the huge number of coalescent

trees generated to sample all possible coalescent events

(Lou & Golding 2010). The second Bayesian method is

the Statistic Assignment Package (SAP) that incorporates

taxonomic information from NCBI and uses this infor-

mation to impose topology constraints on the trees sam-

pled from Markov Chain Monte Carlo (MCMC)

algorithms. The probability of assignment is the number

of sampled trees showing the likelihood of the query

sequence branching with a sequence from a certain spe-

cies (Munch et al. 2008a,b; Lou & Golding 2010). While

the method in SAP was found to have good statistical

performance on real and simulated data sets, it may not

be easily applicable to large-scale data sets (Munch

et al. 2008a,b). Therefore, Munch et al. (2008b) proposed

a new Bayesian method using a constrained neighbour-

joining method (hereafter referred to as BootstrapNJ) to

accelerate the DNA assignments for large data sets and

showed that the new method performs as well as the

more computationally intensive full Bayesian approach

(Munch et al. 2008b). The only drawback of this method

is that it does not model species not present in the data-

base and can lead to wrong inferences (Munch et al.

2008b). The third Bayesian method, recently proposed,

is to accelerate the coalescent method (Abdo & Golding

2007) by replacing the coalescent-based MCMC algo-

rithm with one that makes use only of the number of

segregating sites from the sequences of a single species.

A segregating sites method uses only sites at which

there is a nucleotide change and therefore is very rapid.

However, the method (Lou & Golding 2010) suffers
� 2011 Blackwell Publishing Ltd
from a loss of information by compressing the entire

collection of sequence data into a single number,

although the loss is assumed to be trivial. Despite some

limitations, all these methods have greatly contributed

to the success of the DNA barcoding campaign.

Apart from the complexity introduced by the afore-

mentioned methodology, there have been other contro-

versial debates on DNA barcoding issues, such as the

threshold issue. Hebert et al. (2004) proposed the use of

a divergence threshold (the ‘10 times rule’—10· the

mean intraspecific variation for the group under study)

to define species boundaries. The threshold approach

proved to be useful in several groups of organisms,

fishes (Ward et al. 2005), crustaceans (Lefebure et al.

2006), North American birds (Hebert et al. 2004), tropi-

cal lepidopterans (Hajibabaei et al. 2006) and cave-

dwelling spiders (Paquin & Hedin 2004). The use of

thresholds in species assignments has subsequently

been extensively debated because of the lack of strong

biological support and universality to all animal species

(Meyer & Paulay 2005; Hickerson et al. 2006; Rubinoff

et al. 2006; Ward et al. 2009). Meier et al. (2008) argue

and document that barcoding gaps are often incorrectly

computed. The use of mean instead of smallest inter-

specific distance exaggerates the size of the ‘barcoding

gap’ and can lead to misidentification. A second issue

relates to sampling. At the current stage of development

of DNA barcoding reference databases, depth of intra-

specific sampling is usually sacrificed in favour of

greater taxonomic coverage (Matz & Nielsen 2005). For

instance, a typical barcoding study includes only 5–10

individuals (sometimes only singletons) per species for

the vast majority of species (Hajibabaei et al. 2007b;

Zhang et al. 2010). Such sample sizes are unlikely to

uncover all the genetic diversity of a population, let

alone a species (Zhang et al. 2010). Besides insufficient

intraspecific sampling, the database coverage of species

sampling is also incomplete; currently, there is much

undescribed species diversity (Rubinoff et al. 2006).

Thus, for many, if not most, unknown specimens, estab-

lished DNA barcoding databases do not yet permit the

accurate assignment of species names. Most current

methods will yield incorrect identifications for queries

whose conspecifics are not present in the reference

database. A third issue is monophyly (Farris 1974).

Tree-based methods assume that species are monophy-

letic; this may be unrealistic, especially for recently

diverged species (Hudson & Coyne 2002; Hickerson

et al. 2006; Knowles & Carstens 2007; Lou & Golding

2010). For example, 17% of bird species deviated from

mtDNA monophyly (Funk & Omland 2003), casting

doubt on the precision of DNA barcoding for allocating

individuals to previously described avian species.

However, McKay & Zink (2010) found that a high
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proportion of the reported paraphyly in Funk & Om-

land (2003) was because of poor taxonomy. Reciprocal

monophyly at the species level was considered as a

basic premise of correct identifications, especially for

tree-based methods (Hudson & Coyne 2002; Hickerson

et al. 2006; Nielsen & Matz 2006; Knowles & Carstens

2007). Nevertheless, barcoding is possible in the case of

reciprocal paraphyly using combinations of mutations

that are specific to a given species (Austerlitz et al.

2009). The fourth issue is gene sampling. Single gene-

based barcoding (COI-based barcoding) was initially

proposed by Hebert et al. (2003a,b) and has found great

success in the animal groups mentioned above. Efficient

COI-based barcoding has also been documented for a

few groups of fungi (e.g. Penicillium sp., Seifert et al.

2007), macroalgae (Rhodophyta, Saunders 2005) and

two ciliophoran protist genera (Paramecium and Tetra-

hymenas, Barth et al. 2006; Lynn & Struder-Kypke 2006;

Chantangsi et al. 2007). However, COI barcoding does

not resolve plant species, where the use of several plastid

genes has been recommended (Newmaster et al. 2006;

Ferri et al. 2009). Thus, it is now commonly accepted that

in some groups, multiple-gene barcoding is required

(Newmaster et al. 2006; Ferri et al. 2009), and matK and

rbcL have been selected as plant barcode markers by

CBoL (http://www.barcoding.si.edu/plant_working_group.

html). While sometimes necessary, a multiple-locus sys-

tem exacerbates problems with primer design, especially

where primers are not universal across groups. It

increases labour and consumable costs and increases the

chance of having an incomplete reference data set.

These various issues largely reflect the problem of

having incomplete information, whether it be insuffi-

cient representatives of each species in the reference set,

incomplete database coverage of related species, a short

segment of DNA instead of the whole genome and so

on. However, even if this additional information were

available, ecological, behavioural and other biological

data relating to species identification have not been

incorporated into most DNA barcoding studies. Barcode

species allocations are generally only based on DNA

information. In the situation of insufficient information

concerning the species studied, there are two principal

ways to deal with the data: one is the development of

sophisticated statistical methods, such as the Bayesian

methods mentioned above, and another is based on the

fuzzy set method. The former has been extensively

studied (Munch et al. 2008a,b; Abdo & Golding 2007;

Lou & Golding 2010), while the potential of the latter

has not yet been explored with respect to DNA barcod-

ing. We here propose a fuzzy-theory-based species

identification approach to analyse species membership

in DNA barcoding.
Fuzzy sets were introduced by Zadeh (1965) as an

extension of the classical notion of sets. In fuzzy sets,

elements have degrees of membership. Unlike classical

set theory, where the membership of an element in a

set is assessed in binary terms, fuzzy set theory permits

the gradual assessment of the membership of elements

in a set; this is described with the aid of a membership

function valued in the real unit interval [0, 1]. Fuzzy

sets generalize classical sets, because the indicator func-

tions of classical sets are special cases of the member-

ship functions of fuzzy sets, taking only values 0 or 1.

Fuzzy set theory can be used in a wide range of

domains with incomplete or imprecise information,

such as bioinformatics (Liang et al. 2006).

We suggest that, based only on a single or a few genes,

and without ecological, behavioural or any other biologi-

cal information, species identifications via DNA barcod-

ing cannot be totally determined, but that assignations

can be made as a fuzzy member of a named species. We

demonstrate our method on four real data sets using a

combination of a minimum distance (MD) method (Ross

et al. 2008) with the fuzzy membership function (FMF)

values proposed in this study. We compare our

approach to several currently using methods [Bayesian

method, BootstrapNJ, ‘best close match’ (BCM)], using

more than 5000 random replications in total.
Materials and methods

Fuzzy membership

Definition of membership function for a species. Assume

that there be an unknown query sequence q which may

or may not belong to a species A according to its

genetic distance (or any other criterion) from A. The

query sequence is taken to be of the potential same spe-

cies as that of the reference sequence with the smallest

pairwise distance from the query sequence. Further-

more, x is defined as the genetic distance between a

query and the known species A. Based on fuzzy set the-

ory, q is called not included in a fuzzy set A if f(x) ¼ 0,

q is called fully included if f(x) ¼ 1 and q is called a

fuzzy member if 0 < f(x) < 1. Mathematically, a fuzzy

set is a pair (A,f) where A is a set and f:A fi [0,1]. For

each x 2 A, f(x) is called the grade of x in (A,f), the spe-

cies membership function f(x) (Fig. 1). This function is

defined in detail by the following equation (Lin et al.

2005; Yuan et al. 2008):

fðx; hÞ ¼

1; x � h1

1� 2 x�h1

h2�h1

� �2
; h1 � x � h1þh2

2

2 x�h1

h2�h1

� �2
; h1þh2

2 � x � h2

0; x � h2

8>>>><
>>>>:

ð1Þ
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Fig. 1 Curve of membership function

f(x) and the estimation of two parame-

ters, h1 and h2. (a) Curve of membership

function f(x); (b) estimation of h1 and h2.

Black dots indicate DNA sequences for

individuals in that species, while the

empty dot means each query sequence.

x is measured as genetic distance, and

K2P distance (Kimura 1980) is used in

this study.
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Two parameters h1 and h2 need to be estimated based

on the actual data set.

Estimation of parameters for membership function f(x). To

determine the parameters h1 and h2 of eqn 1, which are

maximum intraspecific and minimum interspecific

genetic distances, respectively, the method searches for

the nearest neighbour (NN) of that potential species

(PS, Fig. 1b) of a query. Once the NN is found, the

minimum K2P genetic distance of that species to the PS

estimates the interspecific variation and the maximum

K2P distance among the individuals of the PS estimates

the intraspecific variation, to cover as much genetic var-

iation within species as possible. K2P distance (Kimura

1980) was chosen as it has widespread use in the bar-

coding literature. However, potential nonreciprocal

monophyly of the PS and its NN may result in a small

or zero ‘barcoding gap’. In this case, we instead use the

fifth percentile of all interspecific variation and the 95th

percentile of all species in the database to represent

genetic variation between and within species, respec-

tively.

After determining the parameters of eqn 1, the FMF

values can be easily obtained. To calculate an FMF

value, first the K2P distance of the query to the PS iden-

tified by the MD method mentioned above or any other

method has to be computed, and then, the resultant dis-

tance value is input to eqn 1. To test the robustness of

FMF values on the success rate of species identification,

we used three different fuzzy function values (FMF ¼
0.90, 0.95 and 0.99; denoted as MF90, MF95 and MF99)

as thresholds for accepting (if higher) or rejecting (if

lower) species membership.
Comparison to the existing methods

A general strategy to make comparisons among different

methods. We wished to determine whether our new

method performs better than current DNA barcoding

methods, including Bayesian (Munch et al. 2008a), Boot-

strapNJ (Munch et al. 2008b) and BCM (Meier et al.
� 2011 Blackwell Publishing Ltd
2006) methods, utilizing ‘leave-one-out’ simulation. In

these simulations, we remove one sequence at a time

and use it as a query, with all other sequences remain-

ing as the reference database. We performed 500 ran-

dom replications for each empirical data set and each

method except for the two methods implemented in the

computer program SAP (Munch et al. 2008a,b). For these,

we performed 100 random replications to save compu-

tation time. Sequences belonging to species present only

once (referred to as ‘singletons’ hereafter) were espe-

cially important as queries to test the efficiency of the

fuzzy approach. This is because these species will no

longer be represented in the reference data set, and

most current methods will therefore make misidentifica-

tions. For the remaining sequences, we examined

whether those approaches work well when the refer-

ence data set does have a conspecific sequence.

Algorithms and the computer program packages. The Bayes-

ian approach is based on a combination of automated

database searches, alignments and Bayesian phyloge-

netic inferences whose objective is to approximate the

posterior probability that the unknown specimen

belongs to a particular species or taxonomic group

(Munch et al. 2008a). This MCMC-based approach is

computationally demanding. The BootstrapNJ method

(Munch et al. 2008b) uses a neighbour-joining algorithm

(Saitou & Nei 1987) in combination with bootstrapping

(Felsenstein 1985) as a heuristic approach to approxi-

mate the posterior probabilities (Munch et al. 2008b).

The Bayesian and BootstrapNJ methods used here are

implemented in the program package SAP (Munch et al.

2008a,b). SAP version 1.08 and the latest version 1.12

were downloaded and installed locally on a linux sys-

tem. An in-house database constructed from each

empirical data set was annotated using the taxonomic

information from NCBI or assembled manually.

The SAP program has 47 options that can be set by

users. These include six general options, eight for Net-

Blast search, 21 for homologue set compilation, one for

Alignment, four for Output and others. It is very
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difficult to test them all. However, they all have been

assigned default values for good reasons (Munch et al.

2008a,b), and we used the default values in all our com-

parative simulations.

The BCM identification protocol first identifies the

best barcode match of a query but only assigns the spe-

cies name of that barcode to the query if the barcode is

sufficiently similar. This approach requires a threshold

similarity value that defines how similar a barcode

match needs to be before it can be identified. Such a

value could be estimated for a given data set by obtain-

ing a frequency distribution of all intraspecific pairwise

distances and determining the threshold distance below

which 95% of all intraspecific distances are found. The

BCM approach is implemented in the computer pro-

gram TaxonDNA (Meier et al. 2006).

The MD method and the calculation of the FMF value

are implemented in a new program package FuzzyIden-

tification which was developed in the current study

(available at http://life.cnu.edu.cn/soft/FuzzyIdentifi

cation.rar). The original program was written in the

Matlab language and has been compiled into a win-

dows executable file (.exe) for users, obviating the need

to install Matlab itself.

Success rate of species identification and confidence

intervals. The success rate of species identification is

defined by the following formula (Zhang et al. 2008):

Ratesuccess ¼
Numberhit

Numbertest
ð2Þ

where Numberhit and Numbertest are the numbers of

sequences successfully hit by methods under study and

the number of total query sequences examined, respec-

tively. A successful hit is counted as such if a query is

assigned to its correct species name in the database or a

potential misidentification is flagged by low FMF values.

For the MD plus fuzzy set approach, a successful hit

is further defined when (i) the MD method makes a

correct sequence assignment and the fuzzy set approach

generates a high FMF values (three different thresholds,

MF90, MF95 and MF99, were used); or (ii) the MD

method makes a wrong assignment, but the fuzzy set

approach produces a low FMF value (below the thresh-

old values used), especially for singletons.

Binary data indicating the presence (successful identi-

fication) or absence (failed identification) of a specific

attribute are often modelled as random samples from a

Bernoulli distribution with parameter prob, where prob

is the proportion in the population with that attribute.

A (1 ) a)-level confidence interval (CI) for prob is calcu-

lated by the following formula (Tamhane & Dunlop

2000):
ðdprob� bÞ
ð1þ z2

n Þ
� prob � ð

dprobþ bÞ
ð1þ z2

n Þ
ð3Þ

where a ¼ 0.05, b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½dprobð1� dprobÞz2�=nþ z4=4n2

q
and z ¼ za/2 (n is the number of replications and z is

the critical value corresponding to an area 1 ) a under

the standard normal curve).
Empirical data sets and their analysis

To evaluate this new notion of species member-

ship—fuzzy membership, as defined here—we used

four empirical data sets downloaded from the BOLD

system (http://www.barcodinglife.org), representing

different scales of data sets and genetic diversities. As

identification difficulties arise when the unknown speci-

mens come from a currently underdescribed part of bio-

diversity (Rubinoff 2006; Rubinoff et al. 2006), we

especially examined cases in which the conspecifics of

queries were not represented in the reference set of

these data sets (bats, fishes, butterflies and flies) by

using singletons as queries. We used three ‘clean’ data

sets (ambiguous sites, such as ‘Ns’, removed: bats,

fishes and butterflies) and one ‘raw’ data set (ambigu-

ous sites and gaps kept: flies). The reason for using

clean data sets (ideal cases) is to facilitate fair compari-

sons among the different DNA barcoding methods, as

different methods may treat ambiguous sites in differ-

ent ways. On the other hand, the ‘raw’ data set serves

as a more practical case where ambiguous sites, gaps

and slightly different sequence lengths are kept.

To test whether the method suggested here can iden-

tify the correct species or correctly report false-positive

identifications when the conspecifics of queries are

absent from the reference set, we examined queries

from both nonsingletons and singletons. We applied the

MD method, and the MD method in conjunction with

the FMFs method, to identify the queries against the

complete reference set (for nonsingleton queries) and

against the incomplete one (singleton queries), respec-

tively.

Two sorts of tests were subsequently conducted to

calculate (i) the total or overall success rate of species

identification (including singletons and nonsingletons),

(ii) the success rate for singletons and (iii) the success

rate for nonsingletons. In the first test, a sequence was

randomly removed from the data set and used as the

query, regardless of singleton status, with remaining

sequences as reference sequences. This was repeated

500 times. This enabled the total success rate for species

identification and nonsingleton species identification to

be calculated following eqn 2, with their corresponding

95% CI computed using eqn 3. In the second test, each
� 2011 Blackwell Publishing Ltd
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singleton was chosen as the query, the remaining

sequences forming the reference library. This was

repeated many times depending on the number of sin-

gletons in the database. The MD method will always

assign a species name from the database to the query

sequence, although this may be wrong. If the fuzzy

approach reports a low fuzzy membership value for the

singleton query, this is counted as a success (a low

fuzzy membership value indicates a potential misiden-

tification). The success rate of species identification for

singletons and its 95% CI were calculated as above fol-

lowing eqns 2 and 3.

The bats and fishes data sets The COI data set of 87 Neo-

tropical species of bats in Guyana contained 840 COI

sequences with a length >600 bp, from 47 genera (Clare

et al. 2007). We cleaned the data set by removing

sequences with ambiguous sites, such as ‘Ns’, and those

whose length were <648 bp, the standard length in COI

DNA barcoding (Hebert et al. 2003a,b; Hebert et al.

2004). Sequence alignment used the program MUSCLE

(Edgar 2004) with the default setting to check sequence

homology; 766 COI sequences representing 84 bat spe-

cies remained for the subsequent analysis (Table 1).

Steinke et al. (2009) barcoded 201 North Pacific fish

species, yielding 1225 barcode sequences. We down-

loaded these sequences from the BOLD (http://

www.barcodinglife.org) project Fishes of Pacific Canada

Part I. Read lengths were about 655 bp long. We

removed uncertain nucleotide sites, such as ‘Ns’. The

resultant 652 bp alignments of 982 sequences and 188

species (Table 1) were used in the subsequent analysis.

The butterflies data set A complete DNA barcode data

set for a country’s butterfly fauna was recently reported

(Dinca et al. 2011). This comprised the 180 species of

butterflies in Romania (some one-third of the European
Table 1 The four empirical data sets used in this study and fuzzy m

tions over more than 5000 replications

Taxa

group

No.

sequences

No.

species

(singletons)

No.

query

replicatinos

Bats* 766† 84 (9) 1200 (36‡)

Fishes 982 188 (45) 1200 (180)

Butterflies 1235 174 (9) 1200 (36)

Flies 1333 449 (321) 1000 (642)

*Bats and fishes data sets were taken from the webpage of the Barcod

temperate Europe butterfly data set was downloaded from Dinca et a

these studies (Meyer & Paulay 2005; Meier et al. 2006).

†Clean size of the data, but the fly data (Meyer & Paulay 2005; Meier

the original alignment were kept to test the robustness of the method

‡The number of replications from singletons for all methods used.
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butterfly fauna). Morphology and DNA barcodes of

more than 1300 specimens belonging to six families

(Hesperiidae, Papilionidae, Pieridae, Lycaeridae, Riodi-

nidae and Nymphalidae) were studied. We down-

loaded sequences from GenBank (accession numbers

HQ003941 to HQ005268) (Dinca et al. 2011). The data

set was cleaned by removing sequences with ambigu-

ous sites, such as ‘Ns’, and those whose lengths were

<648 bp; 1235 sequences from 174 species remained

(Table 1). Sequence alignment used the program MUSCLE

(Edgar 2004) with the default setting.

The flies data set Meyer and Paulay’s data set of 263 taxa

of cowries is considered as one of the most dense spe-

cies- and population-level barcode data sets (Meyer &

Paulay 2005). However, we were unable to obtain the

full data set of that study by downloading it from their

webpage (http://www.flmnh.ufl.edu/cowries), by

accessing the GenBank numbers they provided or by

contacting the authors. Meier et al. (2006) published a

comprehensive fly study. We instead downloaded this

data set that included a high proportion of singletons

(71.71%) among the 449 dipteran species (Table 1). This

provided us with an excellent opportunity to test our

fuzzy set approach and the other methods. Unlike our

previous treatments, we did not clean the data set,

retaining the original alignment of Meier et al. (2006)

including all ambiguous sites and indels (‘gaps’).
Results and discussions

Bats and fishes

After data cleaning, we obtained 766 COI sequences

representing 84 bat species to test all methods under

study (Table 1). In the case of the total query, the MD

plus fuzzy set approach achieved a 98.2% success rate
embership function values (FMFs) for true and false identifica-

FMF for

true-positive

identification

FMF for

false-positive

identification

Sensitivity/

specificity

0.98 0.12 0.99/0.88

0.99 0.26 0.96/0.96

0.99 0.34 0.96/0.89

0.95 0.08 0.82/1.00

e of Life Database System http://www.barcodinglife.org/;

l.’s study (2011) and the fly data of Diptera were retrieved from

et al. 2006), in which ambiguous sites of DNA sequences and

s being compared with each other here, see also text.
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of species identification with 95% CI from 96.61% to

99.05% over the 500 random queries (Fig. 2, Table 2,

Appendix S2, Supporting information). The BCM

method gave a 1.27% similarity threshold to define spe-

cies boundaries. Both the BCM and MD methods

obtained a 98.4% success rate of species identification

with 95% CI from 96.87% to 99.19% (Fig. 2, Table 2,

Appendix S2, Supporting information). These results

suggest that the newly proposed MD plus fuzzy set

approach performs equally as well as the extant BCM

method because there are no statistically significant dif-

ferences in the success rate of species identification

between them. However, both the new method and the

BCM method outperform significantly both Bayesian

and BootstrapNJ methods. These methods correctly

identified only 25 and 59 queries, respectively, over 100

random queries with 25% (95% CI: 17.55–34.3%) and

59% (95% CI: 49.20–68.13%) success rates.
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Datasets
There are only nine singletons in the bat data set.

Bayesian and BootstrapNJ methods failed to make spe-

cies assignments at the species level for the nine queries

using these singletons. The BCM method would lead to

a misidentification of all nine, for example, the query of

BCBN27905 from species ‘Furipterus horrens’ was

assigned to species name ‘Platyrrhinus helleri’ (Appendix

S2, Supporting information). The MD method alone also

assigned all these singleton queries to incorrect species

names (Appendix S2, Supporting information). How-

ever, eight of these nine identifications were assigned

very low FMF values, ranging from 0.00 to 0.25, indicat-

ing that these identifications were very unlikely to be

correct. For instance, the singleton query BCBN27905 of

species ‘F. horrens’ was identified as ‘P. helleri’ using

the MD method, but with an FMF value of 0.00, indicat-

ing a likely false identification (Appendix S2, Support-

ing information). One singleton query, BCBN31805, had
Bayesian
BootstrapNJ
BCM
MD
MF90
MF95
MF99

Lower95%
Upper95%

Fig. 2 Success rate of species identifica-

tion and corresponding 95% confidence

intervals for total queries from both sin-

gletons and nonsingletons, from single-

tons and from nonsingletons with leave-

one-out simulations. More than 5000

simulations were performed based on

four empirical data sets with different

barcoding methods [Bayesian, Boot-

strapNJ, best close match, minimum

distance (MD) and the MD plus fuzzy

set approach]. (a) Total success rate of

species identifications from both single-

ton and nonsingleton queries; (b) suc-

cess rate of species identifications from

singleton queries; (c) success rate of spe-

cies identifications from nonsingleton

queries.

� 2011 Blackwell Publishing Ltd
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a high FMF value of 0.93. This specimen had originally

been identified as ‘Eptesicus chiriguinus’ but our

approach identifies it as ‘Eptesicus furinalis’. Its high

FMF value suggests either that these two species are

extremely close genetically or a need to recheck the ori-

ginal identification of this specimen. It is clear that the

MD plus fuzzy set approach outperforms the other

methods tested here in avoiding potential false species

identification.

In the case of nonsingleton queries, where conspecif-

ics were present in the reference database, the BCM,

MD and MD plus fuzzy set approaches all achieved

high success rates of species identification from 98.17%

to 100%, while Bayesian and BootstrapNJ methods
Table 3 Species assignments for Pacific Canadian marine fish (Steink

tance (MD) method together with fuzzy membership function value

queries with leave-one-out simulations

Query types* No. Query†

500 random replications queries 1 TZFPB61806-Anoplopoma fim

2 TZFPA12006-Paraliparis sp.

3 TZFPB10505-Eopsetta jordan

4 TZFPA03506-Paraliparis pau

5 TZFPA19207-Nectoliparis pe

6 TZFPB58406-Citharichthys so

7 TZFPA14907-Eptatretus stou

8 TZFPA19107-Oncorhynchus

9 TZFPB47006-Cryptacanthode

10 TZFPB46806-Porichthys nota

11 TZFPB77806-Theragra chalco

12 TZFPB09605-Rhacochilus vac

13 TZFPB44405-Dasycottus setig

14 TZFPB58106-Allosmerus elon

15 TZFPB33605-Bothrocara moll

16 TZFPB63906-Bathyagonus pe

17 TZFPB16405-Psettichthys me

18 TZFPB15005-Alosa sapidissim

� � � � � �
500 TZFPB80806-Bathyagonus pe

Singletons queries 1 TZFPB39005-Somniosus paci

2 TZFPB42705-Cyclothone paci

3 TZFPB35905-Bathyraja spinic

4 TZFPB16105-Raja binoculata

5 TZFPA08406-Syngnathus lep

6 TZFPA20907-Rimicola musca

7 TZFPB20005-Pleuronichthys

8 TZFPB19105-Lepidopsetta po

9 TZFPA17607-Chilara taylori

� � � � � �
45 TZFPA18007-Psychrolutes sig

*Five hundred random replication queries were performed with leave

out each to test the reliability of the method in the second test, see als

†The names of query sequences consist of accession numbers and the

only part of the results (19/500), see Appendix S3 (Supporting inform

‡Species names are assigned by the MD method and FMF values, see

§Ticks and crosses indicate correct and wrong assignments, respective

–FMF value for single query.
obtained low success rates (Bayesian, 25.25%, with 95%

CI of 17.73–34.62%; BootstrapNJ, 59.6%, with 95% CI

of 49.75–68.73%).

The fish data set comprised a 652-bp alignment of

982 COI sequences for 188 fish species (Table 1). The

data set consisted of 937 nonsingletons and 45 single-

tons. In the 100 random simulations, Bayesian and Boot-

strapNJ methods identified just 12 and 18 nonsingleton

queries to their correct species giving only 12.37% and

18.57% success rates (95% CI: 7.22–20.39% and 12.08–

27.44%) (Fig. 2, Table 3, Appendix S3, Supporting

information). In the 500 random queries simulation, 492

nonsingletons remained. These queries were success-

fully assigned to their correct species with a 100% suc-
e et al. 2009) based on COI sequences through a minimum dis-

s (FMFs) for 500 random replication queries and all singleton

Species assigned‡ Status§ FMF value–

bria Anoplopoma fimbria (4) 1.00

Paraliparis sp. (4) 1.00

i Eopsetta jordani (4) 1.00

cidens Paraliparis paucidens (4) 1.00

lagicus Nectoliparis pelagicus (4) 1.00

rdidus Citharichthys sordidus (4) 1.00

tii Eptatretus stoutii (4) 1.00

tshawytscha Oncorhynchus tshawytscha (4) 1.00

s aleutensis Cryptacanthodes aleutensis (4) 1.00

tus Porichthys notatus (4) 1.00

gramma Theragra chalcogramma (4) 1.00

ca Rhacochilus vacca (4) 1.00

er Dasycottus setiger (4) 1.00

gatus Allosmerus elongatus (4) 1.00

e Bothrocara molle (4) 1.00

ntacanthus Bathyagonus pentacanthus (4) 1.00

lanostictus Psettichthys melanostictus (4) 1.00

a Alosa sapidissima (4) 1.00

� � � � � � � � �
ntacanthus Bathyagonus pentacanthus (4) 1.00

ficus Squalus acanthias (·) 0.35

fica Cyclothone atraria (·) 0.70

auda Bathyraja abyssicola (·) 0.11

Raja rhina (·) 0.09

torhynchus Rimicola muscarum (·) 0.00

rum Anotopterus nikparini (·) 0.00

coenosus Pleuronichthys decurrens (·) 0.09

lyxystra Lepidopsetta bilineata (·) 0.31

Oligocottus maculosus (·) 0.00

� � � � � � � � �
alutes Psychrolutes phrictus (·) 0.00

-one-out simulation in the first test, all singletons were taken

o text.

ir true species names after the dash, the table here presented

ation) for all the assignments.

also text.

ly, by the MD method.

� 2011 Blackwell Publishing Ltd
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cess rate for both BCM and MD methods(95% CI:

99.20–100%) and a 99.57% success rate for the MD plus

fuzzy set approach method (95% CI: 98.47–99.88% for

MF95).

For the 45 singleton queries, the MD plus fuzzy set

approach outperforms all the methods compared here,

again by assigning low FMF values to queries to avoid

false-positive identifications. For example, the singleton

query TZFP39005 ‘Somniosus pacificus’ was identified as

species ‘Squalus acanthias’ but with a low FMF value of

0.35 indicating a likely misidentification (Appendix S3,

Supporting information), and the query TZFPA20907

‘Rimicola muscarum’ was assigned to ‘Anotopterus nikapa-

rini’ with an FMF value of 0.00. Bayesian and Bootstrap-

NJ methods failed to assign these singletons at the

species level. The BCM method assigned these singleton

queries to their BCM species in the database, even

though their true conspecifics were necessarily unrepre-

sented in the database.

In the case of total queries (singletons and nonsingle-

tons included), the MD plus fuzzy set approach

achieved the highest success rate of species identifica-

tion (99.4% with 95% CI: 98.25–99.8%) of all the meth-

ods under study (Appendix S3, Supporting

information). Bayesian and BootstrapNJ obtained extre-

mely low success rates of species identification (12%

and 18%, respectively). The BCM and MD methods

obtained relatively high success rates of species identifi-

cation (95% with 95% CI of 92.96–96.75% for both), but

still significantly less than that of the MD plus fuzzy set

approach.
Butterflies and flies

The DNA barcode data set of the complete butterfly

fauna for a whole country (Dinca et al. 2011) provided

another good example to test the performance of the

newly proposed method against several currently used

methods. After clean-up, the butterfly data set com-

prised 1235 COI sequences of 174 butterfly species, and

only nine singletons were found (Table 1). In the first

test with 500 random replications, 498 nonsingletons

were randomly chosen as queries each against the cor-

responding reference library. The MD plus fuzzy set

approach achieved the highest species identification

success rate of 97.59% (95% CI of 95.84–98.62%), while

the MD method alone obtained a 96.38% success rate

(Fig. 2, Table 4, Appendix S4, Supporting informa-

tion). The BCM method gave a slightly lower success

rate (94.98% with 95% CI of 92.69–96.58%). Both Bayes-

ian and BootstrapNJ methods showed very low success

rates (Bayesian, 19.2% with 95% CI of 12.65–28.05%;

BootstrapNJ 7.07% with 95% CI of 3.47–13.88%). For

the nine singletons, which were consequently not repre-
� 2011 Blackwell Publishing Ltd
sented in the database, other approaches could not flag

these as a likely misidentification. However, the MD

plus fuzzy set approach identified eight of these nine as

potential false-positive identifications by their low FMF

values of 0.00 to 0.16 (Appendix S4, Supporting infor-

mation). The only exception is gi|304270751. Here, Hip-

parchia volgensis was identified as Hipparchia semele with

an FMF value of 1.00: these two species are recognized

to share barcodes (Dinca et al. 2011). With total queries,

the MD plus fuzzy set method outperforms all other

methods and has the highest success rate of species

identification (97.4% with 95% CI of 95.6–98.47%). The

BCM and MD methods obtained slightly lower success

rates, from 94.6% to 96.0% (Appendix S4, Supporting

information), while both Bayesian and BootstrapNJ

method obtained extremely low success rates (19% and

7% respectively).

The fly data set (Meier et al. 2006) comprises 1333

COI sequences and 449 species and was reported as a

difficult data set for DNA barcoding with a relatively

low species identification success rate. This data set

serves as a good test case for DNA barcoding methods

as it has two special features: dense species-level sam-

pling and a high proportion of singletons (71.71% or

321 of the 449 species) (Table 1). The original alignment

with all ambiguous sites of the data set was kept to

examine all the methods under study with an unclean-

sed data set. Both the Bayesian and BootstrapNJ meth-

ods, as implemented in the program SAP (Munch et al.

2008a,b), failed to make any sequence assignments as

they crashed (two different versions of SAP, 1.08 and the

latest version of 1.12, were tested).

Of the 321 singleton queries, 309 potential false-posi-

tive identifications by the MD method could be recog-

nized and avoided by their low FMF values with a

mean of 0.08 (Tables 1 and 5, Fig. 2, Appendix S5, Sup-

porting information), while all other methods failed to

flag any of these as misidentifications.

In the 500 random replication simulation, the MD plus

fuzzy set approach achieved a 94.86% success rate of

species identification (95% CI: 92.41–96.55%) for the ran-

domly selected 448 nonsingleton queries, whereas the

MD method alone obtained a considerably lower success

rate (44.19% with 95% CI of 39.66–48.82%). The BCM

method showed a relatively high success rate for nonsin-

gletons (91.12% with 95% CI of 87.85–93.58%), but still

slightly less than that of the MD plus fuzzy set approach.

In the situation of mixed queries taking both singletons

and nonsingletons into account, the BCM method

obtained a 69.8% success rate of species identification

(with 95% CI of 65.64–73.66%), which is consistent with

the success rate previously reported (Meier et al. 2006).

The MD plus fuzzy set approach achieved an apprecia-

bly higher success rate, 95.4% (with 95% CI of 93.19–



Table 4 Species assignments for temperate Europe butterfly (Dinca et al. 2011) based on COI sequences through a minimum dis-

tance (MD) method together with fuzzy membership function values (FMFs) for 500 random replication queries and all singleton

queries with leave-one-out simulations

Query types* No. Query† Species assigned‡ Status§ FMF value–

500 random replications queries 1 gi|304270609-Euphydryas aurinia Euphydryas aurinia (4) 1.00

2 gi|304271787-Pontia edusa Pontia edusa (4) 1.00

3 gi|304270889-Leptotes pirithous Leptotes pirithous (4) 1.00

4 gi|304269613-Apatura metis Apatura metis (4) 1.00

5 gi|304269985-Carcharodus alceae Carcharodus alceae (4) 1.00

6 gi|304271013-Lycaena thersamon Lycaena thersamon (4) 1.00

7 gi|304270871-Leptidea sinapis Leptidea sinapis (4) 1.00

8 gi|304271653-Plebejus sephirus Plebejus sephirus (4) 1.00

9 gi|304271079-Maculinea arion Maculinea arion (4) 1.00

10 gi|304270869-Leptidea sinapis Leptidea sinapis (4) 1.00

11 gi|304271639-Lycaeides argyrognomon Lycaeides argyrognomon (4) 1.00

12 gi|304271739-Polyommatus dorylas Polyommatus dorylas (4) 1.00

13 gi|304271565-Pieris rapae Pieris rapae (4) 1.00

14 gi|304270497-Erebia melas Erebia melas (4) 1.00

15 gi|304271107-Maculinea teleius Maculinea teleius (4) 1.00

16 gi|304271879-Pyrgus armoricanus Pyrgus armoricanus (4) 1.00

17 gi|304270701-Hipparchia fagi Hipparchia syriaca (·) 0.00

18 gi|304271217-Melitaea cinxia Melitaea cinxia (4) 1.00

� � � � � � � � � � � � � � �
500 gi|304271515-Pieris mannii Pieris mannii (4) 1.00

Singletons queries 1 gi|304270731-Hipparchia statilinus Arethusana arethusa (·) 0.00

2 gi|304270751-Hipparchia volgensis Hipparchia semele (·) 1.00

3 gi|304270445-Erebia gorge Erebia epiphron (·) 0.00

4 gi|304270917-Limenitis reducta Limenitis populi (·) 0.01

5 gi|304270915-Limenitis populi Limenitis reducta (·) 0.01

6 gi|304271377-Nymphalis l Nymphalis xanthomelas (·) 0.00

7 gi|304269563-Allancastria cerisyi Zerynthia polyxena (·) 0.16

8 gi|304271849-Pyrgus andromedae Pyrgus sidae (·) 0.00

9 gi|304271675-Polyommatus amandus Polyommatus thersites (·) 0.00

*Five hundred random replication queries were performed with leave-one-out simulation in the first test, all singletons were taken

out each to test the reliability of the method in the second test, see also text.

†The names of query sequences consist of accession numbers and their true species names after the dash, the table here presented

only part of the results (19/500), see Appendix S4 (Supporting information) for all the assignments.

‡Species names are assigned by the MD method and FMF values, see also text.

§Ticks and crosses indicate correct and wrong assignments, respectively, by the MD method.

–FMF value for single query.
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96.92%), but the MD method alone obtained a very low

success rate (39.6%, with 95% CI of 35.41–43.95%).
Processing time

The data analyses in this study were performed on a

Red Hat Enterprise Linux Server (release 5.1, Tikanga,

CPU:Intel Xeon CPU E5410 @ 2.33 GHz ·8) for SAP

(Munch et al. 2008a,b) and on a 3.00-GHz desktop com-

puter [Intel(R) Core (TM)2, DuoCPU, E8400 @ 3.00 GHz

·2] for BCM (Meier et al. 2006) and the MD plus fuzzy

set approach. Hence, it is not possible to provide true

comparative results for these methods performed on

the two quite different systems. However, it is still use-
� 2011 Blackwell Publishing Ltd
ful for users to have approximate computation times

needed to run these algorithms. SAP spent 2–8 min per

assignment on the linux system, depending on data set

size and the detailed algorithms of the Bayesian and

BootstrapNJ methods, while the MD plus fuzzy set

approach spent 3–6 min per assignment on the win-

dows system, depending on the data set size (from 765

to 1332 reference sequences in this study). The strategy

we used for BCM meant that it was much faster (a few

seconds per assignment). BCM was performed once for

all pairwise queries and a perl script used to calculate

the success rate of species identification over the 500



Table 5 Species assignments for 449 species of Diptera (Meyer & Paulay 2005; Meier et al. 2006) based on COI sequences through a

minimum distance (MD) method together with fuzzy membership function values (FMFs) for 500 random replication queries and all

singleton queries with leave-one-out simulations

Query types* No. Query† Species assigned‡ Status§ FMF value–

500 random

replications

queries

1 gi|18032899-Lycoriella mali Lycoriella mali (4) 1.00

2 gi|25990016-Drosophila recens Drosophila recens (4) 1.00

3 gi|29029473-Culicoides imicola Culicoides imicola (4) 1.00

4 gi|28071168-Asphondylia yushimai Asphondylia yushimai (4) 1.00

5 gi|25989970-Drosophila subquinaria Drosophila subquinaria (4) 0.94

6 gi|11993743-Chiastocheta macropyga Anopheles gambiae (·) 0.00

7 gi|13429940-Drosophila bocki Drosophila kikkawai (·) 0.40

8 gi|29373386-Paragus politus Musca domestica (·) 0.00

9 gi|18032871-Lycoriella mali Lycoriella mali (4) 1.00

10 gi|9799520-Phytomyza glabricola Phytomyza glabricola (4) 1.00

11 gi|26190182-Sapromyza mauli Anopheles gambiae (·) 0.00

12 gi|21727859-Lucilia sericata Lucilia sericata (4) 1.00

13 gi|6979501-Acerocnema macrocera Drosophila paulistorum (·) 0.00

14 gi|15724409-Aedes aegypti Aedes aegypti (4) 1.00

15 gi|21215164-Anopheles dunhami Anopheles stephensi (·) 0.00

16 gi|7263046-Apocephalus paraponerae Anopheles gambiae (·) 0.00

17 gi|14335215-Aedes punctor Anopheles gambiae (·) 0.00

18 gi|8132648-Chironomus tenuistylus Drosophila emarginata (·) 0.00

� � � � � � � � � � � � � � �
500 gi|29409286-Lucilia sericata Aedes aegypti (·) 0.00

Singletons

queries

1 gi|6979497-Acanthocnema glaucescens Drosophila tropicalis (·) 0.00

2 gi|6979501-Acerocnema macrocera Drosophila paulistorum (·) 0.00

3 gi|24430571-Aedeomyia squamipennis Sarcophaga cooleyi (·) 0.00

4 gi|14335187-Aedes cantans Aedes pullatus (·) 0.00

5 gi|14335193-Aedes cataphylla Aedes punctor (·) 0.86

6 gi|14335195-Aedes cinereus Drosophila bipectinata (·) 0.00

7 gi|14335203-Aedes geniculatus Drosophila azteca (·) 0.00

8 gi|14335209-Aedes pullatus Aedes cataphylla (·) 0.00

9 gi|14335217-Aedes rusticus Drosophila nebulosa (·) 0.00

10 gi|14335223-Aedes vexans Apocephalus paraponerae (·) 0.00

11 gi|30267329-Agathomyia unicolor Drosophila lusaltans (·) 0.00

12 gi|30267379-Alipumilio avispas Drosophila saltans (·) 0.00

� � � � � � � � � � � � � � �
321 gi|29420568-Xylota ignava Calliphora livida (·) 0.00

*Five hundred random replication queries were performed with leave-one-out simulation in the first test, all singletons were taken

out each to test the reliability of the method in the second test, see also text.

†The names of query sequences consist of accession numbers and their true species names after the dash, the table here presented

only part of the results (19/500), see Appendix S5 (Supporting information) for all the assignments.

‡Species names are assigned by the MD method and FMF values, see also text.

§ticks and crosses indicate correct and wrong assignments, respectively, by the MD method.

–FMF value for single query.
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random queries. Other strategies will require BCM to

spend much more time querying each sequence.
Conclusions

We propose a new notion of species member-

ship—fuzzy membership—for use in DNA barcoding

studies, where typically only DNA sequence informa-

tion is used to identify species, and ecological, behavio-

ural and other biological information is missing or
� 2011 Blackwell Publishing Ltd
incomplete. We applied this new concept to four real

barcode data sets (bats, fishes, butterflies and flies) to

solve their memberships and found it worked well. Bar-

code misidentifications arising from an incomplete ref-

erence data set of species could be flagged and

recognized as misidentifications by low FMF values.

The fuzziness of species membership proposed here is

somewhat similar to the ‘probability of assignment’ val-

ues for query matches in the BOLD system, although

they are different conceptually.
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One may argue philosophically that an actual speci-

men or individual sampled could not in real life belong

with an uncertain membership to a certain species (i.e.

the fuzzy membership concept outlined here), because

a species is a discrete evolutionary entity or unit. How-

ever, we may note that when only a short DNA

sequence (partial COI for most animal species, perhaps

several short plastid DNA segments for plants) is sam-

pled from the entire genome, the sampled sequence

cannot fully represent that specimen in a strict sense.

Species boundaries can be easily blurred by homoplasy

or interspecific hybridization (Zhang et al. 2005; Rubi-

noff et al. 2006). In some instances, different species

share an identical barcode haplotype. Therefore, we

argue that DNA barcode-based species identification

can only be fuzzy. As has been claimed by Frezal &

Leblois (2008), species boundary is not a definitive but

a revisable dynamic concept (Rubinoff et al. 2006).

Database coverage will often be incomplete, as there

will be much un-barcoded biodiversity, especially in

the early stages of barcoding projects. We examined the

notion of fuzzy membership of species in conjunction

with a MD method in three different scenarios: mixed

queries (total queries), singleton queries and nonsingle-

ton queries. Our results from four real data sets show

that for each of them, when the true species are

included in the reference set, the MD method can

assign unknown query sequences to their correct spe-

cies with a high success rate of species identification.

This is, of course, because these species usually have

unique sequences—haplotypes are very rarely, in these

instances, shared across species. Fuzzy function values

for each identification of 1.00 (the theoretical upper

limit) or approaching 1.00 further confirmed these cor-

rect identifications. These results are totally concordant

with those from several other studies (Munch et al.

2008a,b; Ross et al. 2008). However, most methods

return false-positive identifications when conspecifics of

the queries are not represented in the database, with

the NNs of the queries being improperly allocated (gen-

erally as congeners, if congeners are in the database).

Our study on four real data sets demonstrate that a MD

method in combination with fuzzy function values will

greatly reduce the chance of accepting false-positive

identifications by generating extremely low FMF values

in such instances.

In principle, a complete reference database of all life

is the key prerequisite for reliable species identification,

and this is the goal of the DNA barcoding initiative

(Hebert et al. 2003a,b; Hebert et al. 2004). The achieve-

ment of such a complete reference database for all life

on the earth is still far from being realized and may be

hindered or slowed by some methodological issues

(such as nonuniversality of primers) and by biological
factors such as NUMTs (Song et al. 2008). Biologists

will face an incomplete barcoding database for a long

time. However, information on distantly related species

is arguably redundant in the database when identifying

queries. Therefore, adopting a sequential investigation

could reduce the total data set to the genus or family of

the query sequence by first searching the complete data-

base with a simple method, such as the genetic similar-

ity method which has high speed (Rubinoff et al. 2006;

Ross et al. 2008); then, much computational time can be

saved with this much reduced and well-curated data-

base to refine species identification with more reliable

methods. However, for a given unknown query, one

cannot know whether its conspecifics have been sam-

pled in the reference set, and if they have not, then

wrong assignments will be inevitable using most cur-

rent methods (Munch et al. 2008b). Our fuzzy-theory-

based approach proves to be a good alternative and, as

we have shown on real data sets with more than 5000

random queries, can help to avoid false-positive identi-

fications. We have presented three different fuzzy func-

tion values (MF90, MF95 and MF99) to test the

robustness of FMF values on the success rate of species

identification (see above and Appendix S1, Supporting

information for details). They produced highly consis-

tent results with each other (Fig. 2; Appendix S1a–c,

Supporting information).

Comparisons to other methods were made. Our study

indicates that computationally or logically complicated

methods, such as the Bayesian and BootstrapNJ

approaches, may not perform well in DNA barcoding.

Our simulation with more than 5000 random queries for

four empirical data sets shows that the computationally

simple BCM method and the MD plus fuzzy set

approach newly proposed in this study outperform

both Bayesian and BootstrapNJ methods significantly in

most situations. Species identification via DNA barcod-

ing can be made without phylogenetic reconstruction;

therefore, simple methods such as the BCM and the

MD plus fuzzy set approach can make sequence assign-

ments computationally easily. However, it is possible

that the poor performance of Bayesian and BootstrapNJ

methods seen herein relates to the default settings we

used when running the program SAP, although ‘The

default settings of this program have been set with

good reasons’ (Munch et al. 2008a,b); the alternative of

fine tuning the 47 options before running is not easy for

most users.

In the case of queries from singletons, the newly pro-

posed MD plus fuzzy set approach significantly outper-

forms all other methods under study. As mentioned

above, a complete reference barcode library of all life is

necessary for accurate identification of all queries, but

this ultimate goal is very hard to reach. For some time,
� 2011 Blackwell Publishing Ltd
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most data sets will lack some species. Our tests using

singleton queries necessitated depleting that species

from the reference database, resulting in an incomplete

data set and unrecognized misidentifications by most

current methods. In such instances, the fuzzy set

approach substantially reduced the risk of false-positive

identification by generating low FMF values, effectively

flagging such queries as likely misidentifications. Our

method may in fact also be used in combination with

any other method, such as a Bayesian approach, as an

alternative means for elucidating species membership.
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