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Abstract.—Public DNA databases are composed of data from many different taxa, although the taxonomic annotation on
sequences is not always complete, which impedes the utilization of mined data for species-level applications. There is
much ongoing work on species identification and delineation based on the molecular data itself, although applying species
clustering to whole databases requires consolidation of results from numerous undefined gene regions, and introduces
significant obstacles in data organization and computational load. In the current paper, we demonstrate an approach for
species delineation of a sequence database. All DNA sequences for the insects were obtained and processed. After filtration of
duplicated data, delineation of the database into species or molecular operational taxonomic units (MOTUs) followed a three-
step process in which (i) the genetic loci L are partitioned, (ii) the species S are delineated within each locus, then (iii) species
units are matched across loci to form the matrix L×S, a set of global (multilocus) species units. Partitioning the database into
a set of homologous gene fragments was achieved by Markov clustering using edge weights calculated from the amount
of overlap between pairs of sequences, then delineation of species units and assignment of species names were performed
for the set of genes necessary to capture most of the species diversity. The complexity of computing pairwise similarities
for species clustering was substantial at the cytochrome oxidase subunit I locus in particular, but made feasible through
the development of software that performs pairwise alignments within the taxonomic framework, while accounting for the
different ranks at which sequences are labeled with taxonomic information. Over 24 different homologs, the unidentified
sequences numbered approximately 194,000, containing 41,525 species IDs (98.7% of all found in the insect database), and
were grouped into 59,173 single-locus MOTUs by hierarchical clustering under parameters optimized independently for
each locus. Species units from different loci were matched using a multipartite matching algorithm to form multilocus
species units with minimal incongruence between loci. After matching, the insect database as represented by these 24 loci
was found to be composed of 78,091 species units in total. 38,574 of these units contained only species labeled data, 34,891
contained only unlabeled data, leaving 4,626 units composed both of labeled and unlabeled sequences. In addition to giving
estimates of species diversity of sequence repositories, the protocol developed here will facilitate species-level applications
of modern-day sequence data sets. In particular, the L×S matrix represents a post-taxonomic framework that can be used for
species-level organization of metagenomic data, and incorporation of these methods into phylogenetic pipelines will yield
matrices more representative of species diversity. [Database partitioning; MOTU; multi-locus clustering; species delineation.]

Representing the sum of all sequence data made
available to date, public DNA databases such as
GenBank are a heterogeneous assemblage with no
constraints in terms of representing biological diversity.
Sequence data are submitted in which the overlap with
other sequences may be high or low, and in which
the evolutionary distances to other members of the
database are similarly unconstrained. Determining the
contents of a sequence database often relies on the
annotation given to entries, although in practice this
information may be incomplete, vague, or even incorrect
(Vilgalys 2003; Nilsson et al. 2006; Wägele et al. 2009).
Partial taxonomic labeling of sequences is particularly
common in public databases. The increased rate of
DNA sequence submission fueled by the continually
reducing cost and the adoption of high-throughput
technologies places greater demand on identification
of samples by taxonomists. In some cases, this may
compel improved taxonomic work, but identification
to the species level for most insects can be time-
consuming. The species is the fundamental biological
unit and perhaps also the most valid (nonarbitrary) rank
in taxonomy (Mayr 1982). Yet all too often this rank
is omitted, with submission of insects sequences with
incomplete species labels routine (Althoff 2008; Emery
et al. 2009; Smith and Fisher 2009; Pinzon-Navarro

et al. 2010; Burks et al. 2011; Pilgrim et al. 2011; Santos
et al. 2011; Smith et al. 2012). Alphanumerical labels
are often assigned to species fields of sequences in
the absence of species-level identification, inconsistently
referring either to the specimen or the putative species
group (defined via sequence analysis) to which the
specimen belongs. Thus, a large class of unidentified
molecular data exists on GenBank (termed “dark taxa”;
Page 2011), the utility of which would be substantially
enhanced where the taxonomic limits and identities
can be determined. Post submission classification of
data using principles from DNA taxonomy and DNA
barcoding is one means in which these sequences may be
given taxonomic placement. Such molecular delineation
and taxonomic assignment is routinely performed for
single-locus data sets (Stackebrandt and Goebel 1994;
Floyd et al. 2002; Hebert et al. 2003; Blaxter et al. 2005;
O’Brien et al. 2005; Nilsson et al. 2009). For example,
using a web service linked to a library of reference
data, unidentified cytochrome oxidase subunit I (COI)
query sequences differing from fully labeled references
by less than approximately 1% can be assigned the
species label of the latter (Ratnasingham and Hebert
2007). This process is straightforward in the case
of COI barcode sequences since this particular gene
region is standardized and widely utilized; an extensive
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curated set of library COI sequences is available, with
well-characterized evolutionary features (Savolainen
et al. 2005; Ratnasingham and Hebert 2007). However,
this implies that the assignment of species for any
particular sequence is dependent on the representation
of homologous gene fragments. The standardization in
the case of COI is atypical, as databases are composed
of numerous gene regions which overlap to varying
degrees. Therefore, the taxonomic delineation of a
database cannot be disentangled from the partitioning
of the genetic loci on which delineation occurs.

Partitioning the contents of a database according
to homology is commonly practiced in evolutionary
studies, where two general approaches have emerged;
(i) a search of the database using user-specified queries
and (ii) grouping of database sequences according to
internal criteria. In the former, the database search
queries may be user specified (Dereeper et al. 2008;
Smith et al. 2009) or from a standardized set of references
(e.g., “left path” of the pipeline developed by Peters et al.
2011). The latter uses patterns in sequence similarity
and overlap (Enright and Ouzounis 2000; Driskell et al.
2004; McMahon and Sanderson 2006; Sanderson et al.
2008; Thomson and Shaffer 2010) and has a history in the
field of protein classification (Sonnhammer and Kahn
1994; Krause and Vingron 1998; Tian and Dickerman
2007; Ebersberger et al. 2009). This method typically
consists of an all-against-all (pairwise) comparison of
sequences, followed by clustering of overlapping pairs,
where heuristics are adopted for larger databases (Tian
and Dickerman 2007; Thomson and Shaffer 2010). An
ideal partitioning resulting from this would be groups
of sequences containing members that were mostly
overlapping (i.e., having large regions of homology),
and mostly nonoverlapping with members of other
groups of sequences.

After the database has been grouped into homologs,
the species memberships of sequences within each
homolog would need to be determined. Species-level
clustering of unidentified sequences is perhaps most
commonly achieved with phenetic approaches (Hebert
et al. 2003; Ratnasingham and Hebert 2013), consisting
of computation of similarities (or distances) between
sequence pairs followed by the grouping of highly
similar sequences. The degree of similarity up to
which sequences are grouped is known as the cutoff
or threshold, and needs to be set to a level appropriate
for the species level. In the case of DNA barcodes, the
threshold is set at 97.8% similarity (Ratnasingham and
Hebert 2013), although species clustering is not confined
to organellar protein-coding genes, for example nuclear
28S rRNA sequences grouped where identical, have
been found to correspond to presumed species groups
in beetles (Monaghan et al. 2005). As the rate of
evolution is known to vary across the genome (Roe and
Sperling 2007), species clustering parameters require
customization. An intuitive approach to deriving
an optimal species-level cutoff is testing a range of
reasonable values in reference data and adopting the
one in which the resulting clusters most closely resemble

established taxonomic species (Göker et al. 2009; Hibbett
et al. 2011; Mende et al. 2013). The threshold maximizing
congruence can be selected as the optimal, and applied
to the unidentified sequence class. When applied to
the unidentified sequences, the resulting clusters are a
proxy for estimating species diversity.

As routine as sequence-based species clustering
has become, there is little work on the practicality of
consolidating clusters from multiple loci, where forming
molecular operational taxonomic units (MOTUs) from
a locus-partitioned database requires consolidating
results among very many loci, in which incongruence is
inevitable. In related settings, resolving conflict between
genes usually involves extracting common signal, for
example; selecting the predominant tree from single
gene-tree distributions (Ané et al. 2007); inferring the
species tree which minimizes both intraspecific structure
and conflict between trees (O’Meara 2010); forming the
most similar single-gene clusters by modification of their
linkage parameters (Setaro et al. 2012); searching for a
species tree that maximizes likelihood of the sequence
data (Kubatko et al. 2009) or posterior probability
over a distribution of trees (Liu and Pearl 2007; Heled
and Drummond 2010) under models that incorporate
multiple species and genes. In the context of single-gene
MOTUs on a locus-partitioned database, consolidating
results can be achieved in a graph framework, treating
loci as partitions and species units as nodes. Species
units may then be linked with minimal conflict using
graph matching algorithms (Chesters and Vogler 2013).
By maintaining loci as distinct but linked partitions,
this allows formation of a two-dimensional matrix
(L×S) in which columns correspond to loci and rows
to the delineated species units. This form of matrix is
useful in many applications that use mined sequences,
particularly the supermatrix approach to phylogenetic
analysis, which is a widely adopted method used for
building trees from public data (Driskell et al. 2004;
McMahon and Sanderson 2006; Goloboff et al. 2009;
Thomson and Shaffer 2010; Jones et al. 2011a; Peters
et al. 2011).

In the current study, we perform a species delineation
of the insect DNA database. The insects are selected as
a case study for the protocol, being both hyper-diverse
and well represented on sequence databases, while still
posing significant challenges for taxonomy. In order to
reconstruct a set of putative species units over the set of
genetic data present, we perform homolog partitioning
optimized for the purpose of species-level clustering.
The loci are then consolidated into a single matrix,
this gives an estimate of the species diversity and an
analyzable species-level matrix in which the impediment
of incomplete labeling has been addressed.

MATERIALS AND METHODS

Protocol Overview
Figure 1 illustrates the three-step process whereby a

sequence database of unknown composition (Fig. 1a)
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a) Database b) Four Loci

1           2           3           4 

c) Eighteen MOTU Nine Mul�-Locus MOTU

1
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4
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9

d) 

FIGURE 1. Illustration of database delineation. a) A database
is delineated with no prior assumptions on composition, sampling
patterns, or delineation parameters, thus the contents of the database
are initially unknown. b) The database is partitioned into loci by
identifying then obtaining the predominantly used fragments. Four
loci are shown, with the size of each bar reflecting the amount of
data present for the locus. Typically one predominant gene is found,
as depicted by the first bar. c) Next each locus is delineated into
species units, which consists of sequences being grouped according to
species name, and sequences clustered according to similarity where
unidentified. d) Finally multilocus species units are formed by linking
together those from different loci, resulting in the delineation matrix
L×S (where L = 4 and S = 9).

can be organized into an L×S matrix. The steps are the
primary partitioning of the database into loci (Fig. 1b),
followed by species clustering performed separately
on each of the partitioned loci (Fig. 1c) and then
integration of single-locus species units to create the final
delineation matrix (Fig. 1d). Each row of the L×S matrix
corresponds to a named species or global MOTU (see
Table 1 for definitions) of unidentified sequences. The
protocol is implemented as a series of steps amenable to
automation, where the flowchart in Figure 2 gives the
main steps required.

The Insect Database
The Invertebrate flat file release (as of March

2013) was downloaded from the GenBank ftp site
(ftp://ftp.ncbi.nih.gov/genbank/) and the taxonomy
database (taxdump.tar.gz) from ftp://ftp.ncbi.nih.
gov/pub/taxonomy/. The GenBank flatfile database
was parsed for specific fields (accession, NCBI taxon
ID, gene name, and DNA sequence). The NCBI
taxonomic hierarchy was used in assigning species
labels (both Linnaean binomials where identified
and alphanumerical labels where unidentified) to
each sequence, via the NCBI taxon ID (the “taxon”
type in the “db_xref” field). Where subspecies names
were used as species IDs, we assigned the containing
species name (scientific name), ignoring synonyms. All
sequences with a taxon identifier downstream of the
Insecta node (NCBI taxonomy ID: 50557) were selected

TABLE 1. Definitions

(Bi-)Partite matching Linking members between two different
groups

Cardinality Count of the number of links, e.g., in a
graph

Clustering optimization Derivation of the best parameters for
clustering, under some criteria

Global MOTU Sequence groups broadly representing
species after consolidating information
from multiple loci, where any one
global MOTU may have one or more
locus represented

HA Rand index Measure of the similarity between two
alternative groupings

Hit span fraction A measure of the proportion of the length
of two sequences which overlap

Homology Evolutionary relatedness, here assumed
where sequences share similarity over
much of their length

Markov clustering Heuristic approach to grouping, here
applied to measures of sequence overlap

from the invertebrate division, and then dereplicated
using Usearch (Edgar 2010), in which sequences
identical across their whole length (command line
option “-derep_fullseq”) were removed (except if
the identical sequences were labeled as different
species) to form a reduced redundancy database. This
reduced redundancy insect database was used in all
further analyses, and is made available on Dryad
(http://dx.doi.org/10.5061/dryad.k7t50, filename
insecta.fas, see Supplementary Material online, available
from http://www.sysbio.oxfordjournals.org).

Partitioning Gene Fragments
Gene fragments were first partitioned by clustering

sequences according to degree of overlap. Overlap was
determined according to local alignments between the
complete database and a random subset thereof (Figs. 3
and 2(step 1)). A local Blast database was created from
the file of insect sequences using makeblastdb (Camacho
et al. 2009), then all sequence pairs between the
database and random subset compared (Fig. 2(step 2))
using the BlastN algorithm (Blast+ v. 2.2.28) under
the command line settings “-task blastn -dust no -
strand both.” The dust filter was deactivated (-dust
no) to prevent hit fragmentation (Sanderson et al.
2008). There is little consensus on an appropriate
e-value under such searches, with values spanning
over 10 orders of magnitude (e.g., Yona et al. 2000;
Sasson et al. 2002; Krause et al. 2005; McMahon and
Sanderson 2006; Tian and Dickerman 2007); therefore,
we performed a number of search replicates under
a randomly selected e-value taking a value between
10 and 1e−10. Where alignment is performed to
determine homology and overlap only, the degree
of sequence similarity is of less concern since both
distantly and closely related homologs are sought.
The length of the alignment is most relevant, for
which we used the hit span fraction (Fig. 2(step 3))
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1 •Sample database

Bl t h l i t l t d t b2 •Blast search sample against complete ata ase

3 •Calculate overlap (Hit Span Frac�on) for each hit

4 •Par��oning of loci (with MCL) using overlap scores

(op�onal) Select locus par��on parameters according to species returned and annota�on congruence5 •

6 •(op�onal) Test suitability of each homolog for MSA, then discard where appropriate

7 •(op�onal) Isolate reference dataset (species labeled sequences), then taxon_blast

(op�onal) Clustering (in Esprit) of reference dataset using pairwise similari�es from taxon blast8 • (in _

9 •(op�onal) Select op�mal species clustering parameters using reference dataset

10 •Obtain subject dataset (exemplars for each named species, combined with all incompletely labeled data)

taxon blast subject dataset, then cluster (Esprit) under op�mal parameters determined earlier11 • _

12 •Combine single locus MOTU using mul�-par�te matching

13 •Assign names to mul�-locus MOTU using labeled exemplars

FIGURE 2. The sequence of steps for the protocol developed herein. Step numbers are referred to in the text. Note, not all steps are necessary
for each iteration. In particular, locus parameter optimization (step 5), processing, and assessment for multiple sequence alignment (step 6),
and species parameter optimizations (steps 7–9) may not be required. Abbreviations; MSA, multiple sequence alignment; MCL, Markov cluster
process; MOTU, molecular operational taxonomic unit.

a) Database with 14 sequence entries c) Blast database using sample as query d) Par��on database based 
on sequence similarity

b)  Random sample of database

FIGURE 3. Illustrating an approach to partitioning a database by locus. This approach requires no prior assumptions on the composition of
the database, being based only on the structure therein. a) the database; small circles denote individual members (DNA sequence entries).
b) A random subset of the database is sampled. c) The sample (c lower) are used as alignment queries against the complete database
(c upper), the links indicate sequence overlap. d) Partitioning according to similarity gives two loci, one containing three members and the
other containing six.

according to McMahon and Sanderson (2006). These
pairwise overlap values were then input into MCL
(Markov CLuster process; van Dongen 2000) for locus-
partitioning (Fig. 2(step 4)). Briefly, this program uses
edge weights (here, hit span fraction) as transition
probabilities. The probabilities are altered during
Markov rounds whereby the stronger relationships
become more robust and weak links broken, until
a robust partitioning of the data is created. The
resulting gene clusters are primarily influenced by the
inflation parameter, with tight gene families created

with larger values, and larger gene groupings where
using smaller values (Krause et al. 2005). For each
replicate, we randomly set the inflation as either 1.1, 1.4,
2, 4, 5, or 6. Fragment clustering was repeated where
variously selected subsets of the database were used as
queries, and with randomly selected values for the key
parameters.

For the purpose of creating the L×S matrix, an
optimal locus-partitioning of the database is that in
which (i) as much as the species diversity as possible
has been integrated and (ii) each gene partition contains
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mostly overlapping sequences, with minimal overlap
between sequences of different partitions. The former
was characterized for each replicate according to the
number of species IDs placed into the partitioning
(i.e., hit during the Blast search), whereas for the
latter we propose the congruence between the Markov
clustered partitions and the gene names assigned by
sequence submitters (Fig. 2(step 5)). Gene names were
first standardized (e.g., the labels CO1, COI, COX1,
COXI, and CYTOCHROME OXIDASE I were all given
the same identifier) then congruence between gene
names and Markov clusters measured. A standard
score of congruence is the Rand index, and several
derived measures (Rand 1971; Milligan and Cooper
1986; Warrens 2008). These give an indication of the
similarity between clusters made under two different
settings, based on pairs of individuals in the data set
which are (i) clustered in one setting and clustered
in the second, (ii) clustered in one setting and not
clustered in the second, (iii) not clustered in the first
setting but clustered in the second, (iv) not clustered in
either setting, where in the current case the two settings
are (a) the groupings based on sequence similarity
(i.e., MOTU) and (b) the groupings based on gene
labels (usually morphospecies). We use the Hubert
and Arabie-adjusted Rand index (HA Rand index;
Hubert and Arabie 1985), as calculated in the Clues R
package (R Development Core Team 2008; Chang et al.
2010).

Grouping of sequences in this way is no guarantee
that sets can be aligned globally, which would be
required where matrices are used for phylogenetic
inference. Therefore, homologs were further assessed
for this purpose. For this step (Fig. 2(step 6)),
sequence orientation (such that the equivalent strand is
maintained throughout) is both the primary processing
requirement and means of assessment. Peters et al. (2011)
propose orientation in initial reference to user-supplied
representatives for each locus. We here compare this
approach to a fully automated one, in which a “most
representative sequence” (MRS) is sought, then acting
as a seed for sequence orientation of the remainder.
For selection of the MRS, we use a method broadly
similar to the routine used in BlastAlign (Belshaw and
Katzourakis 2005), except that we select the sampled
member with maximal aligned length when compared
against others (as opposed to maximizing the presence
of landmarks). Next sequences for each homolog were
oriented generally following Peters et al. (2011). A Blast
search was performed of the seed sequence against
other members of the gene, then the strand of hits used
to orient where necessary. Sequences discarded in the
first round (due to lack of sequence similarity) were
subject to a second Blast round, against four randomly
selected sequences successfully aligned against the
original seed. Finally, oriented sequences were aligned
with Clustal Omega (Sievers et al. 2011) under default
parameters, and assessed visually for suitability for
multiple sequence alignment.

Defining Taxonomic Units
The unidentified sequences were delineated into

MOTUs initially on a locus by locus basis. In
addition to indicating the otherwise unknown species
diversity in the unidentified sequences, this permitted
the assignment of species names to unidentified
sequences in many cases. Species clustering parameters
were obtained by first grouping sequences that
had been labeled to species level (reference data),
then selecting parameters in which the congruence
between molecular clustering and taxonomic species
was greatest. Sequences of the reference data set were
grouped according to percent identities as calculated
after pairwise Blast alignments under the command line
settings “-word_size 20 -perc_ident 95 -evalue 1e-10”
(Fig. 2(step 7)). After genetic distances were obtained,
agglomerative single linkage clustering was performed
using the “hcluster” algorithm as implemented in Esprit
(Sun et al. 2009) (Fig. 2(step 8)). Clusters were generated
under thresholds from 100 to 95, in steps of 0.1. Finally,
the congruence between clustering of the reference data
and their taxonomic labels (species) was then scored. As
before, we test congruence using the HA Rand index
(Fig. 2(step 9)), where in this case a clustering parameter
producing the maximal HA Rand index indicates the one
most likely to return sequence groups corresponding to
established species.

Sequences not identified to species level (the subject
data) were then clustered under the parameters deemed
optimal by the HA Rand index. Alignment between
all pairs of the larger partitions (particularly, COI) is
both unfeasible and unnecessary; therefore, we carry out
alignments within taxonomic groups above the species
level. We developed a software tool (taxon_blast.pl) for
pairwise alignments within the taxonomic framework
of both fully and partially identified sequences. By
default the script uses the genus, family, and order levels
found to be most relevant in the current study. The
script first identifies all sequences that have genus-level
labeling, then all-against-all alignments are performed
within each of these genera. As shown in Figure 4,
many sequences are present in which taxonomic labeling
is only given for ranks above genus; for example,
those in which the species and genus label are both
absent, but family label is given. In these cases, two
sets of alignments within each given family need to be
carried out: (i) all-against-all alignment of the sequences
lacking genus-/species-level annotation and (ii) all-
against-all alignment between the sequences in (i) and
the remaining sequences that do have genus/species
taxonomic annotation. This procedure is repeated at
the order level due primarily to the large number
of BOLD data only labeled to that rank (Fig. 4).
Calculation of sequence similarities in the subject
data with taxon_blast.pl was followed by hierarchical
clustering with Esprit (Fig. 2(step 11)), as described
previously.

MOTUs were by necessity clustered separately for
each gene fragment, thus deriving an integrated
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FIGURE 4. Tree structure depicting taxonomic rank and labeling
for sequence data on GenBank. Splits correspond to labeling class
(not Linnean groups). Labeling classes include taxonomic identifiers
complete to the level of species, incomplete to the level of genus, family,
and order level, and whether these are BOLD or non-BOLD derived.
Bases are sized relative to the number of labels in the given class.

delineation of the database and a total estimate of
species diversity requires the consolidation of results
from the different loci (Fig. 1d). Where two MOTU from
adjacent loci share a label (species or alphanumerical)
they can be regarded as a single species unit, and
their sequence data united as representing genomic
data from that one species. This process relies on
the matching of labels of which different conventions
are used for unidentified sequences. Thus, cases are
expected where MOTUs actually from the same species
are not united due different labels. Creating global
MOTUs by combining those separately delineated from
different loci is not straightforward, since many of the
latter are composed of multiple species IDs. In such
cases, there is more than one way in which the MOTUs
can be matched to those at adjacent loci, and thus a large
space of possible configurations exists over the whole
database. In order to generate the most reasonable global
MOTUs, we performed maximal cardinality multipartite
matching (Chesters and Vogler 2013) (Fig. 2(step 12)).
The optimal set of matches is one in which the number
of links between loci is maximized, in other words, the
optimal L×S matrix is that in which the least number
of single-locus MOTUs remain unlinked. The problem
of maximal matching where more than two partitions
(loci) is present, is NP-complete, thus a heuristic is
used. The single hub heuristic splits the problem into a
series of bipartite matchings, a graph problem which is
solvable in polynomal time (Papadimitriou and Steiglitz
1982). For example, where combining MOTUs from three
gene fragments, GeneA, GeneB, and GeneC; MOTUs

from GeneA and GeneB are first matched by maximal
cardinality bipartite matching to form the set of MOTUs
GeneA–GeneB; then this MOTU set (GeneA–GeneB) is
then matched by the bipartite algorithm to GeneC.

Assessment of the proposed protocol.—Species-level
clustering of unlabeled data relies on parameter
optimization using sequences with associated species
labels (reference data); however, it is well known that
mislabeling is prevalent in public databases, which is
expected to impact the accuracy of clustering. In order
to estimate the level of error in species clustering, a key
set of 26 “model genera” is omitted from the reference
data set during optimization of clustering parameters,
and used later for measurement of clustering error.
This is under the assumption that labeling accuracy
would be greatest for these highly studied taxa. The
26 model genera used were: Acyrthosiphon, Aedes,
Anopheles, Apis, Bombyx, Culex, Dendroctonus, Drosophila,
Galapaganus, Gryllus, Heliconius, Helicoverpa, Lucilia,
Manduca, Melanoplus, Myrmica, Nasonia, Ostrinia, Papilio,
Pediculus, Pheidole, Rhagoletis, Schistocerca, Spodoptera,
Triatoma, and Tribolium.

Next, we examined the sensitivity of species clustering
to clade-specific parameter estimation (Huang et al. 2008;
Meier et al. 2008). Since the rate in substitution may
undergo clade-specific shifts, it might be assumed that
clustering parameters are better assessed individually
for groups. Parameter optimization and application of
the optimal parameter to subject data are carried out as
described earlier, but individually for each family.

Finally, we assessed an alternative gene partitioning
approach for the purpose of species clustering. There
have been several such approaches previously used,
of which the one developed here requires minimal
user decisions and input. Another tractable approach
is simply placing sequence entries into separate
files according to their gene labels. We assess this
alternative approach using a modified version of
“multiple_sequence_splitter” (Peters et al. 2011). The
script retrieves the full GenBank entry for each sequence
and splits the sequence by each “feature” (gene label),
although we modify the original script in order to
standardize gene names in a way similar to that
described earlier (scoring genetic congruence in the
section Partitioning Gene Fragments), which prevents the
splitting of homologs which are alternatively named.

RESULTS

Insect Database
The invertebrate release was downloaded from

GenBank, and all insect sequences selected. After
dereplication, the insect database stood at 731,090
sequences. The database contained 382,363 sequences
with a complete binomial species label, leaving
348,727 labeled with an alphanumerical identifier. In
total, the database contained 43,465 binomials, and
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FIGURE 5. Results of locus-partitioning replicates under varying parameters. (a, c and e) give the proportion of species IDs in the insect
database that are incorporated into the partition of homologs, whereas (b, d and f) give the locus HA Rand index, which is a score of congruence
between the locus-partitioning and the gene names assigned to sequences. Three different parameters are assessed for their impact on these
variables; (a and b) the number of sequences sampled as Blast queries for the complete insect database; (c and d) the e-value used for that Blast
search, and (e and f) the MCL inflation used to group members into homologs.

alphanumerical species-level labels with taxonomic
information to the level of genus (29,952), tribe (109),
family (3557), or order (8449). The proportions of the
main labeling classes are illustrated in Figure 4. The
majority of entries labeled only to order level are
BOLD submissions whereas most labeled up to genus
level only were non-BOLD sequences. The former are
largely interim sequence data releases from BOLD in
which more complete taxonomic labeling is to be made
available at a later stage, whereas it is unlikely that more
complete taxonomic information will be given for most
of the latter.

Fragment Clustering
The insect database was partitioned accorded to locus.

Figure 5 gives the two optimality criteria (integration of
species diversity and congruence between gene clusters
and gene annotation) according to variation in key
parameters. There was no noticeable impact of the choice
of e-value (Fig. 5c,d) on the characteristics of the resulting
clusters, whereas the proportion of species diversity hit
in the Blast search was determined by the number of
queries (Fig. 5a), and low Markov inflation values (1.1,
1.4) produced gene clusters which corresponded better
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to the gene names assigned to the sequences (Fig. 5f).
Capturing most of the species diversity of the database
was achieved using a modest number of sampled
queries. For example, a Blast search with a random
sample of just 80 sequences and a relatively stringent
e-value (1e−07) hit over 95% of all species IDs (82,748)
including 95% of unidentified IDs (40,724/42,057), and
just over half of the database in total (425,299/731,090).
There were rapidly diminishing returns in terms of
hitting more species by using a greater number of
queries, for example, only an extra 208 species are found
when doubling the number of queries from 600 to
1200. Further, although the database in total contained
many tens of thousands of species, the majority of
these could be found by consulting just a handful of
the many gene partitions; the loci preferentially used
in biodiversity studies. This is illustrated in Figure 6,
which shows the example of the database partitioning
under the settings: 520 queries, Blast e-value 1e−02,
and MCL inflation 1.4. Twenty-four gene clusters are
shown, ranked according to the number of sequences
comprising each. As expected, most species IDs (63,933)
are represented at the COI locus. The sampling for this
gene is so marked that, whereas the 28S cluster contains
21,449 species IDs, only half of these (10,020) are not
already present for COI. Figure 6b illustrates this curve.
Adding more than 10 loci adds few additional species;
for example, while the gene cluster composed primarily
of the CAD gene contains 4225 species, only 132 of these
are novel. The replicate described here was that with
the greatest genetic HA Rand index (0.989), and so was
selected for further species-level analyses. This replicate
hits 68.3% of the database (499,471), but included 98.8%
of the species labels contained in the database (84,480)
and 99.0% of the unidentified labels (41,621). Statistics
for the highest ranking 24 of the 162 gene clusters for this
partitioning are given in Table 2.

An optional step (Fig. 2(step 6)) was implemented to
assist where matrices are to be used for phylogenetics,
in which genes globally unalignable are discarded. Each
gene cluster was assessed for lack of similarity between
its members. Peters et al. (2011) propose comparing
members against a user-supplied representative, which
we assess in addition to an automated algorithm using
the MRS similar to that used in BlastAlign (Belshaw
and Katzourakis 2005). Sequences were discarded where
they lacked similarity to the reference. Where using
a single reference, 34.6% of sequences were discarded
where aligning the set against a representative sequence
randomly selected from the model taxa, as opposed
to 13.1% where aligning against the MRS. However,
an iterative approach (members successfully oriented
in an initial round are used to attempt aligning and
orienting the discarded members) led to fewer sequences
discarded both using the user model sequence or the
MRS. Here, 11.5% of sequences are discarded where the
initial reference is user supplied, with 13.1% when using
the automated MRS. After orientation, the homologs
were aligned and inspected manually. Based on the
inspections, the orientation process was found to reflect

FIGURE 6. Counts of species IDs for the 24 homologs under analysis.
Upper bar chart gives the number of species IDs, and lower gives the
number of species IDs new to that locus. Predominant locus names are
given, except where ambiguous (denoted “-”).

the quality of the alignments. In homologs in which a
large proportion of its members were discarded (lacking
similarity to the reference), alignments of (only) the
remaining sequences were of a poor quality. Based
on inspection of alignments, were the matrix to be
used for phylogenetics, four of the clusters (clusters
12, 14, 18, and 19) would certainly not be subject to
further analysis. Notably, it was these clusters for which
gene name assignment was ambiguous (containing a
large number of sequences in which the gene name
differed). Meanwhile, at the current scale, it was
apparent that reliable global alignment of the two rRNA
loci 28S and 12S would be challenging. Strategies for
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TABLE 2. Counts for sequences and species for each gene partition

Locus Sequences Species IDs

Total in Culminative Proportion of Proportion of New to
locus over loci insect db this partitioning locus

COI 272,167 63,933 63,933 0.747 0.756 63,933
28S 31,117 21,449 73,919 0.864 0.875 10,020
16S/NAD1 25,091 15,524 77,344 0.904 0.916 3425
COII 22,347 8394 79,220 0.926 0.938 1876
EF1a 21,761 13,352 79,987 0.935 0.947 767
Cytb 16,147 6885 80,671 0.943 0.955 684
18S 16,013 12,853 82,231 0.962 0.973 1560
Wnt 10,779 7697 82,618 0.966 0.978 387
5.8S 9826 2836 83,005 0.971 0.983 387
NAD5 9722 2423 83,446 0.976 0.988 441
12S 8591 6011 83,833 0.980 0.992 387
NA 8372 307 83,853 0.980 0.993 20
CAD 5391 4225 83,985 0.982 0.994 132
NA 4617 586 84,038 0.983 0.995 53
Histone3 3739 3101 84,072 0.983 0.995 34
LWRH 3248 2531 84,120 0.984 0.996 48
ARGK 2704 1977 84,128 0.984 0.996 8
NA 2545 437 84,144 0.984 0.996 16
NA 1740 215 84,148 0.984 0.996 4
RPS5 1686 1456 84,162 0.984 0.996 14
NAD2 1634 716 84,252 0.985 0.997 90
GAPDH 1551 1176 84,252 0.985 0.997 0
POLIII 1416 1125 84,270 0.985 0.998 18
PEPCK 1261 391 84,276 0.985 0.998 6

Note: Loci are ranked according to number of sequences. Predominant gene label is given in locus column where unambiguous, and NA
otherwise.

multiple sequence alignment of problematic or saturated
sequence sets have been proposed elsewhere (McMahon
and Sanderson 2006; Smith et al. 2009; Thomson and
Shaffer 2010).

Species Clustering
The diversity represented by the unidentified

sequences was estimated by clustering into MOTUs,
and species names were assigned where possible.
The first step was clustering optimization for 24 loci;
Table 3 (“Distance threshold” column) includes optimal
thresholds for these fragments, with a noticeable
trend for more permissive thresholds at mitochondrial
markers compared with nuclear markers, and lower
species-level congruence at the slower evolving genes (a
correlation between the taxonomic HA Rand index and
the optimal species threshold of r = 0.4085, P = 0.066,
Pearson’s product-moment correlation). These optimal
thresholds were used to cluster the unidentified
sequences, for delineation of MOTUs. Named species
were also included in the clustering for assignment
of species names to MOTUs. Calculation of sequence
similarities between members of the COI locus was
the rate-limiting step of the whole protocol, with that
single locus requiring a running time roughly similar
to all other loci combined. Computations were made
feasible by performing all-against-all alignments within
the taxonomic framework using taxon_blast.pl, which
automated alignments within each of 5978 genera (the

remaining 6442 genera only contained a single member),
146 families, and 16 orders. The Lepidoptera required
most computation, with 21,344 sequences lacking
any taxonomic labeling below order level requiring
all-against-all alignment, followed by those 21,344
against the otherwise annotated sequences numbering
61,379. Still, taxon_blast.pl reduced the number of
required alignments by an order of magnitude; 2.1
billion alignments were carried out for the COI locus,
whereas 24.7 billion would have been required were
each COI insect sequence aligned with each other. Each
set of homologs was separately clustered using the
corresponding optimal threshold, and species names
were assigned to partially identified sequences where a
MOTU contained unidentified sequences and no more
than a single-named species. The species diversity of
unidentified data potentially would range between
two extreme scenarios; all sequences originating from
a single species, or each unlabeled sequence from a
different species. The results show a structure much
closer to the latter; Table 3 gives the species clusterings
for individual genes, where the putative species
diversity represented by unidentified sequences was
substantial. For example, COI was delineated into a
total of 54,907 species units. This included 126,241
unidentified sequences clustered into an estimated
26,722 single-locus MOTUs, an average of 4.7 sequences
per MOTU.

In order to derive global counts of the various
species classes, the MOTUs were matched between
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TABLE 3. Species clustering

Locus Distance Species Labeled Unidentified MOTU with Species MOTU with
threshold units species members unidentified members assignments >1 species

COI 0.029 54,907 31,056 126,241 26,722 15,297 1942
28S 0.004 20,928 13,080 11,910 8391 602 814
16S/NAD1 0.013 14,485 10,991 6988 3706 233 601
COII 0.024 7741 5757 6666 2084 167 355
EF1a 0.005 13,010 9875 5065 3297 186 415
Cytb 0.014 6779 4280 5133 2565 98 173
18S 0.000 12,302 8341 5343 4203 249 440
Wnt 0.007 7697 5804 2506 1962 67 212
5.8S 0.021 2465 2005 3242 522 102 174
NAD5 0.025 2356 1435 5858 929 8 85
12S 0.012 5842 4657 1829 1231 50 229
NA 0.025 1000 221 2430 778 0 8
CAD 0.003 4352 3034 1525 1337 24 40
NA 0.05 1048 437 1714 614 11 27
Histone3 0.018 2730 2155 1001 644 87 144
LWRH 0.007 2307 1691 1046 664 43 117
ARGK 0.004 1882 1146 1153 757 35 61
NA 0.05 480 340 662 144 23 23
NA 0.014 561 82 1511 478 0 3
RPS5 0.01 1454 1356 108 102 3 38
NAD2 0.015 674 269 636 410 2 21
GAPDH 0.01 1178 1084 121 95 0 21
POLIII 0.002 1201 791 466 418 8 25
PEPCK 0.008 588 171 841 416 0 10

Note: Predominant gene label is given in locus column where unambiguous, and NA otherwise.

loci as to minimize conflict between species labels.
We derived a total of 78,091 species units in the
Insecta, where 39,517 were global MOTUs which
included unidentified sequences. Showing the results
of a single genus, Table 4 illustrates the incongruity
that is often encountered when global MOTUs are
formed, some of which may be addressed by further
parameterization. Vespula are represented on NCBI by
data from a number of genes, and several species
labels, of which four are partial identifications. Three of
the sequences with (two different) unidentified labels
are unambiguously placed in the matrix; the label
TRU-2010 has been assigned to sequences from two
different genes, both of which have been determined
as unique species-level entities, and thus forming a
single multilocus MOTU; and the sequence with the
label BOLD:AAG7678 has clustered in a single MOTU
with the named species Vespula flavopilosa. However,
sequences labeled with CSM-2006 (which is this case
refers to a voucher specimen) clustered with three
named species over the different genes: V. flavopilosa
for COI, Vespula maculifrons for 28S, and Vespula
pensylvanica for 18S. The matrix in Table 4 is the maximal
cardinality of a number of different configurations
in which the MOTUs containing CSM-2006 could
be matched. Users may consider the matching of
alphanumerical IDs or voucher labels more valid links
than species names, since this would preferentially
concatenate different genes sequenced from the same
individual, and reduce formation of chimeras. This
can be achieved by application of a weighting regime,
in which several options are made available (script

multi_locus_MOTU.pl). The full delineation matrix (24
L×78,091 S) is made available, see Supplementary
Material online (file name delineation_matrix).

Assessment of the database organization protocol.—The
optimal parameters inferred earlier were applied to
all species-labeled data for a set of 26 model genera
in order to estimate the level of accuracy with which
they formed a set of groups representative of species
diversity (Supplementary Fig. 1a). There was a strong
correspondence between inferred and actual number
of species, particularly where thresholds are estimated
on highly sampled genes. For example, the homolog
with by far the greatest representation of named
and unnamed data (COI) differs in the number of
species by only 6%. However, 18S rRNA in particular
appears less suited for the species clustering method
implemented here, as it substantially underestimates the
true number of species (estimating 24 when actually 71
were present in the model genera for 18S) despite the
very stringent threshold which is inferred and used.
28S rRNA additionally may increase the error in species
estimate. Although the deviation was much less marked
for 28S, the dense sampling of this gene over the insects
gives it greater influence on the final species count.
Over all genes, the mean deviation from the presumed
true number of species in the model genera was 27.4%
(weighted according to the number of species per gene).
In applications where the rows of the L×S matrix are
required to reflect species diversity to a higher degree
of accuracy, genes can be omitted and the matrix rebuilt
under the more suitable loci. For example, the omission
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TABLE 4. Section of the delineation matrix, where L=6 and S=5

COI 28S 16S/NAD1 CytB 18S Wnt

CSM-2006 / BOLD:AAG7678 / flavopilosa N N N CSM-2006 / pensylvanica N
DIMC068-09 / intermedia N N intermedia N N
TRU-2010 N N TRU-2010 N N
maculifrons CSM-2006 / maculifrons maculifrons maculifrons maculifrons CSM-2006
N pensylvanica pensylvanica N N N

Notes: The example contains a single genus Vespula (five additional species are not shown here). N indicates lack of sequence data for given
homologs of a species unit, otherwise all species-level labels (Linnean where italicized, and alphanumerical otherwise) found in the species unit
are given. Multiple individuals of a species unit are separated by ’/’.

of 18S gives a matrix of 76,467 species units with 34,118
MOTU composed solely of unlabelled data, and an
estimated accuracy of 21.7% (weighted mean deviation
in the model genera), whereas omission of both 18S and
28S gives 71,116 units and an accuracy of 20.6%.

We next determined how inferred species diversity
might be impacted by the range at which clustering
parameters are optimized. For simplicity, the pipeline
derives species clusters from a single threshold (for
each locus) over all insects, although we would
like to determine whether species counts have a
tendency to deviate from these insect-wide values where
thresholds are optimized at more local scales. Thus,
optimal clustering parameters were inferred and applied
individually for each family in the data set. A strong
correspondence was found between the number of
MOTUs where general thresholds or family-specific
thresholds are used (Pearson’s R=0.854, Supplementary
Fig. 1b), particularly for the more species dense families,
although there was a tendency to “overlump” where
species clustering parameters are inferred for sparsely
sampled families.

Finally, the species-level clustering procedures were
performed on a set of primary homologs defined simply
by the feature names on sequence entries (Peters et al.
2011). A high number of sequences lacking genetic
annotation would be an issue for this, as these could
not be assigned to any name-based homolog; however,
these did not seem substantial (2589 out of 731,090).
A comparative analysis was performed on the name
partitioned data set, with the species units clustered
on the MCL partitioned homologs. A general pattern
differentiating these was a lesser number of sequences
in a larger number of partitions where partitioning by
gene name. The main genes defined (with number of
sequences for name partitioned; MCL partitioned) were
COI (157,089; 157,297), 28S (23,569; 24,990), COII (13,758;
12,423), CYTB (9280; 9413), EF1a (10,087; 14,940), 18S
(11,779; 13,684), and Wingless (7671; 8310). Additionally,
some of the cases where the MCL method produced a
larger gene cluster were clearly the result of combining
genes with overlapping sequence. These are usually
adjacent on a chromosome and commonly sequenced
in tandem. For example, where name annotation defined
two separate partitions for 16S (14,751) and NAD1 (2514),
the MCL partition grouped these together (17,979).
A core set of 259,784 entries was identified which

overlapped between the approximately 20 most species
dense homologs of both methods. Summed over all loci,
these core entries were clustered into 134,152 single-gene
MOTUs in the MCL partitioned and 139,382 where name
partitioned, whereas after multipartite matching the
global species units numbered 73,253 (MCL) and 73,994
(name partitioned). These results indicate that while
initial differences exist in the primary gene clustering,
subsequent estimation of species diversity proceeds
similarly.

DISCUSSION

We have developed a framework for species
delineation of a database. Some of the steps of this
protocol have been used previously for the purpose
of organizing mined data for phylogenetic analysis
(Driskell et al. 2004; McMahon and Sanderson 2006;
Sanderson et al. 2008; Smith et al. 2009; Thomson and
Shaffer 2010; Jones et al. 2011a; Peters et al. 2011; Hedtke
et al. 2013). Many of these also require the partitioning
of such data into L×S matrices, although none address
the problem of defining the S-axis in the presence of
unidentified data. Other pipelines are underway based
on principles of DNA barcoding and DNA taxonomy,
facilitating species-level clustering and annotation, but
are designed for use with one (Wu et al. 2008; Jones et al.
2011b) or a small number (CBOL Plant Working Group
2009; Chesters and Vogler 2013) of loci specified a priori.
There has been no progress in the combined delineation
of both axes of the matrix, despite the interdependence
of species clustering and fragment partitioning.

The delineation of species according to molecular
divergence first requires the specification of the
fragments upon which species clustering is performed.
In principle, the automated partitioning of fragments
allows the data set to “speak for itself” in terms
of generating a data set maximally representing the
species information content of the database. In practice,
it is difficult to attain a fully objective delineation.
For example, optimizing gene partitions according to
their similarity to gene labeling reduces some arbitrary
decisions and parameter selections by the user, but the
partitioning is then inclined toward clustering sequences
into functional gene units, which might not necessarily
correspond to fragments commonly sequenced. This
might explain the results here in which all sequences
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of COI were placed into a single partition in spite of
this gene being represented in the insects primarily by
two nonoverlapping fragments (the five prime and three
prime segments). Still, the partition optimizations are
necessary only initially; the parameters suited for the
formation of species dense gene sets as determined here
can be applied in further studies.

The ability to delimit major divisions of a sequence
repository could facilitate genetic-based approaches
to quantifying species diversity. A long standing but
fundamental question in biology is the total number
of species on earth (Mora et al. 2011); public sequence
databases have great potential to shed light on this
question. There is an ongoing imperative to sample
biodiversity at the molecular level, leading to a massive
amount of data of a type which often retains intrinsic
information on species boundaries (Barraclough et al.
2003; Acinas et al. 2004; Pons et al. 2006). Thus,
information of global biodiversity exists on GenBank
irrespective of the thoroughness of species labeling.
Further, these data are also expected to contain
information on hidden diversity. For example, molecular
data suggest that species diversity of host-specific
arthropods may be grossly underestimated (Smith
et al. 2006; 2008; McBride et al. 2009), as has long
been suspected (Erwin 1982). A delineation matrix
generated from public sequence data represents a
set of hypotheses that can be used for independent
assessment of species inventories from traditional
observational means, and the associated metadata (e.g.,
geographic origin, altitude, and interacting species) are
invaluable in testing broad-scale hypotheses on patterns
in biodiversity (e.g., Baselga et al. 2013).

In addition to giving species diversity estimates, it is
evident that this pipeline could assist in the scaling up
of supermatrix phylogenetics. For some time, sequences
mined from public repositories constituted the bulk
of genetic information used in phylogenetic analysis.
Adoption of the principle herein yields supermatrices
with some advantageous features. The implementation
itself removes much of the guesswork and arbitrary
decisions often required when selecting homologs, and
the matrices formed are more representative both of
genetic and species diversity. Supermatrices from which
extraneous intraspecific data have been discarded retain
phylogenetic information while being more streamlined
and reducing computation time (Chesters and Vogler
2013). We demonstrate this can scale considerably, with
the matrix formed here perhaps the largest produced
(to date, the largest multilocus phylogenetic analysis
was carried out by Goloboff et al. (2009), consisting
of 73,060 taxa and 13 genes) although we do not
address the downstream processes extensively covered
elsewhere, such as matrix reduction and tree-searching
itself (Sanderson and Driskell 2003). The ease with which
the specific tools provided here can be applied in a given
phylogenetic context is likely to be dependent on genetic
and taxonomic structure. For example, any invertebrate
studies selected are likely to show similar patterns in
gene use and taxonomic sampling to that observed here,

whereas application to plant divisions would require
a new set of parameter optimizations for chloroplast
markers. Further, the species delineations are dependent
on the presence of reference (species labeled) data, which
may be sparse for some taxa which have high diversity
relative to their morphological distinctiveness.

The abilities in database organization afforded by
this study have the potential to inform fields beyond
phylogenetic analysis of mined data. Although we
expect this pipeline initially to be run anew on a
number of primary data sets, it may be valuable to
establish a publically accessible database based on
the L×S matrix for querying of new sequence data
(manuscript in preparation). This can be viewed as
an identification service similar to those which have
long existed for single locus data (Maidak et al.
2001; Pruesse et al. 2007; Ratnasingham and Hebert
2007) but that includes the genomic dimension (L)
where previously only the species dimension (S) was
used. The need for the genomic dimension in species
identification will become more pressing as current
trends in monitoring of biodiversity are going beyond
single-locus sequencing. The term genomic observatory
has been coined referring to the need to characterize
communities in the genomic era (Davies et al. 2012),
and more generally, the integration of amplification free
technologies in environmental sampling is generating
extensive multigene data sets in which species diversity
is unknown, and of which the sequence data are
characteristically fragmentary (Taberlet et al. 2012; Zhao
et al. 2013). Querying such data against an L×S
matrix would allow them to be set into a species-
level framework irrespective of the fragment or species
amplified, where queries could then be (i) assigned to an
existing row of the reference matrix that contains named
species, (ii) assigned to a row only of unlabelled data, and
(iii) unassignable to existing rows at the given thresholds.
All of these possibilities are informative; (i) permits
assignment of a species name to the query, (ii) would
not return any species name although would return
associated information such as geographic locations of
putative conspecifics, and (iii) indicating novel species
units. The matrix formed herein therefore represents
an initial attempt at building a framework which
represents both genetic and species diversity as currently
accumulated, which can be utilized for quantifying both
of these, in applications using DNA sequence data.

SOFTWARE AVAILABILITY

A Linux implementation of the protocol described
here is made freely available under the GNU
general public license at http://sourceforge.net/
projects/organizesequencedb/files/.

SUPPLEMENTARY MATERIAL

Supplementary material, including data files and/or
online-only appendices, can be found in the Dryad data
repository at http://dx.doi.org/10.5061/dryad.k7t50.
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