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A NONFLOWERING LAND PLANT PHYLOGENY INFERRED FROM
NUCLEOTIDE SEQUENCES OF SEVEN CHLOROPLAST,
MITOCHONDRIAL, AND NUCLEAR GENES
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Nucleotide sequences of seven chloroplast (atpB and rbcL, SSU and LSU rDNAs), mitochondrial (azp1, LSU
rDNA), and nuclear (18S rDNA) genes from 192 land plants and their algal relatives were analyzed using
maximum likelihood and maximum parsimony methods. Liverworts, mosses, hornworts, lycophytes,
monilophytes (ferns), seed plants, and angiosperms all represent strongly supported monophyletic groups.
Three bryophyte lineages form a paraphyletic group to vascular plants, with liverworts representing the sister
to all other land plants and hornworts being sister to vascular plants. Lycophytes are sister to all other vascular
plants, which are divided into two clades, one being monilophytes, which include Equisetum, Psilotaceae-
Ophioglossaceae, Marattiaceae, and leptosporangiate ferns, and the other being seed plants. Relationships
among the monilophyte lineages remain unresolved. Within seed plants, extant gymnosperms form a
moderately supported clade in which Gnetales are related to conifers. This clade is sister to angiosperms. Most
of the relationships among all major lineages of nonflowering land plants are supported by bootstrap values of
75% or higher, except those among basal monilophyte lineages and among some gymnosperm lineages,
probably because of extinctions. The closest algal relative of land plants is Characeae, and this relationship is

well supported. Several methodological issues on reconstructing large, deep phylogenies are also discussed.

Keywords: land plants, phylogeny, liverworts, hornworts, life cycle, monilophytes, Gnetales.

Introduction

The origin and subsequent diversification of land plants
(embryophytes) fundamentally changed terrestrial, atmospheric,
and marine environments by accelerating rock weathering,
changing atmospheric CO, and O, concentrations, and in-
creasing mineral nutrient release into oceans (Schwartzman
and Volk 1989; Graham 1993; Mora et al. 1996; Algeo et al.
2001; Berner 2001; Berner et al. 2003; Beerling and Berner
2005). These events altered the course of evolution of life
and had particular impact on evolution of the organisms that
coevolved with plants to establish the modern terrestrial eco-
systems, e.g., animals (Banks and Colthart 1993; Edwards et al.
1995; Labandeira 1998, 2002; Dilcher 2000; Tiffney 2004) and
fungi (Remy et al. 1994; Taylor et al. 1995, 2005; Brundrett
2002; Wang and Qiu 2006). Our understanding of events
surrounding the origin of land plants and the history of inter-
action between plants and their abiotic and biotic environ-
ments depends on our knowledge of the land plant phylogeny.
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Over the past two and half decades, a large number of
studies have been carried out to analyze molecular and mor-
phological characters from both living and extinct taxa to
reconstruct various parts of the nonflowering land plant phy-
logeny. However, three areas of this phylogeny remain con-
troversial. First, relationships among three bryophyte lineages
(liverworts, mosses, and hornworts) and vascular plants are
still vigorously contested (Mishler and Churchill 1984, 1985;
Garbary et al. 1993; Mishler et al. 1994; Kenrick and Crane
1997; Hedderson et al. 1998; Qiu et al. 1998; Nickrent et al.
2000; Renzaglia et al. 2000; Samigullin et al. 2002; Dom-
brovska and Qiu 2004; Kelch et al. 2004; Nishiyama et al.
2004; Goremykin and Hellwig 2005; Groth-Malonek et al.
2005; Wolf et al. 2005). Second, relationships among basal
members of monilophytes are only weakly to moderately sup-
ported (Hasebe et al. 1995; Pryer et al. 1995, 2001, 2004).
Third, relationships among five extant gymnosperm lineages
(cycads, Ginkgo, Pinaceae, nonpinaceous conifers, and Gne-
tales) and angiosperms are still being debated (Crane 1985;
Doyle and Donoghue 1986; Nixon et al. 1994; Rothwell and
Serbet 1994; Goremykin et al. 1996; Chaw et al. 1997,
2000; Bowe et al. 2000; Frohlich and Parker 2000; Gugerli
et al. 2001; Magallon and Sanderson 2002; Rydin et al.
2002; Soltis et al. 2002; Burleigh and Mathews 2004).
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The difficulty in resolving these relationships might have
been caused by phenomena that characterize diversification
of many major clades of organisms: large evolutionary gaps
between major groups; ancient rapid radiations; the occur-
rence of highly divergent, relic lineages; evolutionary rate
heterogeneity among different characters and different line-
ages; and extinctions. Several other factors further exacerbate
an already difficult situation: an incomplete fossil record,
character state paucity in DNA sequence evolution that re-
sults in a disproportionately large number of back mutations,
and the occurrence of incompletely understood molecular
evolutionary phenomena such as sequence composition bias
and RNA editing. These factors often create problems for
character and character state homology assessment and com-
promise performance of most phylogenetic methods (Kenrick
and Crane 1997; Qiu and Palmer 1999; Delsuc et al. 2005).
Empirical and theoretical studies have provided guidelines
for overcoming some of these problems, specifically, increas-
ing both taxon and character sampling and selecting well-
understood characters from diverse sources (Raubeson and
Jansen 1992; Chase et al. 1993; Hillis 1996; Graybeal 1998;
Qiu et al. 1998, 1999; Soltis et al. 2000; Pryer et al. 2001;
Zwickl and Hillis 2002; Kelch et al. 2004; Delsuc et al.
2005; Leebens-Mack et al. 2005).

In contrast to angiosperm phylogenetics, where several
large-scale analyses sampling taxa across the entire group
have complemented a large number of studies focusing on
individual clades, together leading to a well-reconstructed
angiosperm phylogeny (Chase et al. 1993; Soltis et al. 1997,
2000; Savolainen et al. 2000; Hilu et al. 2003), reconstruc-
tion of the nonflowering land plant phylogeny has so far
been limited to studies that target problems in each of the
three aforementioned areas individually. Considering the mag-
nitude of the evolutionary gaps between major clades of land
plants, it is understandable why such an approach has been
taken. On the other hand, one may also question whether
limited taxon sampling of outgroups might have affected the
capability of phylogenetic methods to resolve relationships in
ingroups. There are indeed a small number of studies that
took the approach of broad taxon sampling across land plants
to investigate relationships among major groups (Manhart
1994; Killersjo et al. 1998; Soltis et al. 1999; Nickrent et al.
2000; Renzaglia et al. 2000; Nishiyama et al. 2004; Goremy-
kin and Hellwig 2005; Wolf et al. 20035), but limited taxon
sampling within some major lineages of the ingroups and/or
use of a small number of characters has probably under-
mined performance of phylogenetic methods.

In this study, we take an approach of broad taxon sam-
pling across land plants with dense sampling in species-rich
clades coupled with extensive character sampling to recon-
struct the nonflowering land plant phylogeny. We recently
finished analyzing six genes (chloroplast atpB and rbcL as
well as LSU and SSU rDNAs, mitochondrial LSU rDNA, and
nuclear 18S rDNA) from 193 land plants and green algae, to-
gether with a matrix of mitochondrial group II intron inser-
tion sites and a matrix of chloroplast genome sequences.
Analyses of all three data sets strongly supported liverworts
as the sister to all other land plants, and analyses of the six-
gene and chloroplast genome matrices provided moderate to
strong support for placement of hornworts as the sister to

vascular plants (Qiu et al. 2006b). Here, we add a seventh
gene, mitochondrial atp1, which still lacks data from horn-
worts, to the six-gene matrix and perform maximum likeli-
hood and maximum parsimony analyses. Our specific goals
are (1) to evaluate further relationships among three bryophyte
lineages and vascular plants and to examine relationships
within liverworts and mosses, (2) to determine relationships
among basal monilophytes, and (3) to assess the phylogenetic
position of Gnetales.

Material and Methods

Our basic taxon sampling strategy was to sample one spe-
cies from each of most nonflowering land plant families. We
followed the classification systems of Schuster (1966) and
Crandall-Stotler and Stotler (2000) for liverworts and horn-
worts, Crum and Anderson (1981) and Goffinet and Buck
(2004) for mosses, and Kramer and Green (1990) for ferns
and allies as well as gymnosperms. As a result, a large number
of liverworts, mosses, ferns, and gymnosperms were included.
For lineages without much living diversity but occupying
pivotal phylogenetic positions, e.g., hornworts, lycophytes,
Takakia, Sphagnum, and several basal monilophyte families,
we included more than one species from each family. Major
lineages of basal angiosperms (Qiu et al. 1999) were sampled
to represent angiosperms. All five charophyte lineages (Graham
1993; Karol et al. 2001) and a prasinophycean green alga,
Nephroselmis olivacea, were used as the outgroup. We hoped
that this taxon sampling scheme would allow accurate infer-
ence of ancestral states at most deep internal nodes and thus
ensure reliable reconstruction of relationships among major
clades of land plants because inclusion of most living major
lineages should help reveal intermediate states of character
evolution. A total of 192 species (congeneric species were
used to represent one terminal in some cases) were included;
their detailed information is provided in table Al. The liver-
wort Corsinia coriandrina, which was used in another study
(Qiu et al. 2006b), might have been misidentified and is thus
excluded from analyses here.

The seven genes analyzed here show slow (all five rDNAs)
to moderate (atp1 and rbcL) to fast (atpB) evolutionary rates
under this particular taxon-sampling scheme. The reason we
sampled this combination of genes was to achieve a balance
between maximizing signal retrieval and optimizing homo-
plasy assortment: slow-evolving genes would be good for re-
solving deep relationships but might not have sufficient
signal, whereas fast-evolving genes would provide a lot of
variable characters but might generate spurious groupings of
certain taxa at the same time (Killersjo et al. 1999; Hilu
et al. 2003; Qiu et al. 2006b). For 192 taxa analyzed, 188,
191, 192, 192, 177, 171, and 188 taxa had sequences for
cp-atpB, cp-rbcL, cp-LSU rDNA, cp-SSU rDNA, mt-atpl,
mt-LSU rDNA, and nu-18S rDNA, respectively. All species
had data for three or more genes. Among these data, 134
new atpl sequences were generated in this study. Table A1l
provides detailed information on all the sequences analyzed
here.

The methods of DNA extraction, gene amplification, and se-
quencing are as described previously (Qiu et al. 1999, 2000).
The primer sequence information is available upon request.
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All seven genes were aligned individually using ClustalX
(http://www.csc.filmolbio/progs/clustalw/clustalw.html) and
then adjusted manually. For mt-LSU rDNA, autapomorphic
insertions/introns were removed in Klebsormidium flacci-
dum, liverworts, mosses, and vascular plants. The data were
then concatenated to form a multigene matrix. The alignment
has 14,553 nucleotide positions.

Both maximum likelihood (ML) and maximum parsimony
(MP) methods were used to analyze the data. For ML analy-
ses, an optimal model of nucleotide evolution (general time-
reversible model + I +T', with parameter values for the
proportion of invariant sites [[ = 0.27] and the gamma distri-
bution [I" = 0.60]) was selected using the Akaike Information
Criterion as implemented in Modeltest, version 3.07 (Posada
and Crandall 1998). The ML analyses were then imple-
mented in PHYML, version 2.4.4 (Guindon and Gascuel
2003), under the model with all parameters as estimated by
Modeltest. One hundred bootstrap (BS) replicates were used
in a bootstrapping analysis to assess nodal support (Felsenstein
1985). For parsimony analyses, only bootstrapping analyses were
performed, using both PAUP*, version 4.0b10 (Swofford 2003),
and NONA (Goloboff 1998), as implemented in Winclada
(Nixon 2001). The PAUP bootstrapping analysis was conducted
with 500 replicates, using simple taxon addition, one tree held
at each step during stepwise addition, tree-bisection-reconnection
branch swapping, steepest descent option on, MulTree option
on, and no upper limit of MaxTree set. The NONA boot-
strapping analysis was performed using 1000 replicates, with
five trees held per replicate and 50 characters randomly re-
weighed per iteration.

Results

The ML and MP analyses recovered trees with virtually
identical topologies and mostly similar bootstrap values (fig.
1; table 1; additional data not shown). Liverworts, mosses,
hornworts, vascular plants, lycophytes, monilophytes, seed
plants, and angiosperms were all strongly supported as mono-
phyletic groups (BS values between 90% and 100% are
deemed to have strong support, and those between 75% and
90% and below 75% are considered to have moderate and
weak support, respectively). The three bryophyte lineages
formed serial sister groups to vascular plants. Liverworts
were sister to all other land plants, with 100% and 87% ML
BS values, 100% and 91% PAUP parsimony bootstrap (P-BS)
values, and 100% and 93% NONA parsimony bootstrap
(N-BS) values (where the first value of each pair defines the
placement of liverworts within land plants and the second
value separates all other land plants from liverworts). Mosses
followed liverworts, with values of 87% and 87% for ML
BS, 91% and 76% for P-BS, and 93% and 82% for N-BS.
Hornworts were sister to vascular plants, with values of 87%
and 100% for ML, 76% and 100% for P-BS, and 82% and
100% for N-BS. The most closely related charophyte algae
to land plants were Chara and Nitella of Characeae, with
values of 93% and 100% for ML BS, 87% and 100% for P-
BS, and 89% and 100% for N-BS.

Within the liverworts, Haplomitrium and Treubia formed
a moderately supported clade sister to all other taxa, with

values of 100% and 92% for ML BS, 100% and <50% for
P-BS, and 100% and 50% for N-BS. The rest of liverworts
fell into two strongly supported monophyletic groups, which
corresponded to traditionally recognized complex thalloid
liverworts (node 4) and simple thalloid plus leafy liverworts
(node 6). Blasia, which used to be classified as a simple thal-
loid liverwort, was sister to the complex thalloid liverworts.
The simple thalloid liverworts were paraphyletic to the mono-
phyletic leafy liverworts (node 7).

Among the mosses, Takakia and Sphagnum formed a mod-
erately supported clade sister to the remaining taxa, with
values of 100% and 100% for ML BS, 100% and 81% for
P-BS, and 100% and 84% for N-BS. Several isolated, diver-
gent lineages, Andreaea, Tetraphis, Atrichum, and Polytrichum
of Polytrichaceae as well as Buxbaumia and Diphyscium,
formed serial sister groups to a clade composed of “true” ar-
throdontous mosses (node 13). Within this clade, two strongly
supported monophyletic groups were identified: one corre-
sponding to the diplolepidous alternate peristomate mosses
(node 15) and the other corresponding to the rest (node 14).
Archidium, an eperitomate moss traditionally regarded as be-
ing distinct from “true” arthrodontous mosses, fell into this
latter group. Among the diplolepidous alternate peristomate
mosses, pleurocarpous mosses formed a strongly supported
monophyletic group (node 16).

Within the vascular plants, lycophytes were sister to the re-
maining taxa, with values of 100% and 100% in all three
bootstrapping analyses. Relationships among basal mem-
bers of monilophytes (Equisetum, Marattiaceae, Psilotaceae-
Ophioglossaceae, and leptosporangiate ferns) were poorly
supported. Relationships within leptosporangiate ferns were
generally well supported except for the placement of gleichen-
oid ferns (Hymenophyllum, Trichomanes, and Gleichenia).

Among the seed plants, gymnosperms formed a monophy-
letic group with values of 87% for ML BS, 68% for P-BS,
and <50% for N-BS, being sister to angiosperms. Cycads
and Ginkgo were serial sister groups to the clade containing
conifers and Gnetales in the ML analyses. Gnetales were sis-
ter to Pinaceae, with values of 67% and 100% for ML BS,
and together, they were sister to a strongly supported non-
pinaceous conifer clade, with values of 87% and 100% for
ML BS. In both parsimony bootstrapping analyses, cycads
and Ginkgo formed a weakly supported monophyletic group,
and they were sister to the clade consisting of the remaining
gymnosperms in the PAUP parsimony analysis and were part
of a polytomy including Gnetales, Pinaceae, other conifers,
and angiosperms in the NONA parsimony analysis. Relation-
ships among these clades were all weakly supported. Within
angiosperms, Amborella, Nymphaeales, and Austrobaileyales
formed three serial sister groups to the rest of taxa, and the
relationships had weak to strong bootstrap support.

Discussion

In this study of sampling 192 diverse land plants and green
algae and seven genes from all three plant genomes, likeli-
hood and parsimony methods recovered trees with virtually
identical topologies and moderate to strong bootstrap sup-
port throughout much of the trees (fig. 1). Several aspects of
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Fig. 1 Phylogram from a maximum likelihood analysis of the seven-gene, 192-taxon matrix of land plants in this study (Inlikelihood =

—296,341.161413). Numbers above (and occasionally to the right of) branches are bootstrap percentage values at or above 50%. Bootstrap values
depicting the backbone relationships in land plants are shown in larger, boldface type. Numbers in circles indicate the nodes for which PAUP and
NONA parsimony bootstrap values are presented in table 1.
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Table 1

Bootstrap Percentage Values for
the Nodes Labeled in Figure 1

Node P-BS N-BS
1 87 89
2 100 100
3 100 100
4 100 100
S <50 <50
6 100 99
7 100 98
8 73 65
9 56 <50
10 91 93
11 100 100
12 81 84
13 100 100
14 98 100
15 99 929
16 100 100
17 76 82
18 100 100
19 72 64

20 100 100

21 100 100

22 100 100

23 100 100

24 100 100

25 71 65

26 100 100

27 100 100

28 68 <50

29 . 'a . .a

30 69 <50

31 <50 <50

32 100 100

33 100 100

34 78 70

35 92 93

36 92 93

Note. P-BS and N-BS = boot-
strap percentage values from the
PAUP and NONA parsimony ana-
lyses, respectively.

2 Ginkgo was sister to the cy-
cads, with values of 63% for P-BS
and 61% for N-BS.

this reconstructed phylogeny permit an optimistic interpreta-
tion that we are close to the goal of understanding the evolu-
tionary history of nonflowering land plants. First, the backbone
of the trees is supported by moderate to high bootstrap val-
ues, which are deemed to be more reliable indicators of phy-
logenetic reconstruction than optimality criteria such as
parsimony length or likelihood of trees (Nei et al. 1998).
Second, monophylies of many traditionally recognized groups,
e.g., liverworts, mosses, vascular plants, and lycophytes, were
confirmed, indicating a level of congruence between results
of this study and classic morphological studies. Earlier mo-
lecular phylogenetic studies often yielded unconventional re-
sults and raised doubt about the naturalness of these groups
(e.g., Manhart 1994; Killersjo et al. 1998; Soltis et al. 1999;

see also review in Qiu and Palmer 1999). In retrospect, those
results were probably artifacts caused by low information
content of single genes and sparse taxon sampling (Hillis
1996). Third, relationships within all major clades recovered
in this study generally agree with those reconstructed in the
studies that focused on these clades individually and had
more broad ingroup taxon sampling and/or extensive charac-
ter sampling, e.g., liverworts (Heinrichs et al. 2005; Forrest
et al. 2006; He-Nygren et al. 2006), mosses (Goffinet et al.
2001; Cox et al. 2004), hornworts (Duff et al. 2004), lyco-
phytes (Wikstrom and Kenrick 2001), leptosporangiate ferns
(Pryer et al. 2004), seed plants (Goremykin et al. 1996; Bowe
et al. 2000; Chaw et al. 2000; Gugerli et al. 2001; Burleigh
and Mathews 2004), and angiosperms (Qiu et al. 1999; Soltis
et al. 2000). Fourth, for the relationships that were deemed
to be novel from molecular phylogenetic studies conducted
over the past 15 yr, namely, the sister relationship of lyco-
phytes to all other vascular plants (Raubeson and Jansen
1992), monophyly of monilophytes, and the sister relation-
ship between Psilotaceae and Ophioglossaceae (Pryer et al.
2001), this study obtained the same results as previous stud-
ies, with high bootstrap support. Finally, for the relationships
that have been vigorously contested in recent molecular phy-
logenetic studies, i.e., the relationships among three bryo-
phyte lineages and the placement of Gnetales, this study
obtained resolution with moderate to strong bootstrap sup-
port, at least in the likelihood analysis. The only area where
this study did not achieve its goal is in the relationship
among basal members of monilophytes. One important point
we want to emphasize is that besides having high bootstrap
values, most of the relationships identified here conform to
one of the previous hypotheses formulated based on mor-
phology. Below we discuss these three last issues in detail
and also some methodological issues.

Relationships among and within Three Bryophyte Lineages

Since the cladistic analyses of Mishler and Churchill (1984,
1985), relationships among three bryophyte lineages have been
subject to intensive debate. The discussion centers around three
questions: (1) Do liverworts or hornworts represent the sister
group of all other land plants (Mishler and Churchill 1984;
Mishler et al. 1994; Kenrick and Crane 1997; Hedderson
et al. 1998; Qiu et al. 1998; Nickrent et al. 2000; Renzaglia
et al. 2000; Dombrovska and Qiu 2004; Kelch et al. 2004)?
(2) Are mosses or hornworts sister to vascular plants (Mishler
and Churchill 1984; Kenrick and Crane 1997; Samigullin
et al. 2002; Dombrovska and Qiu 2004; Kelch et al. 2004;
Groth-Malonek et al. 2005)? (3) Are bryophytes mono- or
paraphyletic (Garbary et al. 1993; Nishiyama et al. 2004; Gor-
emykin and Hellwig 2005)?

In a recent study, we analyzed a six-gene, 193-species data
set together with a mitochondrial group II intron insertion
site matrix and a chloroplast genome sequence matrix. Anal-
yses of all three data sets showed bryophytes to be paraphy-
letic to vascular plants and strongly supported liverworts as
the sister group of all other land plants. Analyses of the six-
gene and the chloroplast genome matrices provided moderate
to strong support for placement of hornworts as the sister to
vascular plants (Qiu et al. 2006b). Our analyses of the seven-
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gene supermatrix here, which still lack a#p1 data for hornworts,
obtained results similar to those of the earlier study. The
taxon and character sampling in these two supermatrices rep-
resents by far the most extensive data sampling in investiga-
tion of early land plant phylogeny. An issue has been raised
in the past regarding whether the divergence between charo-
phytes and land plants is large enough to cause a rooting
problem (Qiu and Palmer 1999), and this issue has not been
explicitly investigated using the random sequence outgroup
rooting approach as was done for the basal angiosperm rela-
tionships (Qiu et al. 2001). However, the intron matrix,
which does not suffer from the kind of long-branch attrac-
tion problem that normally affects the nucleotide sequence
matrices, produced the same rooting as the multigene super-
matrices. This result indicates that the six- and seven-gene
supermatrices contain sufficient phylogenetic signal to over-
come the outgroup divergence problem, allowing appropriate
rooting of the ingroup. In light of these results and of mor-
phological, biochemical, and fossil evidence presented in pre-
vious studies (Mishler and Churchill 1984; Sztein et al. 1995;
Kenrick and Crane 1997; Wellman et al. 2003), we believe
that the position of liverworts as the basalmost lineage in the
land plant phylogeny is secure.

The placement of hornworts as sister to vascular plants re-
vealed in analyses of the six- and seven-gene supermatrices is
somewhat novel and has been shown in a few earlier analyses
of smaller data sets, which cover features from single genes
to chloroplast genome sequences and chloroplast and mito-
chondrial genomic structural features (Lewis et al. 1997;
Samigullin et al. 2002; Dombrovska and Qiu 2004; Kelch
et al. 2004; Groth-Malonek et al. 2005; Wolf et al. 2005).
Although the bootstrap values in our analyses for this rela-
tionship are still in the range of 76%-90% (fig. 1; table Al;
Qiu et al. 2006b), we think this placement reflects the correct
position of hornworts in the land plant phylogeny for the fol-
lowing reasons. First, there are morphological and physio-
logical characters that support a close relationship between
hornworts and vascular plants. These include lack of ventral
slime papillae, hairs, and/or scales in prothalli (Renzaglia
et al. 2000); embedded position of gametangia (Smith 1955;
Schuster 1992); the intermingled/interdigitate gametophyte-
sporophyte junction (Frey et al. 2001); the persistently chlo-
rophyllous and nutritionally largely independent sporophyte
(Campbell 1924; Stewart and Rodgers 1977; Schuster 1992);
rhizoidlike behavior of surface cells of the sporophyte foot
(Campbell 1924); the longevity and large size of the sporo-
phyte (Campbell 1924; Schuster 1992); and xylan content in
cell walls of pseudoelaters and spores (Carafa et al. 2005).
Some of these similarities between hornworts and vascular
plants may be controversial (Mishler and Churchill 1984;
Kenrick and Crane 1997; Renzaglia et al. 2000), but our mo-
lecular phylogenetic results suggest that they should be criti-
cally reexamined to identify truly synapomorphic changes
shared by these two groups. Morphological cladistic analyses
by both Mishler and Churchill (1984) and Kenrick and Crane
(1997) acknowledged that the position of hornworts in their
studies was unstable, and sometimes hornworts came to be
sister to vascular plants.

Second, the placement of hornworts as sister to vascular
plants fits best with our current understanding on evolution

of life cycles in land plants. When life cycles of different line-
ages of land plants are compared under a phylogenetic
framework that has been developed over the past several de-
cades (i.e., charophytes giving rise to land plants, bryophytes
predating vascular plants, and angiosperms representing one
of the youngest major land plant clades; Pickett-Heaps 1975;
Stewart 1983; Gray 1993; Kenrick and Crane 1997; Wellman
et al. 2003), it becomes clear that they have followed a trend
of continuously expanding their sporophyte generation while
at the same time reducing the gametophyte generation (Bower
1908, 1935; Stebbins 1950; Takhtajan 1976). This change is
probably in response to selection pressure that plants encoun-
tered on land, where sperm locomotion is hindered by lack
of water and DNA mutation rate is high because of abundant
UV, since plants having a big, multicellular, and long-lived
sporophyte can have numerous cells going through meiosis
that will lead to production of a large number of genetically
diverse gametes to ensure fertilization, mask deleterious ef-
fect of mutations, and allow a large number of alleles to per-
sist in the gene pool through recessive and dominant allelic
interactions (Bower 1935; Stebbins 1950; Graham 1993;
Crum 2001). Three bryophyte lineages, although they all
have a dominant gametophyte generation in their life cycles,
exhibit different degrees of sporophyte nutrition indepen-
dence. Liverworts have small, short-lived, and matrotrophic
sporophytes (Crum 2001). Mosses have short- to long-lived,
photosynthetic, yet generally matrotrophic sporophytes (Bold
1940; Stark 2002). Hornworts have short- to long-lived spo-
rophytes that are nutritionally the most independent sporo-
phytes among all bryophytes (Campbell 1924; Stewart and
Rodgers 1977; Schuster 1992). In fact, Campbell (1924) re-
ported that Anthoceros fusiformis had biennial, nearly free-
living sporophytes in the wild, with the gametophytic tissues
around the base of the sporophyte discolored and more or
less collapsed. He also showed that excised sporophytes sur-
vived independent of the gametophyte on sterile soil for 3
mo. It should be added here that the extinct prevascular
plant Horneophyton lignieri, shown to be positioned between
bryophytes and vascular plants (Kenrick and Crane 1997),
exhibits several features reminiscent of hornworts: a massive
lobed rhizome (like the lobed foot of Anthoceros), the shoot
terminating in a single sporangium, hornwortlike stem anat-
omy, the growth habit of sporophytes (Campbell 1924), and
an unequivocal columella in the sporangium (Kenrick and
Crane 1997 and references therein). The lobed foot of the
hornwort sporophyte, with rhizoidlike absorbing cells on the
surface (Campbell 1924), is similar, and probably homolo-
gous, to the protocorm of some lycophytes, the development
of which has been interpreted as essential for establishment
of a free-living sporophyte (Bower 1908). We also wish to
point out that the positions of sporophytes on gametophytes
in three bryophyte lineages can be informative to the discus-
sion of alternation of generations in early land plants and
the placement of hornworts as the sister to vascular plants
shown here. In basal lineages of liverworts (e.g., Haplomi-
triwm and many thalloid liverworts) and mosses (Takakia
and acrocarpous mosses), the sporophytes are on elevated
positions of gametophytes and high above the ground. In horn-
worts, however, the sporophytes grow uniformly out of thal-
loid gametophytes, and thus if gametophytes die, sporophytes
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may be able to survive on their own because of their pread-
aptation to the soil environment. This was indeed what
Campbell (1924) observed for A. fusiformis in the wild.
From the evidence discussed above, it seems that hornworts,
among the three extant bryophyte lineages, approach closest
toward vascular plants in their sporophyte development in
terms of achieving an independent, free-living sporophyte
generation. Thus, the elaborate, nutritionally largely indepen-
dent sporophyte generation of hornworts can perhaps be
taken as evidence to support their close relationship to vascu-
lar plants.

Finally, in molecular phylogenetic studies that either iden-
tified hornworts as sister to all other land plants (Nickrent
et al. 2000; Renzaglia et al. 2000) or recovered bryophytes
as a monophyletic group (Nishiyama et al. 2004; Goremykin
and Hellwig 2005), there is a possibility that those two to-
pologies were analytical artifacts caused by rooting prob-
lems. In both of those two topologies, if the root of land
plant phylogeny is changed to liverworts, hornworts become
sister to vascular plants. Nickrent et al. (2000) and Nishiyama
et al. (2004) actually obtained the topology we produced here
(i.e., liverworts sister to all other land plants and hornworts
sister to vascular plants) with some of their data sets, but
they claimed that those results were caused by homoplasy in
the third-codon transitional changes (Nickrent et al. 2000) or
by base composition bias in the chloroplast genome (Nishiyama
et al. 2004). These are controversial issues, and empirical evi-
dence tends to suggest that while the third-codon positions
and transitions can be problematic when taxon sampling is
sparse, they actually contain a significant amount of phyloge-
netic signal (Killersjo et al. 1999; Qiu et al. 2005). In analy-
ses of the chloroplast genome sequences that differ from
those of Nishiyama et al. (2004) and Goremykin and Hellwig
(2005) by addition of a lycophyte (Huperzia), Wolf et al. (2005)
found that bryophytes were paraphyletic and hornworts were
associated with vascular plants in all data partitions. Qiu
et al. (2006b) obtained the same results when analyzing a
larger chloroplast genome sequence data set that included
two more charophytes, one more lycophyte (Selaginella), and
several more angiosperms. Hence, we suggest that the molec-
ular evidence against the hypothesis of hornworts being sister
to vascular plants is rather weak. To the contrary, those other
studies can in fact be seen to contain evidence to support our
hypothesis when the rooting issue is dissected carefully.

The relationships within liverworts are better resolved in
this study than in that of Qiu et al. (2006b) because of addi-
tion of the moderately fast-evolving mitochondrial gene atp1
(fig. 1; table 1). Haplomitrium-Treubia were shown to be sis-
ter to the remaining liverworts, with 92% ML BS support.
Although Haplomitrium was recognized to be distinct from
all other liverworts by Schuster (1966), the affinity of Treu-
bia to Haplomitrium and the sister relationship of these
two genera to all other liverworts were realized only recently
(Garbary et al. 1993; Heinrichs et al. 2005; Forrest et al.
2006; He-Nygren et al. 2006). Our large-scale analyses with
extensive taxon sampling both within and outside of liver-
worts play an instrumental role in helping identifying this
deepest dichotomy within liverworts (Qiu et al. 2006b; this
study). Similarly, our analyses provide a critical piece of
evidence to support Blasia as the sister to complex thalloid

liverworts because of the broad scope of taxon coverage. Pre-
viously, Blasia was suggested to be more closely related to
complex thalloid liverworts than to simple thalloid liverworts
(Duckett et al. 1982; Garbary et al. 1993; Heinrichs et al.
2005; Forrest et al. 2006; He-Nygren et al. 2006). The
current study also produced weak to moderate support for
Ptilidium as sister to the complex consisting of Lejeuneaceae-
Frullaniaceae-Porellaceae-Radulacea-Lepidolaenaceae. Three
previous studies focusing on liverworts (Heinrichs et al.
2005; Forrest et al. 2006; He-Nygren et al. 2006) as well as
our earlier study (Qiu et al. 2006b) were unable to identify
the split of leafy liverworts between this complex (node 8)
and the rest (node 9); the positions of Ptilidium and some re-
lated taxa were unstable in those studies. This particular re-
sult demonstrates an advantage of extensive taxon sampling
both within and outside of a group in resolving relationships
among major lineages in the group and determining the posi-
tion of some difficult isolated lineages.

The relationships within mosses inferred here are similar
to those proposed by Qiu et al. (2006b). Takakia, extensively
debated for its phylogenetic affinity before discovery of its
sporophyte (Smith and Davison 1993), is clearly shown to be
a moss, as there is strong bootstrap support for monophyly
of mosses. Its sister relationship to Sphagnum is moderately
supported (fig. 1). Compared to the results of Goffinet et al.
(2001) and Cox et al. (2004), several major clades identified
in our two sets of analyses have higher or significantly higher
bootstrap support, all values approaching 100% (fig. 1; table
1). These include the “true” arthrodontous mosses (node 13),
the Haplolepideae (sensu Goffinet et al. 2001; node 14), the
diplolepidous alternate peristomate mosses (node 15), and
the pleurocarpous mosses (node 16). The relationships within
the Haplolepideae and the pleurocarpous mosses are poorly
resolved, probably reflecting rapid radiations of these mosses
because of their colonization of new habitats (Shaw et al.
2003).

The relationships within hornworts inferred in our two
sets of analyses are congruent to those of Duff et al. (2004),
who used only rbcL. Two particular points worth mentioning
are the sister relationship of Leiosporoceros to all other
hornworts and the embedded position of Notothylas, which
traditionally was placed in a family separate from all other
hornworts.

Relationships among Basal Lineages of Monilophytes

Since identification of monilophytes as a monophyletic
group that includes the traditionally delimited ferns and their
allies of Egquisetumn and Psilotaceae but not lycophytes
(Kenrick and Crane 1997; Pryer et al. 2001), there has been
an interest in clarifying relationships among several basal lin-
eages in this group: Equisetum, Psilotaceae, Ophioglossaceae,
Marattiaceae, and leptosporangiate ferns (Pryer et al. 2004;
Wikstrom and Pryer 2005). In a series of analyses (Pryer
et al. 2001, 2004; Wikstrom and Pryer 2005), Equisetum-
Marattiaceae have been shown to be sister to leptosporan-
giate ferns, but bootstrap support for this relationship is only
moderate. Further, like many novel relationships identified
in molecular phylogenetic studies, the sister relationship be-
tween these two groups of free-sporing vascular plants still
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lacks morphological synapomorphy to corroborate it (Pryer
et al. 2004). With the extensive outgroup taxon sampling in
this study, we thought relationships among the basal monilo-
phytes might be better resolved, but we did not succeed in
achieving that goal. In a comparison of the genes used by
Pryer et al. (2001, 2004; chloroplast atpB, rbcL, and rps as
well as nuclear 18S) and Wikstrom and Pryer (20055 the pre-
vious four genes plus mitochondrial atp1) and those used in
this study (chloroplast atpB, rbcL, SSU, and LSU, mitochon-
drial atp1 and LSU, and nuclear 18S), the difference between
their results and ours might be explained by either lack of
signal in the many slow-evolving genes we used or a possibil-
ity of long-branch attraction caused by the dominance of
fast-evolving genes in their analyses (atpB and rps4). The cur-
rent difficulty in resolving relationships among these basal
monilophytes may be caused by the extinction these plants
suffered over the past 400 million years and rapid radiation
experienced by early vascular plants during the Devonian
(Stewart 1983; Kenrick and Crane 1997). Future studies sam-
pling more genes with different rates and functions and from
different genomes might shed light on this ancient radiation.
Genomic structural characters, such as intron distribution ex-
plored by Wikstrom and Pryer (2005), may also offer an ad-
ditional source of characters for resolving these relationships.

Monophyly of Extant Gymnosperms and
Affinity of Gnetales

Relationships among five extant seed plant lineages—
cycads, Ginkgo, conifers, Gnetales, and angiosperms—have
been vigorously contested in morphological and molecular
phylogenetic studies over the past 2 decades. Specifically,
molecular studies have often shown that the four extant gym-
nosperm lineages form a monophyletic group sister to angio-
sperms and that Gnetales are embedded among conifers
(Goremykin et al. 1996; Chaw et al. 1997, 2000; Qiu et al.
1999; Bowe et al. 2000; Frohlich and Parker 2000; Gugerli
et al. 2001; Magallon and Sanderson 2002; Rydin et al.
20025 Soltis et al. 2002; Burleigh and Mathews 2004). On
the other hand, morphological studies have suggested that
the living gymnosperms are paraphyletic to angiosperms and
that Gnetales are related to angiosperms (Crane 1985; Doyle
and Donoghue 1986; Nixon et al. 1994; Rothwell and Serbet
1994). In our current study, we paid particular attention to
this problem in the experimental design by sampling nonseed
plants extensively and choosing five slow-evolving genes (the
rRNA genes from all three genomic compartments) among
the seven genes analyzed so that the perceived problems of
insufficient outgroup taxon sampling and extinctions of seed
plants (Stewart 1983) could be remedied.

The results we obtained here are improved over those of
our earlier analyses (Qiu et al. 2006b) in terms of resolution
and bootstrap support on relationships among seed plant lin-
eages. Both studies show that we are making progress toward
solving this long-standing problem. Both monophyly of ex-
tant gymnosperms and the coniferous affinity of Gnetales
suggested by the previous molecular studies were recovered
here. The taxon sampling scheme and gene choices used in
our analyses, very different from those employed in the
earlier molecular studies, should serve as evidence of inde-
pendent corroboration. In our two parsimony analyses, boot-

strap values for monophyly of gymnosperms and sister
relationship between Gnetales and Pinaceae decreased signifi-
cantly (table 1). These were probably results of long-branch
attraction between Gnetales and the nonseed plants in the
data set; parsimony methods are more sensitive to such a
problem than are likelihood methods (Felsenstein 1978).
Consistent with this diagnosis, we observed higher bootstrap
values than those shown in figure 1 for these relationships
when the fast-evolving gene atpB was excluded from the ma-
trix (data not shown). This observation has also been made
in several earlier studies on volatility of the position of Gne-
tales when the third-codon positions alone or fast-evolving
sites were used in analyses (Magallon and Sanderson 2002;
Rydin et al. 2002; Burleigh and Mathews 2004). Hence, we
think molecular evidence is accumulating to support mono-
phyly of extant gymnosperms and the coniferous affinity of
Gnetales.

Problems in Reconstructing the Land Plant Phylogeny
and Strategies to Overcome These Problems

Reconstructing phylogeny for a group such as land plants,
which encompasses more than 300,000 living species, has
undergone several episodic radiations, spans an evolutionary
time of more than 480 million years, and has experienced
many extinction events during this period of the earth’s his-
tory, faces many daunting challenges. These include large
evolutionary gaps between major groups; ancient rapid radia-
tions; the occurrence of highly divergent, relic lineages; ex-
tinctions; evolutionary rate heterogeneity among different
characters and lineages; DNA sequence composition bias;
and RNA editing (Kenrick and Crane 1997; Qiu and Palmer
1999).

Among all these challenges, the most difficult ones are the
large evolutionary gaps among major lineages. These prob-
lems may be caused by evolutionary rate heterogeneity, ex-
tinctions, and rapid radiation during the incipient period of a
major lineage when it explored a new niche. The most effec-
tive strategy for overcoming these problems is perhaps to en-
gineer an experimental design that samples a large number of
taxa to represent both the phylogenetic breadth and depth
of land plants and that chooses a set of genes with well-
balanced evolutionary rates as well as functional and genomic
representations. The issue of taxon versus character sampling
has been debated extensively (Hillis 1996; Graybeal 1998;
Zwickl and Hillis 2002; Rokas et al. 2003; Delsuc et al.
2005). However, when it comes to reconstruction of a really
difficult phylogeny like that of land plants, it seems that the
issue is underappreciated since some studies have attempted
to solve the problem with only a small number of taxa (e.g.,
Hedderson et al. 1998; Soltis et al. 1999; Nickrent et al. 2000;
Renzaglia et al. 2000; Nishiyama et al. 2004; Goremykin and
Hellwig 2005). In our study, we adopted a middle-ground
approach that we have used successfully in investigating
basal angiosperm relationships, namely, sampling a moderate
number of taxa and a moderate number of characters rather
than going to either extreme. Our dense taxon sampling in
leafy liverworts, acrocarpous and pleurocarpous mosses, and
leptosporangiate ferns and sparse taxon sampling in all other
nonflowering land plant lineages reflect this thinking. Choos-
ing slow- versus fast-evolving genes in reconstructing large,
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deep phylogenies is also a delicate issue. An empirical study
has shown that a fast-evolving gene such as matK can be
highly informative and efficient in reconstructing a large phy-
logeny like that of angiosperms when an appropriate taxon
sampling density is achieved (Hilu et al. 2003). However, we
caution that the use of fast-evolving genes should be properly
balanced with that of slow-evolving genes for the following
reason. Undoubtedly, fast-evolving genes have a potential to
provide a large number of variable characters for unraveling
relationships in shallow parts of the phylogeny and within
tightly knotted nodes, which probably arose from rapid radi-
ations. On the other hand, if they are not properly balanced
by slow-evolving genes, they can also produce a large amount
of homoplasy in deep parts of the tree and parts of the
phylogeny that experienced extinctions (e.g., bases of monilo-
phytes and seed plants in this study). As a result, the homo-
plasy will overwhelm the signals generated by slow-evolving
genes and cause long-branch attraction. Choosing likelihood
over parsimony methods at the data analysis stage can help
to alleviate this problem to a certain extent, but if the issue
of balance between fast- and slow-evolving genes is dealt
with during the experimental design, the experiment is more
likely to obtain congruent results from both types of analy-
ses. Finally, as a complementary approach, one can also try
to assemble a matrix of genomic structural characters, such
as those used by Kelch et al. (2004) and Qiu et al. (200656) in
investigating relationships among early land plant lineages,
but these kinds of characters are still limited in quantity and
cannot be relied on to resolve relationships at all parts of a
phylogeny.

RNA editing has been shown to be more widespread in
basal land plant organellar genomes than originally observed
and occurs in a highly lineage- and gene-specific fashion
(Steinhauser et al. 1999; Kugita et al. 2003; Dombrovska and
Qiu 2004; Wolf et al. 2004; Suzuki et al. 2005). It has been
suspected to influence phylogenetic reconstruction (Bowe
and dePamphilis 1996; Qiu and Palmer 1999). Comparative
analyses of a basal angiosperm multigene matrix with RNA
editing sites removed or retained show that retention of
RNA editing sites in the matrix does lead to some erroneous
grouping of taxa in a single-gene analysis where editing is
frequent and the gene has a low substitution rate (mitochon-
drial nad$5). However, in analyses of a combined multigene
matrix with RNA editing sites retained and of single gene
matrices where editing is infrequent and/or the genes have
high substitution rates (mitochondrial atpl, matR, and
rps3), the effect of RNA editing on phylogenetic reconstruc-
tion is negligible (Qiu et al. 20064; Y.-L. Qiu, unpublished
data). In this study, we took a dual approach to curtail the
effect of RNA editing on phylogenetic reconstruction by in-
cluding closely related, editing-light species such as Leio-
sporoceros dussii for hornworts (Duff and Moore 2005) and
by sampling multiple genes from all three plant genomes
(there is no report so far of heavy, genome-wide RNA editing
in all three genomes of a plant). This approach seems to have
been effective.

DNA base composition bias in a genome-wide fashion can
also influence performance of phylogenetic methods (Steel
et al. 1993). Here again, we believe that the effective ways to
overcome this problem are (1) to sample genes from different

genomes of the same plant, which are unlikely to experience
the same kind of base composition bias simultaneously dur-
ing evolution of the organisms, and (2) to use model-based
methods, which are more effective than parsimony methods
in dealing with variable nucleotide frequencies throughout a
data set. For both RNA editing and base composition bias,
one can again resort to using genomic structural characters,
which do not have the problems typically associated with
DNA sequence evolution.

In conclusion, maximum likelihood and maximum parsi-
mony analyses of seven genes from three different genomes of
192 diverse land plants and their algal relatives reconstructed
trees with similar topologies and bootstrap values. The major
clades of nonflowering land plants have been identified and
their relationships resolved with generally strong statistical
support. Liverworts represent the sister to all other land
plants. Hornworts are sister to vascular plants. Lycophytes
are sister to other vascular plants. Equisetum, Psilotaceae,
eusporangiate ferns, and leptosporangiate ferns form a clade,
but relationships among them are not resolved. This clade is
sister to seed plants. Extant gymnosperms are likely to repre-
sent a monophyletic group. Gnetales are related to conifers
but not angiosperms. The poor resolution of relationships
among basal monilophyte lineages and among some seed
plant lineages is perhaps caused by extinction that these
groups suffered during the Permian-Triassic boundary (Erwin
1994; Stanley and Yang 1994; Becker et al. 2004) and the
Cretaceous-Tertiary boundary (Vajda et al. 2001). Two lines
of evidence are consistent with this idea. One is that there
are many extinct lineages of early vascular plants and seed
plants that are well documented in the fossil record (Stewart
1983; Kenrick and Crane 1997). The other is the low boot-
strap values in the angiosperm portion of the trees we recon-
structed. Here we know that there is a large living diversity
of angiosperms, but the limited taxon sampling employed
in this study created an “extinction” perceived by the com-
puter. Hence, we suggest that future studies sampling more
slow-evolving genes and genomic structural characters should
produce better resolution of these relationships. Finally, we
acknowledge that it is possible that there are still analytical
artifacts in the phylogenetic hypothesis we presented but
that the chance of their occurrence should be much smaller
than in previous studies with limited taxon and character
sampling. We believe that the prospect for achieving a com-
plete understanding of the evolution of land plants and their
interaction with the abiotic and biotic environments under
a well-reconstructed phylogenetic framework is better than
ever.
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