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Molecular evolution

Adaptive evolution of vertebrate-type
cryptochrome in the ancestors
of Hymenoptera
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Beijing 100101, People’s Republic of China
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One of the most mysterious aspects of insect clock mechanisms is that some

insects, including Hymenoptera and Tribolium, only express a vertebrate-

type cryptochrome (cry2). It is unknown whether or not cry2 underwent

adaptive evolution in these insects. In the present study, we cloned and

sequenced the full-length cry2 from a fig pollinator species, Ceratosolen
solmsi (Hymenoptera: Chalcidoidea: Agaonidae), and examined the molecu-

lar evolution and daily expression of this gene. Our results suggest that cry2
underwent positive selection in the branch leading to hymenopteran insects.

The function of CRY2 might have been fixed since undergoing natural selec-

tion in the ancestor of Hymenoptera. Male pollinators showed stronger

rhythmicity in the host figs, which reflect an adaptation to their life cycles.
1. Introduction
Cryptochrome (CRY) is a photolyase-like flavoprotein that shows no DNA-

repair activity [1]. Animal CRY proteins are phylogenetically divided into

two clusters: one contains Drosophila-type CRY (CRY1) and the other includes

all the vertebrate CRY (CRY2) [2,3]. Drosophila species only possess cry1, mos-

quitoes and butterflies have both genes, and hymenopteran insects and

Tribolium have lost cry1 [2–4]. CRY1 is a blue-light sensor that plays a major

role in photic entrainment in Drosophila [5–7]. In contrast, insect CRY2 is an

important transcriptional repressor in the circadian clock, which shows no

light sensitivity in culture [3,8]. Recently, both CRYs were reported to have

light-dependent magnetosensitivity [9–11]. However, we have no knowledge

of whether or not the CRYs have different evolutionary patterns in the diverse

insect taxa. As the protein encoded by cry1 serves as an important light sensor

in the circadian systems of insects, we hypothesize that natural selection might

have driven the evolution of cry2 to compensate for loss of cry1 in hymenopteran

insects. To test this hypothesis, we amplified and sequenced the full-length cry2 of

a fig pollinator species, Ceratosolen solmsi, whose life cycle is strictly synchronized

to its host fig tree Ficus hispida, and characterized the daily expression of this gene.
2. Material and methods
Fig fruits of F. hispida, were sampled from Danzhou (198300290 N, 109829060 E), Hainan

province, China in October 2011. Both female and male pollinators were collected.

Full-length cry2 of C. solmsi was amplified by RT-PCR and RACE PCR from

cDNA samples and sequenced. Additional insect cry2 gene sequences were acquired

from NCBI (www. ncbi.nlm.nih.gov), as listed in electronic supplementary material,

table S1.
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Figure 1. (a) Phylogenetic reconstruction of cry2 in holometabolic insects. The ML tree is constructed from full-length coding sequences of cry2. Bootstrap values are
shown at the nodes. The branches tested for positive selection are labelled as a – g. Asterisk (*) indicates that positively selected sites are detected. The species that
lack cry1 are highlighted in blue. (b) Phylogeny of the holometabolic insects, character mapping of possession of cryptochrome genes and proposed ancestral state.
Triangles indicate cry1 (red) and cry2 (blue).
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To study sequence evolution of cry2 in holometabolic insects,

we reconstructed a gene tree for cry2, and based on which we

performed tests for positive selection using maximum-likelihood

estimation by CODEML in PAML v. 4.5 [12]. Two types of selec-

tion models, Site models and Branch-site models [13–16] were

used to test for episodic evolution of cry2 along branches a–g
(figure 1a). Since seven separate likelihood ratio tests (LRTs)

were performed in this analysis, Bonferroni adjustment was

used for multiple testing correction. The results are shown in

electronic supplementary material, tables S2 and S3. Detailed

methods were given in the electronic supplementary material.

RT-qPCR was used to analyse daily transcript levels of cry2 in

female and male wasps under different light conditions (females

in natural light-treated figs, females in dark-treated figs,
females exposed to natural light, males in natural light-treated

figs, and males in dark-treated figs).
3. Results
(a) Episodic evolution of cry2
We obtained the 1704 bp full-length cry2 sequence (Genbank

accession no. JX409893) from C. solmsi. Combined with pub-

lished data from other holometabolic insect species, we

reconstructed the gene tree of cry2 (figure 1a). The sequences

of cryptochrome genes have been mapped onto the species

phylogeny of holometabolic insects based on previous
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Figure 2. (a) Daily expression of cry2 in female and (b) male C. solmsi. Fold expression of cry2 (mRNA abundance of opsin genes relative to reference genes) at each
time point are represented by bars. LF (blue), fig-female light; DF (red), fig-female dark; F (green), emerged females light; LM (blue), fig-male light; DM (red), fig-
male dark. Asterisk (*) indicates significant rhythmic expression. Morphological dimorphism between female and male of C. solmsi is present.

Table 1. Statistical values of cry2 expression in C. solmsi. d.f., degree of freedom; F, value of F-test; p-value, probability.

source d.f. F p-value % of total variation

female:

light 2 190.9 ,0.0001 44.73

time 7 9.772 ,0.0001 15.31

light � time 14 9.524 ,0.0001 29.85

male:

light 1 412.4 ,0.0001 49.58

time 7 5.837 ¼0.0003 13.30

light � time 7 12.08 ,0.0001 27.52
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studies [17]. We also inferred the distribution of both genes in

the ancestor of the four main holometabolic insect orders:

Hymenoptera, Coleoptera, Lepidoptera and Diptera (figure

1b). Results of the evolutionary analysis of site models indi-

cated that both cry1 and cry2 experienced strong purifying

selection (cry2: v ¼ 0.01536 for all taxa; cry1: v ¼ 0.02130

for mosquitoes and Lepidoptera), although there is evidence

that cry2 (cry2: v ¼ 0.01624 for mosquitoes and Lepidoptera)

is even more constrained than cry1 ( p ¼ 0.015; electronic sup-

plementary material, table S2). Branch-site models identified

a group of amino acid sites that underwent positive selection

along the branches leading to Hymenoptera (17 sites for

branch a) (see the electronic supplementary material, table

S2, S3). However, we found no evidence of positive selection

along other branches we tested.

(b) Daily expression of cry2 in Ceratosolen solmsi
Daily levels of cry2 mRNA in both female and male C. solmsi
varied as a function of the time � light interaction (table 1).

Cosinor analyses [18] indicated that the cry2 was rhythmi-

cally expressed in emerged females exposed to natural light

(emerged female light; one way ANOVA: p , 0.001; Cosinor:

p ¼ 0.016) and males in both natural light-treated (fig-male

light; one way ANOVA: p ¼ 0.001; Cosinor: p , 0.001) and

dark-treated (fig-male dark; one way ANOVA: p , 0.001;

Cosinor: p ¼ 0.004) figs (figure 2).
4. Discussion
The crustacean species Daphnia pulex has both cry1 and cry2,

suggesting that the gene duplication of cryptochrome

occurred before the emergence of insects. Therefore, posses-

sion of only one cryptochrome in some holometabolic

insects should be attributed to lineage-specific gene loss

events. Since all the hymenopteran species (ants, bees and

wasps) that we sampled only possess cry2, it is likely that

loss of cry1 occurred in the ancestor of Hymenoptera.

Tribolium castaneum also lacked cry1, but we could not deter-

mine when the gene loss event occurred in the coleopteran

lineage. Based on our selective pressure test of cryptochrome

in holometabolic insects, cry2 seemed to have undergone

stronger purifying selection than cry1 in the same set of

species (mosquitos and lepidopteran insects). This was pre-

dictable because the function of CRY2 as a transcriptional

repressive component was relatively conservative. However,

branch-site tests suggested that during the evolutionary his-

tory of holometabolic insects, at least some residues of

CRY2 experienced positive selection in the ancestor of hyme-

nopteran species, after gene loss of cry1. This evolutionary

pattern supports our hypothesis that cry2 was subjected to

more positive selection in the absence of the function conferred

by CRY1. We did not find evidence of positive selection for

branches leading to extant hymenopteran species such as

bees, wasps and the fig pollinator, C. Solmsi. It seems that the
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function of CRY2 has been conserved since undergoing natural

selection in the ancestor of Hymenoptera. Rhythmic expression

of cry2 has been recorded in several holometabolic species

[2,19,20]. In some cases, expression of this gene showed stron-

ger plasticity than cry1 not only across species [19] but also in

different tissues within the same organism [20]. This suggests

that the expression pattern of cry2 has the potential to reveal

species-specific adaptation to the light environment or lifestyle,

especially in the insects that lack photosensitive CRY1.

Figs (Ficus: Moraceae) and their pollinators (Family

Agaonidae) form one of the best-known examples of obligate

mutualism [21]. The wasps develop in the galls formed

within the syconia of figs. Upon maturation, males emerge

from the galls before females, and they chew holes in the

galls containing females so that the latter can disperse to pol-

linate in other receptive fig fruits [22]. Apparently, males

initiate the life cycles in the fig pollinators. Because males

seldom leave the fig fruits and the females are responsible

for colonizing new hosts [22,23], it is reasonable to anticipate

that males will show stronger rhythmicity within the fig
fruits than females. Although it remains unclear how CRY2

functions, hymenopteran’s cry2 mRNA levels should reflect

some rhythmicity as a core clock-element [2,3]. This predic-

tion allows for testing our hypothesis on the adaptation of

rhythms of fig pollinators to their host. Consistent with our

hypothesis, the results from RT-qPCR suggested that males

maintain rhythmic expression of their cry2, yet females main-

tain the rhythmicity only when they are outside the fig fruits.

Such sex-specific expression patterns of cry2 could be the

result from the adaptation of pollinators to their host figs

during their long-term coevolution [24,25].

This project was supported by the National Natural Science Foun-
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